Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2024

05.10.2023 | Review

Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?

verfasst von: Homa Fatma, Hifzur R. Siddique

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.

Graphical abstract

Literatur
1.
Zurück zum Zitat Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660CrossRefPubMed Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://​doi.​org/​10.​3322/​caac.​21660CrossRefPubMed
16.
Zurück zum Zitat Murugaesu, N., Wilson, G. A., Birkbak, N. J., Watkins, T., McGranahan, N., Kumar, S., Abbassi-Ghadi, N., Salm, M., Mitter, R., Horswell, S., Rowan, A., Phillimore, B., Biggs, J., Begum, S., Matthews, N., Hochhauser, D., Hanna, G. B., & Swanton, C. (2015). Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discovery, 5(8), 821–831. https://doi.org/10.1158/2159-8290.CD-15-0412CrossRefPubMedPubMedCentral Murugaesu, N., Wilson, G. A., Birkbak, N. J., Watkins, T., McGranahan, N., Kumar, S., Abbassi-Ghadi, N., Salm, M., Mitter, R., Horswell, S., Rowan, A., Phillimore, B., Biggs, J., Begum, S., Matthews, N., Hochhauser, D., Hanna, G. B., & Swanton, C. (2015). Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discovery, 5(8), 821–831. https://​doi.​org/​10.​1158/​2159-8290.​CD-15-0412CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Pierce, G. B., & Speers, W. C. (1988). Tumors as caricatures of the process of tissue renewal: Prospects for therapy by directing differentiation. Cancer Research, 48(8), 1996–2004.PubMed Pierce, G. B., & Speers, W. C. (1988). Tumors as caricatures of the process of tissue renewal: Prospects for therapy by directing differentiation. Cancer Research, 48(8), 1996–2004.PubMed
44.
Zurück zum Zitat Qi, X. T., Li, Y. L., Zhang, Y. Q., Xu, T., Lu, B., Fang, L., Gao, J. Q., Yu, L. S., Zhu, D. F., Yang, B., He, Q. J., & Ying, M. D. (2019). KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacologica Sinica, 40(4), 546–555. https://doi.org/10.1038/s41401-018-0050-6CrossRefPubMed Qi, X. T., Li, Y. L., Zhang, Y. Q., Xu, T., Lu, B., Fang, L., Gao, J. Q., Yu, L. S., Zhu, D. F., Yang, B., He, Q. J., & Ying, M. D. (2019). KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacologica Sinica, 40(4), 546–555. https://​doi.​org/​10.​1038/​s41401-018-0050-6CrossRefPubMed
45.
49.
Zurück zum Zitat Praharaj, P. P., Panigrahi, D. P., Bhol, C. S., Patra, S., Mishra, S. R., Mahapatra, K. K., Behera, B. P., Singh, A., Patil, S., & Bhutia, S. K. (2021). Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Letters, 498, 217–228. https://doi.org/10.1016/j.canlet.2020.10.036CrossRefPubMed Praharaj, P. P., Panigrahi, D. P., Bhol, C. S., Patra, S., Mishra, S. R., Mahapatra, K. K., Behera, B. P., Singh, A., Patil, S., & Bhutia, S. K. (2021). Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Letters, 498, 217–228. https://​doi.​org/​10.​1016/​j.​canlet.​2020.​10.​036CrossRefPubMed
68.
Zurück zum Zitat Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., Boettcher, M., Mougiakakos, D., Reichardt, W., Bronsert, P., Brunton, V. G., Pilarsky, C., Winkler, T. H., Brabletz, S., Stemmler, M. P., & Brabletz, T. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://doi.org/10.1038/ncb3513CrossRefPubMed Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., Boettcher, M., Mougiakakos, D., Reichardt, W., Bronsert, P., Brunton, V. G., Pilarsky, C., Winkler, T. H., Brabletz, S., Stemmler, M. P., & Brabletz, T. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://​doi.​org/​10.​1038/​ncb3513CrossRefPubMed
69.
72.
Zurück zum Zitat Singh, S. K., Chen, N. M., Hessmann, E., Siveke, J., Lahmann, M., Singh, G., Voelker, N., Vogt, S., Esposito, I., Schmidt, A., Brendel, C., Stiewe, T., Gaedcke, J., Mernberger, M., Crawford, H. C., Bamlet, W. R., Zhang, J. S., Li, X. K., Smyrk, T. C., et al. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO journal, 34(4), 517–530. https://doi.org/10.15252/embj.201489574CrossRefPubMedPubMedCentral Singh, S. K., Chen, N. M., Hessmann, E., Siveke, J., Lahmann, M., Singh, G., Voelker, N., Vogt, S., Esposito, I., Schmidt, A., Brendel, C., Stiewe, T., Gaedcke, J., Mernberger, M., Crawford, H. C., Bamlet, W. R., Zhang, J. S., Li, X. K., Smyrk, T. C., et al. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO journal, 34(4), 517–530. https://​doi.​org/​10.​15252/​embj.​201489574CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Burdziak, C., Alonso-Curbelo, D., Walle, T., Reyes, J., Barriga, F. M., Haviv, D., Xie, Y., Zhao, Z., Zhao, C. J., Chen, H. A., Chaudhary, O., Masilionis, I., Choo, Z. N., Gao, V., Luan, W., Wuest, A., Ho, Y. J., Wei, Y., Quail, D. F., et al. (2023). Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science, 380(6645), eadd5327. https://doi.org/10.1126/science.add5327CrossRefPubMedPubMedCentral Burdziak, C., Alonso-Curbelo, D., Walle, T., Reyes, J., Barriga, F. M., Haviv, D., Xie, Y., Zhao, Z., Zhao, C. J., Chen, H. A., Chaudhary, O., Masilionis, I., Choo, Z. N., Gao, V., Luan, W., Wuest, A., Ho, Y. J., Wei, Y., Quail, D. F., et al. (2023). Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science, 380(6645), eadd5327. https://​doi.​org/​10.​1126/​science.​add5327CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Shlush, L. I., Mitchell, A., Heisler, L., Abelson, S., Ng, S. W. K., Trotman-Grant, A., Medeiros, J. J. F., Rao-Bhatia, A., Jaciw-Zurakowsky, I., Marke, R., McLeod, J. L., Doedens, M., Bader, G., Voisin, V., Xu, C., McPherson, J. D., Hudson, T. J., Wang, J. C. Y., Minden, M. D., et al. (2017). Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 547(7661), 104–108. https://doi.org/10.1038/nature22993CrossRefPubMed Shlush, L. I., Mitchell, A., Heisler, L., Abelson, S., Ng, S. W. K., Trotman-Grant, A., Medeiros, J. J. F., Rao-Bhatia, A., Jaciw-Zurakowsky, I., Marke, R., McLeod, J. L., Doedens, M., Bader, G., Voisin, V., Xu, C., McPherson, J. D., Hudson, T. J., Wang, J. C. Y., Minden, M. D., et al. (2017). Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 547(7661), 104–108. https://​doi.​org/​10.​1038/​nature22993CrossRefPubMed
90.
Zurück zum Zitat Liau, B. B., Sievers, C., Donohue, L. K., Gillespie, S. M., Flavahan, W. A., Miller, T. E., Venteicher, A. S., Hebert, C. H., Carey, C. D., Rodig, S. J., Shareef, S. J., Najm, F. J., van Galen, P., Wakimoto, H., Cahill, D. P., Rich, J. N., Aster, J. C., Suvà, M. L., Patel, A. P., et al. (2017). Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell stem cell, 20(2), 233–246.e7. https://doi.org/10.1016/j.stem.2016.11.003CrossRefPubMed Liau, B. B., Sievers, C., Donohue, L. K., Gillespie, S. M., Flavahan, W. A., Miller, T. E., Venteicher, A. S., Hebert, C. H., Carey, C. D., Rodig, S. J., Shareef, S. J., Najm, F. J., van Galen, P., Wakimoto, H., Cahill, D. P., Rich, J. N., Aster, J. C., Suvà, M. L., Patel, A. P., et al. (2017). Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell stem cell, 20(2), 233–246.e7. https://​doi.​org/​10.​1016/​j.​stem.​2016.​11.​003CrossRefPubMed
91.
Zurück zum Zitat Rabé, M., Dumont, S., Álvarez-Arenas, A., Janati, H., Belmonte-Beitia, J., Calvo, G. F., Thibault-Carpentier, C., Séry, Q., Chauvin, C., Joalland, N., Briand, F., Blandin, S., Scotet, E., Pecqueur, C., Clairambault, J., Oliver, L., Perez-Garcia, V., Nadaradjane, A., Cartron, P. F., et al. (2020). Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death & Disease, 11(1), 19. https://doi.org/10.1038/s41419-019-2200-2CrossRef Rabé, M., Dumont, S., Álvarez-Arenas, A., Janati, H., Belmonte-Beitia, J., Calvo, G. F., Thibault-Carpentier, C., Séry, Q., Chauvin, C., Joalland, N., Briand, F., Blandin, S., Scotet, E., Pecqueur, C., Clairambault, J., Oliver, L., Perez-Garcia, V., Nadaradjane, A., Cartron, P. F., et al. (2020). Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death & Disease, 11(1), 19. https://​doi.​org/​10.​1038/​s41419-019-2200-2CrossRef
93.
Zurück zum Zitat Shen, S., Faouzi, S., Bastide, A., Martineau, S., Malka-Mahieu, H., Fu, Y., Sun, X., Mateus, C., Routier, E., Roy, S., Desaubry, L., André, F., Eggermont, A., David, A., Scoazec, J. Y., Vagner, S., & Robert, C. (2019). An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nature Communications, 10(1), 5713. https://doi.org/10.1038/s41467-019-13360-6CrossRefPubMedPubMedCentral Shen, S., Faouzi, S., Bastide, A., Martineau, S., Malka-Mahieu, H., Fu, Y., Sun, X., Mateus, C., Routier, E., Roy, S., Desaubry, L., André, F., Eggermont, A., David, A., Scoazec, J. Y., Vagner, S., & Robert, C. (2019). An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nature Communications, 10(1), 5713. https://​doi.​org/​10.​1038/​s41467-019-13360-6CrossRefPubMedPubMedCentral
Metadaten
Titel
Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?
verfasst von
Homa Fatma
Hifzur R. Siddique
Publikationsdatum
05.10.2023
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2024
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10144-9

Weitere Artikel der Ausgabe 1/2024

Cancer and Metastasis Reviews 1/2024 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.