Skip to main content
Erschienen in: European Radiology 2/2022

03.09.2021 | Cardiac

Automatic machine learning based on native T1 mapping can identify myocardial fibrosis in patients with hypertrophic cardiomyopathy

verfasst von: Wan-Lin Peng, Tian-Jing Zhang, Ke Shi, Hai-Xia Li, Ying Li, Sen He, Chen Li, Dong Xia, Chun-Chao Xia, Zhen-Lin Li

Erschienen in: European Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To investigate the feasibility of automatic machine learning (autoML) based on native T1 mapping to predict late gadolinium enhancement (LGE) status in hypertrophic cardiomyopathy (HCM).

Methods

Ninety-one HCM patients and 44 healthy controls who underwent cardiovascular MRI were enrolled. The native T1 maps of HCM patients were classified as LGE ( +) or LGE (-) based on location-matched LGE images. An autoML pipeline was implemented using the tree-based pipeline optimization tool (TPOT) for 3 binary classifications: LGE ( +) and LGE (-), LGE (-) and control, and HCM and control. TPOT modeling was repeated 10 times to obtain the optimal model for each classification. The diagnostic performance of the best models by slice and by case was evaluated using sensitivity, specificity, accuracy, and microaveraged area under the curve (AUC).

Results

Ten prediction models were generated by TPOT for each of the 3 binary classifications. The diagnostic accuracy obtained with the best pipeline in detecting LGE status in the testing cohort of HCM patients was 0.80 by slice and 0.79 by case. In addition, the TPOT model also showed discriminability between LGE (-) patients and control (accuracy: 0.77 by slice; 0.78 by case) and for all HCM patients and controls (accuracy: 0.88 for both).

Conclusions

Native T1 map analysis based on autoML correlates with LGE ( +) or (-) status. The TPOT machine learning algorithm could be a promising method for predicting myocardial fibrosis, as reflected by the presence of LGE in HCM patients without the need for late contrast-enhanced MRI sequences.

Key Points

The tree-based pipeline optimization tool (TPOT) is a machine learning algorithm that could help predict late gadolinium enhancement (LGE) status in patients with hypertrophic cardiomyopathy.
The TPOT could serve as an adjuvant method to detect LGE by using information from native T1 maps, thus avoiding the need for contrast agent.
The TPOT also detects native T1 map alterations in LGE-negative patients with hypertrophic cardiomyopathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bogaert J, Olivotto I (2014) MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology 273(2):329–348CrossRef Bogaert J, Olivotto I (2014) MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology 273(2):329–348CrossRef
2.
Zurück zum Zitat Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64(1):83–99CrossRef Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64(1):83–99CrossRef
3.
Zurück zum Zitat Mentias A, Raeisi-Giglou P, Smedira NG et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72(8):857–870CrossRef Mentias A, Raeisi-Giglou P, Smedira NG et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72(8):857–870CrossRef
4.
Zurück zum Zitat Hashimura H, Kimura F, Ishibashi-Ueda H et al (2017) Radiologic-pathologic correlation of primary and secondary cardiomyopathies: MR imaging and histopathologic findings in hearts from autopsy and transplantation. Radiographics 37(3):719–736CrossRef Hashimura H, Kimura F, Ishibashi-Ueda H et al (2017) Radiologic-pathologic correlation of primary and secondary cardiomyopathies: MR imaging and histopathologic findings in hearts from autopsy and transplantation. Radiographics 37(3):719–736CrossRef
5.
Zurück zum Zitat McDonald RJ, Levine D, Weinreb J et al (2018) Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289(2):517–534CrossRef McDonald RJ, Levine D, Weinreb J et al (2018) Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289(2):517–534CrossRef
6.
Zurück zum Zitat Robinson AA, Chow K, Salerno M (2019) Myocardial T1 and ECV measurement: underlying concepts and technical considerations. JACC Cardiovasc Imaging 12(11 Pt 2):2332–2344CrossRef Robinson AA, Chow K, Salerno M (2019) Myocardial T1 and ECV measurement: underlying concepts and technical considerations. JACC Cardiovasc Imaging 12(11 Pt 2):2332–2344CrossRef
7.
Zurück zum Zitat von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA et al (2013) Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 15(1):53CrossRef von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA et al (2013) Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 15(1):53CrossRef
8.
Zurück zum Zitat Gottbrecht M, Kramer CM, Salerno M (2019) Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: a meta-analysis. Radiology 290(2):317–326CrossRef Gottbrecht M, Kramer CM, Salerno M (2019) Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: a meta-analysis. Radiology 290(2):317–326CrossRef
9.
Zurück zum Zitat Leiner T, Rueckert D, Suinesiaputra A et al (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21(1):61CrossRef Leiner T, Rueckert D, Suinesiaputra A et al (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21(1):61CrossRef
10.
Zurück zum Zitat Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12(10):1946–1954CrossRef Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12(10):1946–1954CrossRef
11.
Zurück zum Zitat Neisius U, El-Rewaidy H, Kucukseymen S et al (2020) Texture signatures of native myocardial T1 as novel imaging markers for identification of hypertrophic cardiomyopathy patients without scar. J Magn Reson Imaging 52(3):906–919CrossRef Neisius U, El-Rewaidy H, Kucukseymen S et al (2020) Texture signatures of native myocardial T1 as novel imaging markers for identification of hypertrophic cardiomyopathy patients without scar. J Magn Reson Imaging 52(3):906–919CrossRef
12.
Zurück zum Zitat Wang J, Yang F, Liu W et al (2020) Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy. J Magn Reson Imaging 52(6):1714–1721CrossRef Wang J, Yang F, Liu W et al (2020) Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy. J Magn Reson Imaging 52(6):1714–1721CrossRef
13.
Zurück zum Zitat Dafflon J, Pinaya WHL, Turkheimer F et al (2020) An automated machine learning approach to predict brain age from cortical anatomical measures. Hum Brain Mapp 41(13):3555–3566CrossRef Dafflon J, Pinaya WHL, Turkheimer F et al (2020) An automated machine learning approach to predict brain age from cortical anatomical measures. Hum Brain Mapp 41(13):3555–3566CrossRef
14.
Zurück zum Zitat Le TT, Fu W, Moore JH (2020) Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36(1):250–256CrossRef Le TT, Fu W, Moore JH (2020) Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36(1):250–256CrossRef
15.
Zurück zum Zitat Su X, Chen N, Sun H et al (2020) Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 22(3):393–401PubMed Su X, Chen N, Sun H et al (2020) Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 22(3):393–401PubMed
16.
Zurück zum Zitat Zhou H, Hu R, Tang O et al (2020) Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol 41(7):1279–1285CrossRef Zhou H, Hu R, Tang O et al (2020) Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol 41(7):1279–1285CrossRef
17.
Zurück zum Zitat Authors/Task Force members, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779CrossRef Authors/Task Force members, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779CrossRef
18.
Zurück zum Zitat Xu J, Zhuang B, Sirajuddin A et al (2020) MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction. Radiology 294(2):275–286CrossRef Xu J, Zhuang B, Sirajuddin A et al (2020) MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction. Radiology 294(2):275–286CrossRef
19.
Zurück zum Zitat Raisi-Estabragh Z, Izquierdo C, Campello VM et al (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 21(4):349–356CrossRef Raisi-Estabragh Z, Izquierdo C, Campello VM et al (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 21(4):349–356CrossRef
20.
Zurück zum Zitat Baeßler B, Mannil M, Maintz D, Alkadhi H, Manka R (2018) Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results. Eur J Radiol 102:61–67CrossRef Baeßler B, Mannil M, Maintz D, Alkadhi H, Manka R (2018) Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results. Eur J Radiol 102:61–67CrossRef
21.
Zurück zum Zitat Schofield R, Ganeshan B, Fontana M et al (2019) Texture analysis of cardiovascular magnetic resonance cine images differentiates aetiologies of left ventricular hypertrophy. Clin Radiol 74(2):140–149CrossRef Schofield R, Ganeshan B, Fontana M et al (2019) Texture analysis of cardiovascular magnetic resonance cine images differentiates aetiologies of left ventricular hypertrophy. Clin Radiol 74(2):140–149CrossRef
24.
Zurück zum Zitat Galati G, Leone O, Pasquale F et al (2016) Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail 9(9):e003090CrossRef Galati G, Leone O, Pasquale F et al (2016) Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail 9(9):e003090CrossRef
25.
Zurück zum Zitat Ando K, Nagao M, Watanabe E et al (2020) Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI. Eur Radiol 30(8):4327–4336CrossRef Ando K, Nagao M, Watanabe E et al (2020) Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI. Eur Radiol 30(8):4327–4336CrossRef
Metadaten
Titel
Automatic machine learning based on native T1 mapping can identify myocardial fibrosis in patients with hypertrophic cardiomyopathy
verfasst von
Wan-Lin Peng
Tian-Jing Zhang
Ke Shi
Hai-Xia Li
Ying Li
Sen He
Chen Li
Dong Xia
Chun-Chao Xia
Zhen-Lin Li
Publikationsdatum
03.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08228-7

Weitere Artikel der Ausgabe 2/2022

European Radiology 2/2022 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.