Skip to main content
Erschienen in: The Cerebellum 3/2011

01.09.2011

Cadherins in Cerebellar Development: Translation of Embryonic Patterning into Mature Functional Compartmentalization

verfasst von: Christoph Redies, Franziska Neudert, Juntang Lin

Erschienen in: The Cerebellum | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.
Literatur
1.
Zurück zum Zitat Redies C, Vanhalst K, Roy F. delta-Protocadherins: unique structures and functions. Cell Mol Life Sci. 2005;62:2840–52.PubMedCrossRef Redies C, Vanhalst K, Roy F. delta-Protocadherins: unique structures and functions. Cell Mol Life Sci. 2005;62:2840–52.PubMedCrossRef
2.
3.
Zurück zum Zitat Hirano S, Suzuki ST, Redies C. The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci. 2003;8:d306–56.PubMedCrossRef Hirano S, Suzuki ST, Redies C. The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci. 2003;8:d306–56.PubMedCrossRef
4.
Zurück zum Zitat Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci. 2007;8:11–20.PubMedCrossRef Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci. 2007;8:11–20.PubMedCrossRef
5.
Zurück zum Zitat Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol. 2009;41:349–69.PubMedCrossRef Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol. 2009;41:349–69.PubMedCrossRef
7.
Zurück zum Zitat Redies C, Medina L, Puelles L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol. 2001;438:253–85.PubMedCrossRef Redies C, Medina L, Puelles L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J Comp Neurol. 2001;438:253–85.PubMedCrossRef
8.
Zurück zum Zitat Redies C, Ast M, Nakagawa S, Takeichi M, Martínez-de-la-Torre M, Puelles L. Morphological fate of diencephalic neuromeres and their subdivisions revealed by mapping cadherin expression. J Comp Neurol. 2000;421:481–514.PubMedCrossRef Redies C, Ast M, Nakagawa S, Takeichi M, Martínez-de-la-Torre M, Puelles L. Morphological fate of diencephalic neuromeres and their subdivisions revealed by mapping cadherin expression. J Comp Neurol. 2000;421:481–514.PubMedCrossRef
9.
Zurück zum Zitat Yoon MS, Puelles L, Redies C. Formation of cadherin-expressing brain nuclei in diencephalic alar plate subdivisions. J Comp Neurol. 2000;421:461–80.PubMedCrossRef Yoon MS, Puelles L, Redies C. Formation of cadherin-expressing brain nuclei in diencephalic alar plate subdivisions. J Comp Neurol. 2000;421:461–80.PubMedCrossRef
10.
Zurück zum Zitat Hertel N, Krishna K, Nuernberger M, Redies C. A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol. 2008;508:511–28.PubMedCrossRef Hertel N, Krishna K, Nuernberger M, Redies C. A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol. 2008;508:511–28.PubMedCrossRef
11.
Zurück zum Zitat Krishna K, Nuernberger M, Weth F, Redies C. Layer-specific expression of multiple cadherins in the developing visual cortex (V1) of the ferret. Cereb Cortex. 2009;19:388–401.CrossRef Krishna K, Nuernberger M, Weth F, Redies C. Layer-specific expression of multiple cadherins in the developing visual cortex (V1) of the ferret. Cereb Cortex. 2009;19:388–401.CrossRef
12.
Zurück zum Zitat Etzrodt J, Krishna KK, Redies C. Expression of classic cadherins and delta-protocadherins in the developing ferret retina. BMC Neurosci. 2009;10:153.PubMedCrossRef Etzrodt J, Krishna KK, Redies C. Expression of classic cadherins and delta-protocadherins in the developing ferret retina. BMC Neurosci. 2009;10:153.PubMedCrossRef
13.
Zurück zum Zitat Neudert F, Redies C. Neural circuits revealed by axon tracing and mapping cadherin expression in the embryonic chicken cerebellum. J Comp Neurol. 2008;509:283–301.PubMedCrossRef Neudert F, Redies C. Neural circuits revealed by axon tracing and mapping cadherin expression in the embryonic chicken cerebellum. J Comp Neurol. 2008;509:283–301.PubMedCrossRef
14.
Zurück zum Zitat Redies C, Engelhart K, Takeichi M. Differential expression of N- and R-cadherin in functional neuronal systems and other structures of the developing chicken brain. J Comp Neurol. 1993;333:398–416.PubMedCrossRef Redies C, Engelhart K, Takeichi M. Differential expression of N- and R-cadherin in functional neuronal systems and other structures of the developing chicken brain. J Comp Neurol. 1993;333:398–416.PubMedCrossRef
15.
Zurück zum Zitat Sperry RW. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA. 1963;50:703–9.PubMedCrossRef Sperry RW. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA. 1963;50:703–9.PubMedCrossRef
16.
Zurück zum Zitat Steinberg MS, Takeichi M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA. 1994;91:206–9.PubMedCrossRef Steinberg MS, Takeichi M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA. 1994;91:206–9.PubMedCrossRef
17.
Zurück zum Zitat Wöhrn J-CP, Nakagawa S, Ast M, Takeichi M, Redies C. Combinatorial expression of cadherins and the sorting of neurites in the tectofugal pathways of the chicken embryo. Neuroscience. 1999;90:985–1000.PubMedCrossRef Wöhrn J-CP, Nakagawa S, Ast M, Takeichi M, Redies C. Combinatorial expression of cadherins and the sorting of neurites in the tectofugal pathways of the chicken embryo. Neuroscience. 1999;90:985–1000.PubMedCrossRef
18.
Zurück zum Zitat Gänzler-Odenthal SI, Redies C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci. 1998;18:5415–25.PubMed Gänzler-Odenthal SI, Redies C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci. 1998;18:5415–25.PubMed
19.
Zurück zum Zitat Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, et al. parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development. 2002;129:3281–94.PubMed Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, et al. parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development. 2002;129:3281–94.PubMed
20.
Zurück zum Zitat Masai I, Lele Z, Yamaguchi M, Komori A, Nakata A, Nishiwaki Y, et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development. 2003;130:2479–94.PubMedCrossRef Masai I, Lele Z, Yamaguchi M, Komori A, Nakata A, Nishiwaki Y, et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development. 2003;130:2479–94.PubMedCrossRef
21.
Zurück zum Zitat Inoue T, Tanaka T, Takeichi M, Chisaka O, Nakamura S, Osumi N. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development. 2001;128:561–9.PubMed Inoue T, Tanaka T, Takeichi M, Chisaka O, Nakamura S, Osumi N. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development. 2001;128:561–9.PubMed
22.
Zurück zum Zitat Matsunaga M, Hatta K, Nagafuchi A, Takeichi M. Guidance of optic nerve fibers by N-cadherin adhesion molecules. Nature. 1988;334:62–4.PubMedCrossRef Matsunaga M, Hatta K, Nagafuchi A, Takeichi M. Guidance of optic nerve fibers by N-cadherin adhesion molecules. Nature. 1988;334:62–4.PubMedCrossRef
23.
Zurück zum Zitat Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron. 1996;17:837–48.PubMedCrossRef Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron. 1996;17:837–48.PubMedCrossRef
24.
Zurück zum Zitat Redies C, Takeichi M. N- and R-cadherin expression in the optic nerve of the chicken embryo. Glia. 1993;8:161–71.PubMedCrossRef Redies C, Takeichi M. N- and R-cadherin expression in the optic nerve of the chicken embryo. Glia. 1993;8:161–71.PubMedCrossRef
25.
Zurück zum Zitat Treubert-Zimmermann U, Heyers D, Redies C. Targeting axons to specific fiber tracts in vivo by altering cadherin expression. J Neurosci. 2002;22:7617–26.PubMed Treubert-Zimmermann U, Heyers D, Redies C. Targeting axons to specific fiber tracts in vivo by altering cadherin expression. J Neurosci. 2002;22:7617–26.PubMed
26.
Zurück zum Zitat Uemura M, Nakao S, Suzuki ST, Takeichi M, Hirano S. OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci. 2007;10:1151–9.PubMedCrossRef Uemura M, Nakao S, Suzuki ST, Takeichi M, Hirano S. OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci. 2007;10:1151–9.PubMedCrossRef
27.
Zurück zum Zitat Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron. 2002;35:77–89.PubMedCrossRef Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron. 2002;35:77–89.PubMedCrossRef
28.
Zurück zum Zitat Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron. 2007;56:456–71.PubMedCrossRef Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron. 2007;56:456–71.PubMedCrossRef
29.
Zurück zum Zitat Yamagata K, Andreasson KI, Sugiura H, Maru E, Dominique M, Irie Y, et al. Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem. 1999;274:19473–9.PubMedCrossRef Yamagata K, Andreasson KI, Sugiura H, Maru E, Dominique M, Irie Y, et al. Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J Biol Chem. 1999;274:19473–9.PubMedCrossRef
30.
Zurück zum Zitat Beesley PW, Mummery R, Tibaldi J. N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J Neurochem. 1995;64:2288–94.PubMedCrossRef Beesley PW, Mummery R, Tibaldi J. N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J Neurochem. 1995;64:2288–94.PubMedCrossRef
31.
Zurück zum Zitat Fannon AM, Colman DR. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron. 1996;17:423–34.PubMedCrossRef Fannon AM, Colman DR. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron. 1996;17:423–34.PubMedCrossRef
32.
Zurück zum Zitat Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 2008;31:487–94.PubMedCrossRef Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 2008;31:487–94.PubMedCrossRef
33.
Zurück zum Zitat Redies C, Takeichi M. Expression of N-cadherin mRNA during development of the mouse brain. Dev Dyn. 1993;197:26–39.PubMedCrossRef Redies C, Takeichi M. Expression of N-cadherin mRNA during development of the mouse brain. Dev Dyn. 1993;197:26–39.PubMedCrossRef
34.
Zurück zum Zitat Rieger S, Senghaas N, Walch A, Koster RW. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol. 2009;7:e1000240.PubMedCrossRef Rieger S, Senghaas N, Walch A, Koster RW. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol. 2009;7:e1000240.PubMedCrossRef
35.
Zurück zum Zitat Gliem M, Weisheit G, Mertz KD, Endl E, Oberdick J, Schilling K. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects. Mol Cell Neurosci. 2006;33:447–58.PubMedCrossRef Gliem M, Weisheit G, Mertz KD, Endl E, Oberdick J, Schilling K. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects. Mol Cell Neurosci. 2006;33:447–58.PubMedCrossRef
36.
Zurück zum Zitat Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL. Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci. 2007;27:6115–27.PubMedCrossRef Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL. Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci. 2007;27:6115–27.PubMedCrossRef
37.
Zurück zum Zitat Shimamura K, Takeichi M. Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development. 1992;116:1011–9.PubMed Shimamura K, Takeichi M. Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development. 1992;116:1011–9.PubMed
38.
Zurück zum Zitat Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338:202–14.PubMedCrossRef Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338:202–14.PubMedCrossRef
39.
Zurück zum Zitat Hamburger V, Hamilton H. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.CrossRef Hamburger V, Hamilton H. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.CrossRef
40.
Zurück zum Zitat Arndt K, Redies C. Development of cadherin-defined parasagittal subdivisions in the embryonic chicken cerebellum. J Comp Neurol. 1998;401:367–81.PubMedCrossRef Arndt K, Redies C. Development of cadherin-defined parasagittal subdivisions in the embryonic chicken cerebellum. J Comp Neurol. 1998;401:367–81.PubMedCrossRef
41.
Zurück zum Zitat Millen KJ, Hui CC, Joyner AL. A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development. 1995;121:3935–45.PubMed Millen KJ, Hui CC, Joyner AL. A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development. 1995;121:3935–45.PubMed
42.
Zurück zum Zitat Mathis L, Bonnerot C, Puelles L, Nicolas JF. Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development. 1997;124:4089–104.PubMed Mathis L, Bonnerot C, Puelles L, Nicolas JF. Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development. 1997;124:4089–104.PubMed
43.
Zurück zum Zitat Park C, Falls W, Finger JH, Longo-Guess CM, Ackerman SL. Deletion in Catna2, encoding alpha N-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat Genet. 2002;31:279–84.PubMed Park C, Falls W, Finger JH, Longo-Guess CM, Ackerman SL. Deletion in Catna2, encoding alpha N-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat Genet. 2002;31:279–84.PubMed
44.
Zurück zum Zitat Feirabend HK. Development of longitudinal patterns in the cerebellum of the chicken (Gallus domesticus): a cytoarchitectural study on the genesis of cerebellar modules. Eur J Morphol. 1990;28:169–223.PubMed Feirabend HK. Development of longitudinal patterns in the cerebellum of the chicken (Gallus domesticus): a cytoarchitectural study on the genesis of cerebellar modules. Eur J Morphol. 1990;28:169–223.PubMed
45.
Zurück zum Zitat Feirabend HKP. Anatomy and development of longitudinal patterns in the architecture of the cerebellum of the White Leghorn (Gallus domesticus). Ph.D. thesis: Rijksuniversiteit te Leiden; 1983. Feirabend HKP. Anatomy and development of longitudinal patterns in the architecture of the cerebellum of the White Leghorn (Gallus domesticus). Ph.D. thesis: Rijksuniversiteit te Leiden; 1983.
46.
Zurück zum Zitat Eisenman LM, Hawkes R. Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol. 1993;335:586–605.PubMedCrossRef Eisenman LM, Hawkes R. Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol. 1993;335:586–605.PubMedCrossRef
47.
Zurück zum Zitat Lin JC, Cepko CL. Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J Neurosci. 1998;18:9342–53.PubMed Lin JC, Cepko CL. Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J Neurosci. 1998;18:9342–53.PubMed
48.
Zurück zum Zitat Wassef M, Zanetta JP, Brehier A, Sotelo C. Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol. 1985;111:129–37.PubMedCrossRef Wassef M, Zanetta JP, Brehier A, Sotelo C. Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol. 1985;111:129–37.PubMedCrossRef
49.
Zurück zum Zitat Oberdick J, Schilling K, Smeyne RJ, Corbin JG, Bocchiaro C, Morgan JI. Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron. 1993;10:1007–18.PubMedCrossRef Oberdick J, Schilling K, Smeyne RJ, Corbin JG, Bocchiaro C, Morgan JI. Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron. 1993;10:1007–18.PubMedCrossRef
50.
Zurück zum Zitat Kinoshita-Kawada M, Oberdick J. Xi Zhu M. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res. 2004;132:73–86.PubMedCrossRef Kinoshita-Kawada M, Oberdick J. Xi Zhu M. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res. 2004;132:73–86.PubMedCrossRef
51.
Zurück zum Zitat Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, et al. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci. 2009;40:62–75.PubMedCrossRef Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, et al. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci. 2009;40:62–75.PubMedCrossRef
52.
Zurück zum Zitat Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20:6488–500.PubMed Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20:6488–500.PubMed
53.
Zurück zum Zitat Arndt K, Redies C. Restricted expression of R-cadherin by brain nuclei and neural circuits of the developing chicken brain. J Comp Neurol. 1996;373:373–99.PubMedCrossRef Arndt K, Redies C. Restricted expression of R-cadherin by brain nuclei and neural circuits of the developing chicken brain. J Comp Neurol. 1996;373:373–99.PubMedCrossRef
54.
Zurück zum Zitat Arndt K, Nakagawa S, Takeichi M, Redies C. Cadherin-defined segments and parasagittal cell ribbons in the developing chicken cerebellum. Mol Cell Neurosci. 1998;10:211–28.CrossRef Arndt K, Nakagawa S, Takeichi M, Redies C. Cadherin-defined segments and parasagittal cell ribbons in the developing chicken cerebellum. Mol Cell Neurosci. 1998;10:211–28.CrossRef
55.
Zurück zum Zitat Redies C, Luckner R, Arndt K. Granule cell raphes in the cerebellar cortex of chicken and mouse. Brain Res Bull. 2002;57:341–3.PubMedCrossRef Redies C, Luckner R, Arndt K. Granule cell raphes in the cerebellar cortex of chicken and mouse. Brain Res Bull. 2002;57:341–3.PubMedCrossRef
56.
Zurück zum Zitat Luckner R, Obst-Pernberg K, Hirano S, Suzuki ST, Redies C. Granule cell raphes in the developing mouse cerebellum. Cell Tissue Res. 2001;303:159–72.PubMedCrossRef Luckner R, Obst-Pernberg K, Hirano S, Suzuki ST, Redies C. Granule cell raphes in the developing mouse cerebellum. Cell Tissue Res. 2001;303:159–72.PubMedCrossRef
57.
Zurück zum Zitat Neudert F, Nuernberger KK, Redies C. Comparative analysis of cadherin expression and connectivity patterns in the cerebellar system of ferret and mouse. J Comp Neurol. 2008;511:736–52.PubMedCrossRef Neudert F, Nuernberger KK, Redies C. Comparative analysis of cadherin expression and connectivity patterns in the cerebellar system of ferret and mouse. J Comp Neurol. 2008;511:736–52.PubMedCrossRef
58.
Zurück zum Zitat Larouche M, Hawkes R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum. 2006;5:77–88.PubMedCrossRef Larouche M, Hawkes R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum. 2006;5:77–88.PubMedCrossRef
59.
Zurück zum Zitat Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412:95–111.PubMedCrossRef Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412:95–111.PubMedCrossRef
60.
Zurück zum Zitat Voogd J. Cerebellum. In: Paxinos G, editor. The rat nervous system. 3rd ed. San Diego: Academic; 2004. p. 205–42. Voogd J. Cerebellum. In: Paxinos G, editor. The rat nervous system. 3rd ed. San Diego: Academic; 2004. p. 205–42.
61.
Zurück zum Zitat Korneliussen HK. On the ontogenetic development of the cerebellum (nuclei, fissures, and cortex) of the rat, with special reference to regional variations in corticogenesis. J Hirnforsch. 1968;10:379–412.PubMed Korneliussen HK. On the ontogenetic development of the cerebellum (nuclei, fissures, and cortex) of the rat, with special reference to regional variations in corticogenesis. J Hirnforsch. 1968;10:379–412.PubMed
62.
Zurück zum Zitat Karam SD, Kim YS, Bothwell M. Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved morphogenic event. J Comp Neurol. 2001;440:127–35.PubMedCrossRef Karam SD, Kim YS, Bothwell M. Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved morphogenic event. J Comp Neurol. 2001;440:127–35.PubMedCrossRef
63.
Zurück zum Zitat Fushimi D, Arndt K, Takeichi M, Redies C. Cloning and expression analysis of cadherin-10 in the CNS of the chicken embryo. Dev Dyn. 1997;209:269–85.PubMedCrossRef Fushimi D, Arndt K, Takeichi M, Redies C. Cloning and expression analysis of cadherin-10 in the CNS of the chicken embryo. Dev Dyn. 1997;209:269–85.PubMedCrossRef
64.
Zurück zum Zitat Jankowski J, Miething A, Schilling K, Baader SL. Physiological Purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 2009;8:277–90.PubMedCrossRef Jankowski J, Miething A, Schilling K, Baader SL. Physiological Purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 2009;8:277–90.PubMedCrossRef
65.
Zurück zum Zitat Marani E, Epema A, Brown B, Tetteroo P, Voogd J. The development of longitudinal patterns in the rabbit cerebellum. Acta Histochem Suppl. 1986;32:53–8.PubMed Marani E, Epema A, Brown B, Tetteroo P, Voogd J. The development of longitudinal patterns in the rabbit cerebellum. Acta Histochem Suppl. 1986;32:53–8.PubMed
66.
Zurück zum Zitat Luo J, Treubert-Zimmermann U, Redies C. Cadherins guide migrating Purkinje cells to specific parasagittal domains during cerebellar development. Mol Cell Neurosci. 2004;25:138–52.PubMedCrossRef Luo J, Treubert-Zimmermann U, Redies C. Cadherins guide migrating Purkinje cells to specific parasagittal domains during cerebellar development. Mol Cell Neurosci. 2004;25:138–52.PubMedCrossRef
67.
Zurück zum Zitat Luo J, Redies C. Overexpression of genes in Purkinje cells in the embryonic chicken cerebellum by in vivo electroporation. J Neurosci Methods. 2004;139:241–5.PubMedCrossRef Luo J, Redies C. Overexpression of genes in Purkinje cells in the embryonic chicken cerebellum by in vivo electroporation. J Neurosci Methods. 2004;139:241–5.PubMedCrossRef
68.
Zurück zum Zitat Taniguchi H, Kawauchi D, Nishida K, Murakami F. Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain. Development. 2006;133:1923–31.PubMedCrossRef Taniguchi H, Kawauchi D, Nishida K, Murakami F. Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain. Development. 2006;133:1923–31.PubMedCrossRef
69.
Zurück zum Zitat Chédotal A, Pourquié O, Ezan F, Clemente HS, Sotelo C. BEN as a presumptive target recognition molecule during the development of the olivocerebellar system. J Neurosci. 1996;16:3296–310.PubMed Chédotal A, Pourquié O, Ezan F, Clemente HS, Sotelo C. BEN as a presumptive target recognition molecule during the development of the olivocerebellar system. J Neurosci. 1996;16:3296–310.PubMed
70.
Zurück zum Zitat Plagge A, Sendtner-Voelderndorff L, Sirim P, Freigang J, Rader C, Sonderegger P, et al. The contactin-related protein FAR-2 defines Purkinje cell clusters and labels subpopulations of climbing fibers in the developing cerebellum. Mol Cell Neurosci. 2001;18:91–107.PubMedCrossRef Plagge A, Sendtner-Voelderndorff L, Sirim P, Freigang J, Rader C, Sonderegger P, et al. The contactin-related protein FAR-2 defines Purkinje cell clusters and labels subpopulations of climbing fibers in the developing cerebellum. Mol Cell Neurosci. 2001;18:91–107.PubMedCrossRef
71.
Zurück zum Zitat Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRef Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRef
72.
Zurück zum Zitat Eisenman LM, Hawkes R. 5′-Nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience. 1989;31:231–5.PubMedCrossRef Eisenman LM, Hawkes R. 5′-Nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience. 1989;31:231–5.PubMedCrossRef
73.
Zurück zum Zitat Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416:383–97.PubMedCrossRef Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416:383–97.PubMedCrossRef
74.
Zurück zum Zitat Nunzi MG, Grillo M, Margolis FL, Mugnaini E. Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene. J Comp Neurol. 1999;404:97–113.PubMedCrossRef Nunzi MG, Grillo M, Margolis FL, Mugnaini E. Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene. J Comp Neurol. 1999;404:97–113.PubMedCrossRef
75.
Zurück zum Zitat Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J. Selective disruption of “late onset” sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J Neurosci. 1999;19:5370–9.PubMed Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J. Selective disruption of “late onset” sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J Neurosci. 1999;19:5370–9.PubMed
76.
Zurück zum Zitat Sillitoe RV, Stephen D, Lao Z, Joyner AL. Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci. 2008;28:12150–62.PubMedCrossRef Sillitoe RV, Stephen D, Lao Z, Joyner AL. Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci. 2008;28:12150–62.PubMedCrossRef
77.
Zurück zum Zitat Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23:11342–51.PubMed Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23:11342–51.PubMed
78.
Zurück zum Zitat Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494:215–27.PubMedCrossRef Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494:215–27.PubMedCrossRef
79.
Zurück zum Zitat Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.PubMedCrossRef Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.PubMedCrossRef
80.
Zurück zum Zitat Sarna JR, Marzban H, Watanabe M, Hawkes R. Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol. 2006;496:303–13.PubMedCrossRef Sarna JR, Marzban H, Watanabe M, Hawkes R. Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol. 2006;496:303–13.PubMedCrossRef
81.
82.
Zurück zum Zitat Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87.PubMedCrossRef Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87.PubMedCrossRef
83.
Zurück zum Zitat Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res. 2005;148:283–97.PubMedCrossRef Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res. 2005;148:283–97.PubMedCrossRef
84.
Zurück zum Zitat Pakan JM, Iwaniuk AN, Wylie DR, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol. 2007;501:619–30.PubMedCrossRef Pakan JM, Iwaniuk AN, Wylie DR, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol. 2007;501:619–30.PubMedCrossRef
85.
Zurück zum Zitat Iwaniuk AN, Marzban H, Pakan JM, Watanabe M, Hawkes R, Wylie DR. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase C beta 4. J Chem Neuroanat. 2009;37:55–63.PubMedCrossRef Iwaniuk AN, Marzban H, Pakan JM, Watanabe M, Hawkes R, Wylie DR. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase C beta 4. J Chem Neuroanat. 2009;37:55–63.PubMedCrossRef
86.
Zurück zum Zitat Kim JY, Marzban H, Chung SH, Watanabe M, Eisenman LM, Hawkes R. Purkinje cell compartmentation of the cerebellum of microchiropteran bats. J Comp Neurol. 2009;517:193–209.PubMedCrossRef Kim JY, Marzban H, Chung SH, Watanabe M, Eisenman LM, Hawkes R. Purkinje cell compartmentation of the cerebellum of microchiropteran bats. J Comp Neurol. 2009;517:193–209.PubMedCrossRef
87.
Zurück zum Zitat Wöhrn J-CP, Puelles L, Nakagawa S, Takeichi M, Redies C. Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J Comp Neurol. 1998;396:20–38.PubMedCrossRef Wöhrn J-CP, Puelles L, Nakagawa S, Takeichi M, Redies C. Cadherin expression in the retina and retinofugal pathways of the chicken embryo. J Comp Neurol. 1998;396:20–38.PubMedCrossRef
88.
Zurück zum Zitat Müller K, Hirano S, Puelles L, Redies C. OL-protocadherin expression in the visual system of the chicken embryo. J Comp Neurol. 2004;470:240–55.PubMedCrossRef Müller K, Hirano S, Puelles L, Redies C. OL-protocadherin expression in the visual system of the chicken embryo. J Comp Neurol. 2004;470:240–55.PubMedCrossRef
89.
Zurück zum Zitat Korematsu K, Redies C. Expression of cadherin-8 mRNA in the developing mouse central nervous system. J Comp Neurol. 1997;387:291–306.PubMedCrossRef Korematsu K, Redies C. Expression of cadherin-8 mRNA in the developing mouse central nervous system. J Comp Neurol. 1997;387:291–306.PubMedCrossRef
90.
Zurück zum Zitat Suzuki SC, Inoue T, Kimura Y, Tanaka T, Takeichi M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol Cell Neurosci. 1997;9:433–47.PubMedCrossRef Suzuki SC, Inoue T, Kimura Y, Tanaka T, Takeichi M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol Cell Neurosci. 1997;9:433–47.PubMedCrossRef
91.
Zurück zum Zitat Sugihara I, Quy PN. Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol. 2007;500:1076–92.PubMedCrossRef Sugihara I, Quy PN. Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol. 2007;500:1076–92.PubMedCrossRef
92.
Zurück zum Zitat Sugihara I, Ebata S, Shinoda Y. Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol. 2004;470:113–33.PubMedCrossRef Sugihara I, Ebata S, Shinoda Y. Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol. 2004;470:113–33.PubMedCrossRef
93.
Zurück zum Zitat Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33:5–21.PubMedCrossRef Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33:5–21.PubMedCrossRef
94.
Zurück zum Zitat Pijpers A, Voogd J, Ruigrok TJ. Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol. 2005;492:193–213.PubMedCrossRef Pijpers A, Voogd J, Ruigrok TJ. Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol. 2005;492:193–213.PubMedCrossRef
95.
Zurück zum Zitat Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130:601–15.PubMedCrossRef Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130:601–15.PubMedCrossRef
96.
Zurück zum Zitat Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41:281–94.PubMedCrossRef Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41:281–94.PubMedCrossRef
97.
Zurück zum Zitat Stoykova A, Gruss P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci. 1994;14:1395–412.PubMed Stoykova A, Gruss P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci. 1994;14:1395–412.PubMed
98.
Zurück zum Zitat Lin J, Luo J, Redies C. Cadherin-19 expression is restricted to myelin-forming cells in the chicken embryo. Neuroscience. 2010;165:168–78.PubMedCrossRef Lin J, Luo J, Redies C. Cadherin-19 expression is restricted to myelin-forming cells in the chicken embryo. Neuroscience. 2010;165:168–78.PubMedCrossRef
99.
Zurück zum Zitat Redies C, Heyder J, Kohoutek T, Staes K, Van Roy F. Expression of protocadherin-1 (Pcdh1) during mouse development. Dev Dyn. 2008;237:2496–505.PubMedCrossRef Redies C, Heyder J, Kohoutek T, Staes K, Van Roy F. Expression of protocadherin-1 (Pcdh1) during mouse development. Dev Dyn. 2008;237:2496–505.PubMedCrossRef
100.
Zurück zum Zitat Beesley PW, Mummery R, Tibaldi J. N-cadherin is enriched in rat forebrain post synaptic density preparations. Society for Neuroscience Abstracts. 1994;20:865. Beesley PW, Mummery R, Tibaldi J. N-cadherin is enriched in rat forebrain post synaptic density preparations. Society for Neuroscience Abstracts. 1994;20:865.
101.
Zurück zum Zitat Mendez P, De Roo M, Poglia L, Klauser P, Muller D. N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol. 2010;189:589–600.PubMedCrossRef Mendez P, De Roo M, Poglia L, Klauser P, Muller D. N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol. 2010;189:589–600.PubMedCrossRef
102.
Zurück zum Zitat Bahjaoui-Bouhaddi M, Padilla F, Nicolet M, Cifuentes-Diaz C, Fellmann D, Mege RM. Localized deposition of M-cadherin in the glomeruli of the granular layer during postnatal development of mouse cerebellum. J Comp Neurol. 1997;378:180–95.PubMedCrossRef Bahjaoui-Bouhaddi M, Padilla F, Nicolet M, Cifuentes-Diaz C, Fellmann D, Mege RM. Localized deposition of M-cadherin in the glomeruli of the granular layer during postnatal development of mouse cerebellum. J Comp Neurol. 1997;378:180–95.PubMedCrossRef
103.
Zurück zum Zitat Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R. Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci. 2008;27:559–71.PubMedCrossRef Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R. Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci. 2008;27:559–71.PubMedCrossRef
104.
105.
Zurück zum Zitat Williams NA, Close JP, Giouzeli M, Crow TJ. Accelerated evolution of Protocadherin11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:623–33.PubMedCrossRef Williams NA, Close JP, Giouzeli M, Crow TJ. Accelerated evolution of Protocadherin11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:623–33.PubMedCrossRef
106.
Zurück zum Zitat Giouzeli M, Williams NA, Lonie LJ, DeLisi LE, Crow TJ. ProtocadherinX/Y, a candidate gene-pair for schizophrenia and schizoaffective disorder: a DHPLC investigation of genomic sequence. Am J Med Genet B Neuropsychiatr Genet. 2004;129B:1–9.PubMedCrossRef Giouzeli M, Williams NA, Lonie LJ, DeLisi LE, Crow TJ. ProtocadherinX/Y, a candidate gene-pair for schizophrenia and schizoaffective disorder: a DHPLC investigation of genomic sequence. Am J Med Genet B Neuropsychiatr Genet. 2004;129B:1–9.PubMedCrossRef
107.
Zurück zum Zitat Durand CM, Kappeler C, Betancur C, Delorme R, Quach H, Goubran-Botros H, et al. Expression and genetic variability of PCDH11Y, a gene specific to Homo sapiens and candidate for susceptibility to psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:67–70.PubMedCrossRef Durand CM, Kappeler C, Betancur C, Delorme R, Quach H, Goubran-Botros H, et al. Expression and genetic variability of PCDH11Y, a gene specific to Homo sapiens and candidate for susceptibility to psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:67–70.PubMedCrossRef
108.
Zurück zum Zitat Bray NJ, Kirov G, Owen RJ, Jacobsen NJ, Georgieva L, Williams HJ, et al. Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes Brain Behav. 2002;1:187–91.PubMedCrossRef Bray NJ, Kirov G, Owen RJ, Jacobsen NJ, Georgieva L, Williams HJ, et al. Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes Brain Behav. 2002;1:187–91.PubMedCrossRef
109.
Zurück zum Zitat Georgieva L, Nikolov I, Poriazova N, Jones G, Toncheva D, Kirov G, et al. Genetic variation in the seven-pass transmembrane cadherin CELSR1: lack of association with schizophrenia. Psychiatr Genet. 2003;13:103–6.PubMed Georgieva L, Nikolov I, Poriazova N, Jones G, Toncheva D, Kirov G, et al. Genetic variation in the seven-pass transmembrane cadherin CELSR1: lack of association with schizophrenia. Psychiatr Genet. 2003;13:103–6.PubMed
110.
Zurück zum Zitat Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ, et al. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry. 2006;11:372–83.PubMedCrossRef Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ, et al. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry. 2006;11:372–83.PubMedCrossRef
111.
Zurück zum Zitat Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33.PubMedCrossRef Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33.PubMedCrossRef
112.
Zurück zum Zitat Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321:218–23.PubMedCrossRef Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321:218–23.PubMedCrossRef
113.
Zurück zum Zitat Dibbens LM, Tarpey PS, Hynes K, Bayly MA, Scheffer IE, Smith R, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet. 2008;40:776–81.PubMedCrossRef Dibbens LM, Tarpey PS, Hynes K, Bayly MA, Scheffer IE, Smith R, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet. 2008;40:776–81.PubMedCrossRef
114.
Zurück zum Zitat Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K, Trouillard O, et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009;5:e1000381.PubMedCrossRef Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K, Trouillard O, et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009;5:e1000381.PubMedCrossRef
115.
Zurück zum Zitat Liu Q, Azodi E, Kerstetter AE, Wilson AL. Cadherin-2 and cadherin-4 in developing, adult and regenerating zebrafish cerebellum. Brain Res Dev Brain Res. 2004;150:63–71.PubMedCrossRef Liu Q, Azodi E, Kerstetter AE, Wilson AL. Cadherin-2 and cadherin-4 in developing, adult and regenerating zebrafish cerebellum. Brain Res Dev Brain Res. 2004;150:63–71.PubMedCrossRef
116.
Zurück zum Zitat Hollnagel A, Grund C, Franke WW, Arnold HH. The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol. 2002;22:4760–70.PubMedCrossRef Hollnagel A, Grund C, Franke WW, Arnold HH. The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol. 2002;22:4760–70.PubMedCrossRef
117.
Zurück zum Zitat Moore R, Champeval D, Denat L, Tan SS, Faure F, Julien-Grille S, et al. Involvement of cadherins 7 and 20 in mouse embryogenesis and melanocyte transformation. Oncogene. 2004;23:6726–35.PubMedCrossRef Moore R, Champeval D, Denat L, Tan SS, Faure F, Julien-Grille S, et al. Involvement of cadherins 7 and 20 in mouse embryogenesis and melanocyte transformation. Oncogene. 2004;23:6726–35.PubMedCrossRef
118.
Zurück zum Zitat Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience. 2007;147:996–1021.PubMedCrossRef Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience. 2007;147:996–1021.PubMedCrossRef
119.
Zurück zum Zitat Hirano S, Yan Q, Suzuki ST. Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J Neurosci. 1999;19:995–1005.PubMed Hirano S, Yan Q, Suzuki ST. Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J Neurosci. 1999;19:995–1005.PubMed
120.
Zurück zum Zitat Aoki E, Kimura R, Suzuki ST, Hirano S. Distribution of OL-protocadherin protein in correlation with specific neural compartments and local circuits in the postnatal mouse brain. Neuroscience. 2003;117:593–614.PubMedCrossRef Aoki E, Kimura R, Suzuki ST, Hirano S. Distribution of OL-protocadherin protein in correlation with specific neural compartments and local circuits in the postnatal mouse brain. Neuroscience. 2003;117:593–614.PubMedCrossRef
121.
Zurück zum Zitat Arends JJA, Zeigler HP. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections. J Comp Neurol. 1991;306:221–44.PubMedCrossRef Arends JJA, Zeigler HP. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections. J Comp Neurol. 1991;306:221–44.PubMedCrossRef
122.
Zurück zum Zitat Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S. The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. 1st ed. Oxford: Elsevier; 2007. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S. The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. 1st ed. Oxford: Elsevier; 2007.
123.
Zurück zum Zitat Kuenzel WJ, Masson M. A stereotaxic atlas of the brain of the chick (Gallus domesticus). Baltimore: The Johns Hopkins University Press; 1988. Kuenzel WJ, Masson M. A stereotaxic atlas of the brain of the chick (Gallus domesticus). Baltimore: The Johns Hopkins University Press; 1988.
124.
Zurück zum Zitat Karten HJ, Hodos W. A stereotaxic atlas of the brain of the pigeon (Columba livia). Baltimore: The Johns Hopkins University Press; 1967. Karten HJ, Hodos W. A stereotaxic atlas of the brain of the pigeon (Columba livia). Baltimore: The Johns Hopkins University Press; 1967.
125.
Zurück zum Zitat Paxinos G. The rat nervous system. 2nd ed. San Diego: Academic; 1995. Paxinos G. The rat nervous system. 2nd ed. San Diego: Academic; 1995.
Metadaten
Titel
Cadherins in Cerebellar Development: Translation of Embryonic Patterning into Mature Functional Compartmentalization
verfasst von
Christoph Redies
Franziska Neudert
Juntang Lin
Publikationsdatum
01.09.2011
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2011
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-010-0207-4

Weitere Artikel der Ausgabe 3/2011

The Cerebellum 3/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.