Skip to main content
Erschienen in: Brain Structure and Function 2/2018

24.01.2018 | Brain Mythology

Cellular complexity in subcortical white matter: a distributed control circuit?

verfasst von: Jorge A. Colombo

Erschienen in: Brain Structure and Function | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The subcortical white matter (SWM) has been traditionally considered as a site for passive–neutral–information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial “interstitial” cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal–glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the “interstitial” neuronal cells—associated with local glial cells—traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.
Literatur
Zurück zum Zitat Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psych 53:425–436CrossRef Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psych 53:425–436CrossRef
Zurück zum Zitat Anderson SA, Volk DW, Lewis DA (1996) Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 19:111–119CrossRefPubMed Anderson SA, Volk DW, Lewis DA (1996) Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 19:111–119CrossRefPubMed
Zurück zum Zitat Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620CrossRefPubMed Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620CrossRefPubMed
Zurück zum Zitat Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779CrossRefPubMed Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779CrossRefPubMed
Zurück zum Zitat Chun JJM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282:555–569CrossRefPubMed Chun JJM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282:555–569CrossRefPubMed
Zurück zum Zitat Colombo JA, Bentham C (2006) Immunohistochemical analysis of subcortical white matter astroglia of infant and adult primates, with a note on resident neurons. Brain Res 1100:93–103CrossRefPubMed Colombo JA, Bentham C (2006) Immunohistochemical analysis of subcortical white matter astroglia of infant and adult primates, with a note on resident neurons. Brain Res 1100:93–103CrossRefPubMed
Zurück zum Zitat Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767CrossRefPubMed Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767CrossRefPubMed
Zurück zum Zitat Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiaition marker. Acta Naturae 7:42–47PubMedPubMedCentral Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiaition marker. Acta Naturae 7:42–47PubMedPubMedCentral
Zurück zum Zitat Hendry SHC, Jones EG, Emsons PC (1984) Morphology, distribution, and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 4:2497–2517PubMed Hendry SHC, Jones EG, Emsons PC (1984) Morphology, distribution, and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 4:2497–2517PubMed
Zurück zum Zitat Jeftinija SD, Jeftinija KV, Stefanovic G (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 750:41–47CrossRefPubMed Jeftinija SD, Jeftinija KV, Stefanovic G (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 750:41–47CrossRefPubMed
Zurück zum Zitat Judas M, Sedmak G, Pletikos M, Jovanov-Milosevic N (2010) Populations of subplate and interstitial neurons in fetal and adult human telecephalon. J Anat 217:381–399CrossRefPubMedPubMedCentral Judas M, Sedmak G, Pletikos M, Jovanov-Milosevic N (2010) Populations of subplate and interstitial neurons in fetal and adult human telecephalon. J Anat 217:381–399CrossRefPubMedPubMedCentral
Zurück zum Zitat Kirkpatrick B, Messias NC, Conley RR, Roberts RC (2003) Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia. J Nerv Ment Dis 191:563–567CrossRefPubMed Kirkpatrick B, Messias NC, Conley RR, Roberts RC (2003) Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia. J Nerv Ment Dis 191:563–567CrossRefPubMed
Zurück zum Zitat Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242CrossRefPubMed Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242CrossRefPubMed
Zurück zum Zitat Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque momkey and human brain. J Comp Neurol 297:441–470CrossRefPubMed Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque momkey and human brain. J Comp Neurol 297:441–470CrossRefPubMed
Zurück zum Zitat Kriegler S, Chiu SY (1993) Calcium signaling of glial cells along mammalian axons. J Neurosci 13:4229–4245PubMed Kriegler S, Chiu SY (1993) Calcium signaling of glial cells along mammalian axons. J Neurosci 13:4229–4245PubMed
Zurück zum Zitat Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320CrossRefPubMed Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320CrossRefPubMed
Zurück zum Zitat Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244CrossRefPubMed Maienschein V, Marxen M, Volknandt W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244CrossRefPubMed
Zurück zum Zitat Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMed Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMed
Zurück zum Zitat Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492CrossRefPubMed Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492CrossRefPubMed
Zurück zum Zitat Rosier A, Arckens L, Orban GA, Vandesande F (1993) Immunocytochemical detection of astrocyte GABAA receptors in cat visual cortex. J Histochem Cytochem 41:685–692CrossRefPubMed Rosier A, Arckens L, Orban GA, Vandesande F (1993) Immunocytochemical detection of astrocyte GABAA receptors in cat visual cortex. J Histochem Cytochem 41:685–692CrossRefPubMed
Zurück zum Zitat Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev 20:88–94CrossRefPubMed Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev 20:88–94CrossRefPubMed
Zurück zum Zitat Steinhauser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339–345CrossRefPubMed Steinhauser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339–345CrossRefPubMed
Zurück zum Zitat Torres-Reveron JE, Friedlander MJ (2007) Properties of persistent postnatal cortical subplate neurons. J Neurosci 27:9962–9974CrossRefPubMed Torres-Reveron JE, Friedlander MJ (2007) Properties of persistent postnatal cortical subplate neurons. J Neurosci 27:9962–9974CrossRefPubMed
Zurück zum Zitat Valverde F, Facal-Valverde MV (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J Comp Neurol 269:168–192CrossRefPubMed Valverde F, Facal-Valverde MV (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J Comp Neurol 269:168–192CrossRefPubMed
Zurück zum Zitat Verkhratsky A, Butt A (2013) Glial physiology and pathophysiology. Wiley, UKCrossRef Verkhratsky A, Butt A (2013) Glial physiology and pathophysiology. Wiley, UKCrossRef
Zurück zum Zitat Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651CrossRefPubMedPubMedCentral Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651CrossRefPubMedPubMedCentral
Zurück zum Zitat Waxman SG, Ritchie JM (1996) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136CrossRef Waxman SG, Ritchie JM (1996) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136CrossRef
Zurück zum Zitat Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS (2011) Increased interstitial white matter neuron density in the DLPFC of people with schizophrenia. Biol Psychiat 69:63–70CrossRefPubMed Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS (2011) Increased interstitial white matter neuron density in the DLPFC of people with schizophrenia. Biol Psychiat 69:63–70CrossRefPubMed
Metadaten
Titel
Cellular complexity in subcortical white matter: a distributed control circuit?
verfasst von
Jorge A. Colombo
Publikationsdatum
24.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 2/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1609-1

Weitere Artikel der Ausgabe 2/2018

Brain Structure and Function 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.