Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2016

12.11.2016

Cancer-derived extracellular vesicles: the ‘soil conditioner’ in breast cancer metastasis?

verfasst von: Andrew R. Chin, Shizhen Emily Wang

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

It has been recognized that cancer-associated mortality is more often a result of the disrupted physiological functions in multiple organs following metastatic dissemination of cancer cells, rather than the presence and growth of the primary tumor. Despite advances in our understanding of the events leading to cancer initiation, growth, and acquisition of invasive properties, we are still unable to effectively treat metastatic disease. It is now being accepted that the secretion of extracellular vesicles, such as exosomes from cancer cells, has a profound impact on the initiation and propagation of metastatic breast cancer. These cancer-secreted vesicles differ from other means of cellular communication due to their capability of bulk delivery and organotropism. Here, we provide an overview of the role of extracellular vesicles in breast cancer metastasis and discuss key areas that may facilitate our understanding of metastatic breast cancer to guide our efforts towards providing better therapies.
Literatur
1.
3.
4.
Zurück zum Zitat McCready, J., Sims, J. D., et al. (2010). Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer , 10, 294.CrossRefPubMedPubMedCentral McCready, J., Sims, J. D., et al. (2010). Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer , 10, 294.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Melo, S. A., Sugimoto, H., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell , 26(5), 707–721.CrossRefPubMedPubMedCentral Melo, S. A., Sugimoto, H., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell , 26(5), 707–721.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat O'Brien, K., Rani, S., et al. (2013). Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer , 49(8), 1845–1859.CrossRefPubMed O'Brien, K., Rani, S., et al. (2013). Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer , 49(8), 1845–1859.CrossRefPubMed
7.
Zurück zum Zitat Singh, R., Pochampally, R., et al. (2014). Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer , 13, 256.CrossRefPubMedPubMedCentral Singh, R., Pochampally, R., et al. (2014). Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer , 13, 256.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Le, M. T., Hamar, P., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation , 124(12), 5109–5128.CrossRefPubMedPubMedCentral Le, M. T., Hamar, P., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation , 124(12), 5109–5128.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Smith, Z. J., Lee, C., et al. (2015). Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles , 4, 28533.CrossRefPubMed Smith, Z. J., Lee, C., et al. (2015). Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles , 4, 28533.CrossRefPubMed
10.
Zurück zum Zitat Su, J. (2015). Label-free single molecule detection using Microtoroid optical resonators. Journal of Visualized Experiments , 106, e53180. Su, J. (2015). Label-free single molecule detection using Microtoroid optical resonators. Journal of Visualized Experiments , 106, e53180.
11.
Zurück zum Zitat Tauro, B. J., Greening, D. W., et al. (2013a). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics , 12(3), 587–598.CrossRef Tauro, B. J., Greening, D. W., et al. (2013a). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics , 12(3), 587–598.CrossRef
12.
Zurück zum Zitat Willms, E., Johansson, H. J., et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports , 6, 22519.CrossRefPubMedPubMedCentral Willms, E., Johansson, H. J., et al. (2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports , 6, 22519.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Koumangoye, R. B., Sakwe, A. M., et al. (2011). Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One , 6(9), e24234.CrossRefPubMedPubMedCentral Koumangoye, R. B., Sakwe, A. M., et al. (2011). Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PloS One , 6(9), e24234.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Sung, B. H., Ketova, T., et al. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications , 6, 7164.CrossRefPubMedPubMedCentral Sung, B. H., Ketova, T., et al. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications , 6, 7164.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Hoshino, D., Kirkbride, K. C., et al. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports , 5(5), 1159–1168.CrossRefPubMed Hoshino, D., Kirkbride, K. C., et al. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports , 5(5), 1159–1168.CrossRefPubMed
16.
Zurück zum Zitat Purushothaman, A., Bandari, S. K., et al. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry , 291(4), 1652–1663.CrossRefPubMed Purushothaman, A., Bandari, S. K., et al. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry , 291(4), 1652–1663.CrossRefPubMed
17.
Zurück zum Zitat Cho, J. A., Park, H., et al. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology , 40(1), 130–138.PubMed Cho, J. A., Park, H., et al. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology , 40(1), 130–138.PubMed
18.
Zurück zum Zitat Luga, V., Zhang, L., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell , 151(7), 1542–1556.CrossRefPubMed Luga, V., Zhang, L., et al. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell , 151(7), 1542–1556.CrossRefPubMed
19.
Zurück zum Zitat Dutta, S., Warshall, C., et al. (2014). Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PloS One , 9(5), e97580.CrossRefPubMedPubMedCentral Dutta, S., Warshall, C., et al. (2014). Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PloS One , 9(5), e97580.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Yang, M., Chen, J., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer , 10, 117.CrossRefPubMedPubMedCentral Yang, M., Chen, J., et al. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer , 10, 117.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Seubert, B., Grunwald, B., et al. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology , 61(1), 238–248.CrossRefPubMed Seubert, B., Grunwald, B., et al. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology , 61(1), 238–248.CrossRefPubMed
22.
Zurück zum Zitat Skog, J., Wurdinger, T., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology , 10(12), 1470–1476.CrossRefPubMedPubMedCentral Skog, J., Wurdinger, T., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology , 10(12), 1470–1476.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Jung, K. K., Liu, X. W., et al. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal , 25(17), 3934–3942.CrossRefPubMedPubMedCentral Jung, K. K., Liu, X. W., et al. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal , 25(17), 3934–3942.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Zhou, W., Fong, M. Y., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell , 25(4), 501–515.CrossRefPubMedPubMedCentral Zhou, W., Fong, M. Y., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell , 25(4), 501–515.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Tominaga, N., Kosaka, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications , 6, 6716.CrossRefPubMedPubMedCentral Tominaga, N., Kosaka, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications , 6, 6716.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Fong, M. Y., Zhou, W., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology , 17(2), 183–194.CrossRefPubMedPubMedCentral Fong, M. Y., Zhou, W., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology , 17(2), 183–194.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Zhang, L., Zhang, S., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature , 527(7576), 100–104.CrossRefPubMedPubMedCentral Zhang, L., Zhang, S., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature , 527(7576), 100–104.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Xiang, X., Poliakov, A., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer , 124(11), 2621–2633.CrossRefPubMedPubMedCentral Xiang, X., Poliakov, A., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer , 124(11), 2621–2633.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chow, A., Zhou, W., et al. (2014). Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Scientific Reports , 4, 5750.CrossRefPubMedPubMedCentral Chow, A., Zhou, W., et al. (2014). Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Scientific Reports , 4, 5750.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Yu, S., Liu, C., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology , 178(11), 6867–6875.CrossRef Yu, S., Liu, C., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology , 178(11), 6867–6875.CrossRef
31.
Zurück zum Zitat Clayton, A., Al-Taei, S., et al. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of Immunology , 187(2), 676–683.CrossRef Clayton, A., Al-Taei, S., et al. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. Journal of Immunology , 187(2), 676–683.CrossRef
32.
Zurück zum Zitat Liu, C., Yu, S., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology , 176(3), 1375–1385.CrossRef Liu, C., Yu, S., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology , 176(3), 1375–1385.CrossRef
33.
Zurück zum Zitat Kosaka, N., Iguchi, H., et al. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of Biological Chemistry , 288(15), 10849–10859.CrossRefPubMedPubMedCentral Kosaka, N., Iguchi, H., et al. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. The Journal of Biological Chemistry , 288(15), 10849–10859.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Cogolludo, A., Moreno, L., et al. (2009). Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research , 82(2), 296–302.CrossRefPubMed Cogolludo, A., Moreno, L., et al. (2009). Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research , 82(2), 296–302.CrossRefPubMed
36.
Zurück zum Zitat Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer , 11(6), 393–410.CrossRefPubMed Wilson, W. R., & Hay, M. P. (2011). Targeting hypoxia in cancer therapy. Nature Reviews. Cancer , 11(6), 393–410.CrossRefPubMed
37.
Zurück zum Zitat Zhao, H., Yang, L., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife , 5, e10250.PubMedPubMedCentral Zhao, H., Yang, L., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife , 5, e10250.PubMedPubMedCentral
38.
Zurück zum Zitat Wang, T., Gilkes, D. M., et al. (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America , 111(31), E3234–E3242.CrossRefPubMedPubMedCentral Wang, T., Gilkes, D. M., et al. (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America , 111(31), E3234–E3242.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Parolini, I., Federici, C., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry , 284(49), 34211–34222.CrossRefPubMedPubMedCentral Parolini, I., Federici, C., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry , 284(49), 34211–34222.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Ban, J. J., Lee, M., et al. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications , 461(1), 76–79.CrossRefPubMed Ban, J. J., Lee, M., et al. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications , 461(1), 76–79.CrossRefPubMed
41.
Zurück zum Zitat Ostrowski, M., Carmo, N. B., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology , 12(1), 19–30 sup pp 11-13.CrossRefPubMed Ostrowski, M., Carmo, N. B., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology , 12(1), 19–30 sup pp 11-13.CrossRefPubMed
42.
Zurück zum Zitat Bobrie, A., Krumeich, S., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research , 72(19), 4920–4930.CrossRefPubMed Bobrie, A., Krumeich, S., et al. (2012). Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Research , 72(19), 4920–4930.CrossRefPubMed
43.
Zurück zum Zitat Hendrix, A., Sormunen, R., et al. (2013). Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. International Journal of Cancer , 133(4), 843–854.CrossRefPubMed Hendrix, A., Sormunen, R., et al. (2013). Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. International Journal of Cancer , 133(4), 843–854.CrossRefPubMed
44.
Zurück zum Zitat Zhang, J. X., Huang, X. X., et al. (2012). Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis. Journal of Translational Medicine , 10, 242.CrossRefPubMedPubMedCentral Zhang, J. X., Huang, X. X., et al. (2012). Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis. Journal of Translational Medicine , 10, 242.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Tauro, B. J., Mathias, R. A., et al. (2013b). Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK)cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics , 12(8), 2148–2159. Tauro, B. J., Mathias, R. A., et al. (2013b). Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK)cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics , 12(8), 2148–2159.
46.
Zurück zum Zitat Garnier, D., Magnus, N., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry , 287(52), 43565–43572.CrossRefPubMedPubMedCentral Garnier, D., Magnus, N., et al. (2012). Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. The Journal of Biological Chemistry , 287(52), 43565–43572.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Gopal, S. K., Greening, D. W., et al. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget , 7, 19709–19722.PubMedPubMedCentral Gopal, S. K., Greening, D. W., et al. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget , 7, 19709–19722.PubMedPubMedCentral
48.
Zurück zum Zitat Thompson, C. A., Purushothaman, A., et al. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry , 288(14), 10093–10099.CrossRefPubMedPubMedCentral Thompson, C. A., Purushothaman, A., et al. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry , 288(14), 10093–10099.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Hendrix, A., Maynard, D., et al. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institute , 102(12), 866–880.CrossRefPubMedPubMedCentral Hendrix, A., Maynard, D., et al. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institute , 102(12), 866–880.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Peinado, H., Aleckovic, M., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine , 18(6), 883–891.CrossRefPubMedPubMedCentral Peinado, H., Aleckovic, M., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine , 18(6), 883–891.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Admyre, C., Johansson, S. M., et al. (2007). Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology , 179(3), 1969–1978.CrossRef Admyre, C., Johansson, S. M., et al. (2007). Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology , 179(3), 1969–1978.CrossRef
52.
Zurück zum Zitat Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine , 17(3), 320–329.CrossRefPubMedPubMedCentral Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine , 17(3), 320–329.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Lim, P. K., Bliss, S. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research , 71(5), 1550–1560.CrossRefPubMed Lim, P. K., Bliss, S. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research , 71(5), 1550–1560.CrossRefPubMed
54.
Zurück zum Zitat Ono, M., Kosaka, N., et al. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling , 7(332), ra63.CrossRefPubMed Ono, M., Kosaka, N., et al. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling , 7(332), ra63.CrossRefPubMed
Metadaten
Titel
Cancer-derived extracellular vesicles: the ‘soil conditioner’ in breast cancer metastasis?
verfasst von
Andrew R. Chin
Shizhen Emily Wang
Publikationsdatum
12.11.2016
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2016
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9639-8

Weitere Artikel der Ausgabe 4/2016

Cancer and Metastasis Reviews 4/2016 Zur Ausgabe

EditorialNotes

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.