Skip to main content
Erschienen in: Brain Structure and Function 2/2012

01.04.2012 | Original Article

Cellular signatures in the primary visual cortex of phylogeny and placentation

verfasst von: Eric Lewitus, Chet C. Sherwood, Patrick R. Hof

Erschienen in: Brain Structure and Function | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

The long-held view that brain size can be used as an index of general functional capacity across mammals is in conflict with increasing evidence for phyletic differences in cellular organization. Furthermore, it is poorly understood how the internal cellular organization of the brain covaries with overall brain size variation. Using design-based stereology, we quantified glial cell and neuronal densities in the primary visual cortex of 71 mammalian species (spanning 11 orders) to test how those cellular densities are influenced by phylogeny, behavior, environment, and anatomy. We further tested cellular densities against mode of placentation to determine whether a relationship may exist. We provide evidence for cellular signatures of phylogenetic divergence from the mammalian trend in primates and carnivores, as well as considerably divergent scaling patterns between the primate suborders, Strepsirrhini and Haplorrhini, that likely originated at the anthropoid stem. Finally, we show that cellular densities in the mammalian cortex relate to the variability of maternal resources to the fetus in a species.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahima RS, Bjorbaek C, Osei S, Flier JS (1999) Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 140(6):2755–2762PubMedCrossRef Ahima RS, Bjorbaek C, Osei S, Flier JS (1999) Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 140(6):2755–2762PubMedCrossRef
Zurück zum Zitat Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis. Curr Anthropol 36(2):199–221CrossRef Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis. Curr Anthropol 36(2):199–221CrossRef
Zurück zum Zitat Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15(5):542–548PubMedCrossRef Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15(5):542–548PubMedCrossRef
Zurück zum Zitat Allman JC, McGuinness E (1988) Visual cortex in primates. In: Steklis H, Erwin JM (eds) Comparative primate biology, vol 4. Neurosciences. Alan R Liss, New York, pp 279–326 Allman JC, McGuinness E (1988) Visual cortex in primates. In: Steklis H, Erwin JM (eds) Comparative primate biology, vol 4. Neurosciences. Alan R Liss, New York, pp 279–326
Zurück zum Zitat Allman J, Tetreault N, Hakeem A, Manaye K, Semendeferi K, Erwin J, Park S, Goubert V, Hof P (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214(5):495–517. doi:10.1007/s00429-010-0254-0 PubMedCrossRef Allman J, Tetreault N, Hakeem A, Manaye K, Semendeferi K, Erwin J, Park S, Goubert V, Hof P (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214(5):495–517. doi:10.​1007/​s00429-010-0254-0 PubMedCrossRef
Zurück zum Zitat Araque A, Sangziri R, Parpura V, Haydon P (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77(9):699–706PubMedCrossRef Araque A, Sangziri R, Parpura V, Haydon P (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77(9):699–706PubMedCrossRef
Zurück zum Zitat Ashwell KWS, McAllan BM, Mai JK, Paxinos G (2008) Cortical cyto- and chemoarchitecture in three small Australian marsupial carnivores: Sminthopsis macroura, Antechinus stuartii and Phascogale calura. Brain Behav Evol. 72(3):215–232 Ashwell KWS, McAllan BM, Mai JK, Paxinos G (2008) Cortical cyto- and chemoarchitecture in three small Australian marsupial carnivores: Sminthopsis macroura, Antechinus stuartii and Phascogale calura. Brain Behav Evol. 72(3):215–232
Zurück zum Zitat Azevedo F, Ludmila R et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541PubMedCrossRef Azevedo F, Ludmila R et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541PubMedCrossRef
Zurück zum Zitat Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609(1–2):284–292PubMedCrossRef Beaulieu C (1993) Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609(1–2):284–292PubMedCrossRef
Zurück zum Zitat Bentourkia Mh, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28PubMedCrossRef Bentourkia Mh, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28PubMedCrossRef
Zurück zum Zitat Bininda-Emonds O, Cardillo M, Jones K, MacPhee R, Beck R, Grenyer R et al (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRef Bininda-Emonds O, Cardillo M, Jones K, MacPhee R, Beck R, Grenyer R et al (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRef
Zurück zum Zitat Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52(3):541–546PubMed Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE (1999) Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia. Neurology 52(3):541–546PubMed
Zurück zum Zitat Bourre J-M, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G (1989) The effects of dietary {alpha}-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119(12):1880–1892PubMed Bourre J-M, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, Durand G (1989) The effects of dietary {alpha}-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 119(12):1880–1892PubMed
Zurück zum Zitat Boyd J, Marsubara J (2005) Repositioning the stria of Gennari [abstract]. Soc Neurosci Boyd J, Marsubara J (2005) Repositioning the stria of Gennari [abstract]. Soc Neurosci
Zurück zum Zitat Broadhurst C, Wang Y, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol 131:653–673PubMedCrossRef Broadhurst C, Wang Y, Crawford MA, Cunnane SC, Parkington JE, Schmidt WF (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol 131:653–673PubMedCrossRef
Zurück zum Zitat Brodmann K (1909) Lokalisationslehre der Grosshirnrhinde Brodmann K (1909) Lokalisationslehre der Grosshirnrhinde
Zurück zum Zitat Bushong EA, Martone ME, Ellisman MH (2003) Examination of the relationship between astrocyte morphology and laminar boundaries in the molecular layer of adult dentate gyrus. J Comp Neurol 462(2):241–251. doi:10.1002/cne.10728 PubMedCrossRef Bushong EA, Martone ME, Ellisman MH (2003) Examination of the relationship between astrocyte morphology and laminar boundaries in the molecular layer of adult dentate gyrus. J Comp Neurol 462(2):241–251. doi:10.​1002/​cne.​10728 PubMedCrossRef
Zurück zum Zitat Butti C, Sherwood C, Hakeem A, Allman J, Hof P (2009) Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515(2):243–259PubMedCrossRef Butti C, Sherwood C, Hakeem A, Allman J, Hof P (2009) Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515(2):243–259PubMedCrossRef
Zurück zum Zitat Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100(22):13030–13035. doi:10.1073/pnas.2135499100 PubMedCrossRef Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100(22):13030–13035. doi:10.​1073/​pnas.​2135499100 PubMedCrossRef
Zurück zum Zitat Capellini I, Venditti C, Barton R (2010) Phylogeny and metabolic scaling in mammals. Ecology 91(9):2783–2793PubMedCrossRef Capellini I, Venditti C, Barton R (2010) Phylogeny and metabolic scaling in mammals. Ecology 91(9):2783–2793PubMedCrossRef
Zurück zum Zitat Capellini I, Venditti C, Barton R (2011) Placentation and maternal investment in mammals. Am Nat 177(1):86–98PubMedCrossRef Capellini I, Venditti C, Barton R (2011) Placentation and maternal investment in mammals. Am Nat 177(1):86–98PubMedCrossRef
Zurück zum Zitat Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475PubMedCrossRef Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475PubMedCrossRef
Zurück zum Zitat Changizi M (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84:207–215PubMedCrossRef Changizi M (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84:207–215PubMedCrossRef
Zurück zum Zitat Collar DC, Wainwright PC, Alfaro ME (2008) Integrated diversification of locomotion and feeding in labrid fishes. Biol Lett 4:84–86PubMedCrossRef Collar DC, Wainwright PC, Alfaro ME (2008) Integrated diversification of locomotion and feeding in labrid fishes. Biol Lett 4:84–86PubMedCrossRef
Zurück zum Zitat Conley M, Fitzpatrick D, Diamond IT (1984) The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J Neurosci 4:171–197PubMed Conley M, Fitzpatrick D, Diamond IT (1984) The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J Neurosci 4:171–197PubMed
Zurück zum Zitat Crawford MA (2006) Docosahexaenoic acid in neural signaling systems. Nutr Health 18(3):263–276PubMedCrossRef Crawford MA (2006) Docosahexaenoic acid in neural signaling systems. Nutr Health 18(3):263–276PubMedCrossRef
Zurück zum Zitat Cross DJ, Minoshima S, Nishimura S, Noda A, Tsukada H, Kuhl DE (2000) Three-dimensional stereotactic surface projection analysis of macaque brain pet: development and initial applications. J Nucl Med 41(11):1879–1887PubMed Cross DJ, Minoshima S, Nishimura S, Noda A, Tsukada H, Kuhl DE (2000) Three-dimensional stereotactic surface projection analysis of macaque brain pet: development and initial applications. J Nucl Med 41(11):1879–1887PubMed
Zurück zum Zitat Cunnane SC, Crawford MA (2003) Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol Part A Mol Integr Physiol 136(1):17–26CrossRef Cunnane SC, Crawford MA (2003) Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol Part A Mol Integr Physiol 136(1):17–26CrossRef
Zurück zum Zitat Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159(2):203–221PubMed Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159(2):203–221PubMed
Zurück zum Zitat de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR, Zilles K (2009) Comparative cytoarchitectural analyses of striate and extrastriate areas in Hominoids. Cereb Cortex 20(4):966–981. doi:10.1093/cercor/bhp158 PubMedCrossRef de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR, Zilles K (2009) Comparative cytoarchitectural analyses of striate and extrastriate areas in Hominoids. Cereb Cortex 20(4):966–981. doi:10.​1093/​cercor/​bhp158 PubMedCrossRef
Zurück zum Zitat de Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58(4):281–291PubMedCrossRef de Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58(4):281–291PubMedCrossRef
Zurück zum Zitat del Rio MR, de Felipe J (1997) Colocalization of parvalbumin and calbindin D-28°k in neurons including chandelier cells of the human temporal neocortex. J Chem Neuroanat 12(3):165–173PubMedCrossRef del Rio MR, de Felipe J (1997) Colocalization of parvalbumin and calbindin D-28°k in neurons including chandelier cells of the human temporal neocortex. J Chem Neuroanat 12(3):165–173PubMedCrossRef
Zurück zum Zitat Djemli-Shipkolye A, Raccah D, Pieroni G, Vague P, Coste T, Gerbi A (2003) Differential effect of omega3 PUFA supplementations on Na, K-ATPase and Mg-ATPase activities: possible role of the membrane omega6/omega3 ratio. J Membr Biol 191:37–47PubMedCrossRef Djemli-Shipkolye A, Raccah D, Pieroni G, Vague P, Coste T, Gerbi A (2003) Differential effect of omega3 PUFA supplementations on Na, K-ATPase and Mg-ATPase activities: possible role of the membrane omega6/omega3 ratio. J Membr Biol 191:37–47PubMedCrossRef
Zurück zum Zitat Drake J (2007) Parental investment and fecundity, but not brain size, are associated with establishment success in introduced fishes. Funct Ecol 21:963–968CrossRef Drake J (2007) Parental investment and fecundity, but not brain size, are associated with establishment success in introduced fishes. Funct Ecol 21:963–968CrossRef
Zurück zum Zitat Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in Eutheria. Placenta 30(11):949–967PubMedCrossRef Elliot MG, Crespi BJ (2009) Phylogenetic evidence for early hemochorial placentation in Eutheria. Placenta 30(11):949–967PubMedCrossRef
Zurück zum Zitat Enders AC, Carter AM (2004) What can studies of comparative placental structure tell us? Placenta 25(Suppl A):S3–S7PubMedCrossRef Enders AC, Carter AM (2004) What can studies of comparative placental structure tell us? Placenta 25(Suppl A):S3–S7PubMedCrossRef
Zurück zum Zitat Estes S, Arnold S (2007) Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169(2):227–244. doi:10.1086/510633 PubMedCrossRef Estes S, Arnold S (2007) Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169(2):227–244. doi:10.​1086/​510633 PubMedCrossRef
Zurück zum Zitat Ferland R, Eyaid W, Collura R, Tully L, Hill R, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart Y, Ruvolo M, Walsh C (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36:1008–1013PubMedCrossRef Ferland R, Eyaid W, Collura R, Tully L, Hill R, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart Y, Ruvolo M, Walsh C (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36:1008–1013PubMedCrossRef
Zurück zum Zitat Friede R, van Houten W (1962) Neuronal extension and glial supply: functional significance of glia. Proc Natl Acad Sci USA 48:817–821PubMedCrossRef Friede R, van Houten W (1962) Neuronal extension and glial supply: functional significance of glia. Proc Natl Acad Sci USA 48:817–821PubMedCrossRef
Zurück zum Zitat Furutani R (2008) Laminar and cytoarchitectonic features of the cerebral cortex in the Risso’s dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 213(3):241–248PubMedCrossRef Furutani R (2008) Laminar and cytoarchitectonic features of the cerebral cortex in the Risso’s dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 213(3):241–248PubMedCrossRef
Zurück zum Zitat Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76(1):32–44PubMedCrossRef Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76(1):32–44PubMedCrossRef
Zurück zum Zitat Garland JT, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155(3):346–364. doi:10.1086/303327 CrossRef Garland JT, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155(3):346–364. doi:10.​1086/​303327 CrossRef
Zurück zum Zitat Garland JT, Dickerman A, Janis C, Jones J (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292 Garland JT, Dickerman A, Janis C, Jones J (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292
Zurück zum Zitat Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595(2):181–188PubMedCrossRef Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595(2):181–188PubMedCrossRef
Zurück zum Zitat Gonzalez-Voyer A, Winberg S, Kolm N (2009) Distinct evolutionary patterns of brain and body size during adaptive radiation. Evolution 63:2266–2274PubMedCrossRef Gonzalez-Voyer A, Winberg S, Kolm N (2009) Distinct evolutionary patterns of brain and body size during adaptive radiation. Evolution 63:2266–2274PubMedCrossRef
Zurück zum Zitat Groemping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17(1):1–27 Groemping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17(1):1–27
Zurück zum Zitat Groemping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147CrossRef Groemping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147CrossRef
Zurück zum Zitat Grossman LI, Schmidt TR, Wildman DE, Goodman M (2001) Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol 18(1):26–36 Grossman LI, Schmidt TR, Wildman DE, Goodman M (2001) Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol 18(1):26–36
Zurück zum Zitat Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20(11):578–585 Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20(11):578–585
Zurück zum Zitat Gundersen HJG, Jensen EBV (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147(3):229–263PubMedCrossRef Gundersen HJG, Jensen EBV (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147(3):229–263PubMedCrossRef
Zurück zum Zitat Gundersen H, Jensen E, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology–reconsidered. J Microsc 193(3):199–211PubMedCrossRef Gundersen H, Jensen E, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology–reconsidered. J Microsc 193(3):199–211PubMedCrossRef
Zurück zum Zitat Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2009) Von Economo neurons in the elephant brain. Anat Rec Adv Integr Anat Evol Biol 292(2):242–248. doi:10.1002/ar.20829 CrossRef Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2009) Von Economo neurons in the elephant brain. Anat Rec Adv Integr Anat Evol Biol 292(2):242–248. doi:10.​1002/​ar.​20829 CrossRef
Zurück zum Zitat Hartwig W (2002) The primate fossil record. Cambridge University Press, Cambridge Hartwig W (2002) The primate fossil record. Cambridge University Press, Cambridge
Zurück zum Zitat Hatten ME, Liem RKH, Mason CA (1986) Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci 6(9):2676–2683PubMed Hatten ME, Liem RKH, Mason CA (1986) Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci 6(9):2676–2683PubMed
Zurück zum Zitat Hatten ME, Lynch M, Rydel RE, Sanchez J, Joseph-Silverstein J, Moscatelli D, Rifkin DB (1988) In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor. Dev Biol 125(2):280–289PubMedCrossRef Hatten ME, Lynch M, Rydel RE, Sanchez J, Joseph-Silverstein J, Moscatelli D, Rifkin DB (1988) In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor. Dev Biol 125(2):280–289PubMedCrossRef
Zurück zum Zitat Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142PubMedCrossRef Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142PubMedCrossRef
Zurück zum Zitat Hawkins A, Oszewski J (1957) Glia/nerve cell index for cortex of the whale. Science 126:76–77PubMedCrossRef Hawkins A, Oszewski J (1957) Glia/nerve cell index for cortex of the whale. Science 126:76–77PubMedCrossRef
Zurück zum Zitat Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B 274:453–464PubMedCrossRef Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B 274:453–464PubMedCrossRef
Zurück zum Zitat Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 204:3562–3567CrossRef Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 204:3562–3567CrossRef
Zurück zum Zitat Hertz L, Hansson E, Rönnbäck L (2001) Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 39(3):227–252PubMedCrossRef Hertz L, Hansson E, Rönnbäck L (2001) Signaling and gene expression in the neuron-glia unit during brain function and dysfunction: Holger Hydén in memoriam. Neurochem Int 39(3):227–252PubMedCrossRef
Zurück zum Zitat Hidalgo A, Kinrade EFV, Georgiou M (2001) The drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev Cell 1(5):679–690PubMedCrossRef Hidalgo A, Kinrade EFV, Georgiou M (2001) The drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev Cell 1(5):679–690PubMedCrossRef
Zurück zum Zitat Hladik C, Chivers DJ, Pasquet P (1999) On diet and gut size in non-human primates and humans: is there a relationship to brain size? Curr Anthropol 40(5):695–697PubMedCrossRef Hladik C, Chivers DJ, Pasquet P (1999) On diet and gut size in non-human primates and humans: is there a relationship to brain size? Curr Anthropol 40(5):695–697PubMedCrossRef
Zurück zum Zitat Hof PR, Morrison J (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352(2):161–186PubMedCrossRef Hof PR, Morrison J (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352(2):161–186PubMedCrossRef
Zurück zum Zitat Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287A(1):1153–1163CrossRef Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec 287A(1):1153–1163CrossRef
Zurück zum Zitat Hof PR, Van Der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec Adv Integr Anat Evol Biol 290(1):1–31. doi:10.1002/ar.20407 CrossRef Hof PR, Van Der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec Adv Integr Anat Evol Biol 290(1):1–31. doi:10.​1002/​ar.​20407 CrossRef
Zurück zum Zitat Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992) The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146(1):91–95PubMedCrossRef Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992) The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146(1):91–95PubMedCrossRef
Zurück zum Zitat Hof PR, Glezer II, Conde F, Roxana F et al (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neur 16(2):77–116CrossRef Hof PR, Glezer II, Conde F, Roxana F et al (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neur 16(2):77–116CrossRef
Zurück zum Zitat Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55(6):300–310PubMedCrossRef Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55(6):300–310PubMedCrossRef
Zurück zum Zitat Hof PR, Nimchinsky EA, Perl DP, Erwin JM (2001) An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin. Neurosci Lett 307(3):139–142PubMedCrossRef Hof PR, Nimchinsky EA, Perl DP, Erwin JM (2001) An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin. Neurosci Lett 307(3):139–142PubMedCrossRef
Zurück zum Zitat Hof PR, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec 287A(1):1142–1152 Hof PR, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec 287A(1):1142–1152
Zurück zum Zitat Holmes G (1917) The organization of the visual cortex in man. Br J Ophthalmol 2:353–384CrossRef Holmes G (1917) The organization of the visual cortex in man. Br J Ophthalmol 2:353–384CrossRef
Zurück zum Zitat Homman-Ludiye J, Manger PR, Bourne JA (2010) Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 518(21):4439–4462PubMedCrossRef Homman-Ludiye J, Manger PR, Bourne JA (2010) Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 518(21):4439–4462PubMedCrossRef
Zurück zum Zitat Horner PJ, Palmer TD (2003) New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca!. Trends Neurosci 26(11):597–603PubMedCrossRef Horner PJ, Palmer TD (2003) New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca!. Trends Neurosci 26(11):597–603PubMedCrossRef
Zurück zum Zitat Howard C, Reed M (1998) Unbiased stereology: three-dimensional measurement in microscopy. Springer, Berlin Howard C, Reed M (1998) Unbiased stereology: three-dimensional measurement in microscopy. Springer, Berlin
Zurück zum Zitat Inouye T (1909) Visual disturbances following gunshot wounds of the cortical visual area (trans: Glickstein M., Fahle M.). Oxford University Press, Oxford Inouye T (1909) Visual disturbances following gunshot wounds of the cortical visual area (trans: Glickstein M., Fahle M.). Oxford University Press, Oxford
Zurück zum Zitat Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692PubMedCrossRef Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692PubMedCrossRef
Zurück zum Zitat Kornack DR (2000) Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood. Brain Behav Evol 55(6):336–344PubMedCrossRef Kornack DR (2000) Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood. Brain Behav Evol 55(6):336–344PubMedCrossRef
Zurück zum Zitat Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15(2):311–321PubMedCrossRef Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15(2):311–321PubMedCrossRef
Zurück zum Zitat Kornack D, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246PubMedCrossRef Kornack D, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246PubMedCrossRef
Zurück zum Zitat Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K (2000) Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 24(3):295–340PubMedCrossRef Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K (2000) Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 24(3):295–340PubMedCrossRef
Zurück zum Zitat Lande L, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226CrossRef Lande L, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226CrossRef
Zurück zum Zitat Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60PubMedCrossRef Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60PubMedCrossRef
Zurück zum Zitat Martin R (2008) Evolution of placentation in primates: implications of mammalian phylogeny. Evol Biol 35(2):125–145CrossRef Martin R (2008) Evolution of placentation in primates: implications of mammalian phylogeny. Evol Biol 35(2):125–145CrossRef
Zurück zum Zitat McNab B (1989) Brain size and its relation to the rate of metabolism in mammals. Am Nat 133:157–167CrossRef McNab B (1989) Brain size and its relation to the rate of metabolism in mammals. Am Nat 133:157–167CrossRef
Zurück zum Zitat Mossman H (1987) Vertebrate fetal membranes: comparative ontogeny and morphology, evolution, phylogenetic significance, basic functions, research opportunities. Rutgers University Press, New Brunswick Mossman H (1987) Vertebrate fetal membranes: comparative ontogeny and morphology, evolution, phylogenetic significance, basic functions, research opportunities. Rutgers University Press, New Brunswick
Zurück zum Zitat Muller C (1993) Glial cell functions and activity-dependent plasticity of the mammalian visual cortex. Perspect Dev Neurobiol 1:169–177PubMed Muller C (1993) Glial cell functions and activity-dependent plasticity of the mammalian visual cortex. Perspect Dev Neurobiol 1:169–177PubMed
Zurück zum Zitat Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530PubMedCrossRef Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530PubMedCrossRef
Zurück zum Zitat Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky J, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170PubMedCrossRef Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky J, Adams MD, Cargill M (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170PubMedCrossRef
Zurück zum Zitat Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1995) Spindle neurons of the human anterior cingulate cortex. J Comp Neurol 355(1):27–37PubMedCrossRef Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1995) Spindle neurons of the human anterior cingulate cortex. J Comp Neurol 355(1):27–37PubMedCrossRef
Zurück zum Zitat Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96(9):5268–5273PubMedCrossRef Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96(9):5268–5273PubMedCrossRef
Zurück zum Zitat Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(11):1792–1804PubMedCrossRef Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(11):1792–1804PubMedCrossRef
Zurück zum Zitat Noda A, Ohba H, Kakiuchi T, Futatsubashi M, Tsukada H, Nishimura S (2002) Age-related changes in cerebral blood flow and glucose metabolism in conscious rhesus monkeys. Brain Res 936(1–2):76–81PubMedCrossRef Noda A, Ohba H, Kakiuchi T, Futatsubashi M, Tsukada H, Nishimura S (2002) Age-related changes in cerebral blood flow and glucose metabolism in conscious rhesus monkeys. Brain Res 936(1–2):76–81PubMedCrossRef
Zurück zum Zitat Ogata K, Kosaka T (2003) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 113(1):221–233 Ogata K, Kosaka T (2003) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience. 113(1):221–233
Zurück zum Zitat Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442CrossRef Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442CrossRef
Zurück zum Zitat Pelleymounter M, Cullen M, Baker M, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543PubMedCrossRef Pelleymounter M, Cullen M, Baker M, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543PubMedCrossRef
Zurück zum Zitat Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D, Gibson K (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164CrossRef Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D, Gibson K (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164CrossRef
Zurück zum Zitat Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12(7):671–691PubMedCrossRef Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12(7):671–691PubMedCrossRef
Zurück zum Zitat Preuss TM, Goldman-Rakic P (1991a) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506PubMedCrossRef Preuss TM, Goldman-Rakic P (1991a) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506PubMedCrossRef
Zurück zum Zitat Preuss TM, Goldman-Rakic P (1991b) Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol 310:507–549PubMedCrossRef Preuss TM, Goldman-Rakic P (1991b) Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol 310:507–549PubMedCrossRef
Zurück zum Zitat Preuss TM, Goldman-Rakic P (1991c) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474PubMedCrossRef Preuss TM, Goldman-Rakic P (1991c) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474PubMedCrossRef
Zurück zum Zitat Preuss TM, Kaas JH (1996) Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Res 712(2):353–357PubMedCrossRef Preuss TM, Kaas JH (1996) Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Res 712(2):353–357PubMedCrossRef
Zurück zum Zitat Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96(20):11601–11606PubMedCrossRef Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96(20):11601–11606PubMedCrossRef
Zurück zum Zitat Prothero J (1997) Scaling of cortical neuron density and white matter volume in mammals. J Hirnforsch 38:513–524PubMed Prothero J (1997) Scaling of cortical neuron density and white matter volume in mammals. J Hirnforsch 38:513–524PubMed
Zurück zum Zitat Rakic P (2000) Molecular and cellular mechanisms of neuronal migration: relevance to cortical epilepsies. Adv Neurol 84:1–14PubMed Rakic P (2000) Molecular and cellular mechanisms of neuronal migration: relevance to cortical epilepsies. Adv Neurol 84:1–14PubMed
Zurück zum Zitat Revell LJ, Harmon LJ (2008) Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters. Evol Ecol Res 10:311–321 Revell LJ, Harmon LJ (2008) Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters. Evol Ecol Res 10:311–321
Zurück zum Zitat Rosa MGP (1999) Topographic organisation of extrastriate areas in the flying fox: implications for the evolution of mammalian visual cortex. J Comp Neurol 411:503–523PubMedCrossRef Rosa MGP (1999) Topographic organisation of extrastriate areas in the flying fox: implications for the evolution of mammalian visual cortex. J Comp Neurol 411:503–523PubMedCrossRef
Zurück zum Zitat Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc B Biol Sci 360(1456):665–691. doi:10.1098/rstb.2005.1626 CrossRef Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc B Biol Sci 360(1456):665–691. doi:10.​1098/​rstb.​2005.​1626 CrossRef
Zurück zum Zitat Ross CF, Kirk EC (2007) Evolution of eye size and shape in primates. J Hum Evol 52(3):294–313 Ross CF, Kirk EC (2007) Evolution of eye size and shape in primates. J Hum Evol 52(3):294–313
Zurück zum Zitat Schwartz E (1977) Afferent geometry in the primate visual cortex and the generation of neuronal trigger features. Biol Cybern 28:1–14PubMedCrossRef Schwartz E (1977) Afferent geometry in the primate visual cortex and the generation of neuronal trigger features. Biol Cybern 28:1–14PubMedCrossRef
Zurück zum Zitat Sherk H (1986) Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. J Comp Neurol 247:1–31PubMedCrossRef Sherk H (1986) Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. J Comp Neurol 247:1–31PubMedCrossRef
Zurück zum Zitat Sherwood CC, Hof PR (2007) The evolution of neuron types and cortical histology in apes and humans. In: Preuss TM, Kaas JH (eds) Evolution of nervous systems, vol. 4: The evolution of primate nervous systems. Academic Press, Oxford, pp 355–378 Sherwood CC, Hof PR (2007) The evolution of neuron types and cortical histology in apes and humans. In: Preuss TM, Kaas JH (eds) Evolution of nervous systems, vol. 4: The evolution of primate nervous systems. Academic Press, Oxford, pp 355–378
Zurück zum Zitat Sherwood CC, Raghanti MA, Simpson CD, Bonar CJ, de Sousa AA, Preuss TM, Hof PR (2006a) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69(3):176–195PubMedCrossRef Sherwood CC, Raghanti MA, Simpson CD, Bonar CJ, de Sousa AA, Preuss TM, Hof PR (2006a) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69(3):176–195PubMedCrossRef
Zurück zum Zitat Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006b) Evolution of increased glia-neuron rations in the human frontal cortex. Proc Natl Acad Sci USA 203:13606–13611CrossRef Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006b) Evolution of increased glia-neuron rations in the human frontal cortex. Proc Natl Acad Sci USA 203:13606–13611CrossRef
Zurück zum Zitat Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM et al (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69(3):176–195 Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM et al (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69(3):176–195
Zurück zum Zitat Sherwood C, Stimpson C, Butti C, Bonar C, Newton A, Allman J et al (2009) Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213(3):301–328 Sherwood C, Stimpson C, Butti C, Bonar C, Newton A, Allman J et al (2009) Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213(3):301–328
Zurück zum Zitat Skoglund TS, Pascher R, Berthold CH (1996) Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci Lett 208(2):97–100PubMedCrossRef Skoglund TS, Pascher R, Berthold CH (1996) Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci Lett 208(2):97–100PubMedCrossRef
Zurück zum Zitat Slomianka L, West MJ (2005) Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 136(3):757–767PubMedCrossRef Slomianka L, West MJ (2005) Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience 136(3):757–767PubMedCrossRef
Zurück zum Zitat Sokal R, Rohlf F (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman and Co., New York Sokal R, Rohlf F (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman and Co., New York
Zurück zum Zitat Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44PubMedCrossRef Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44PubMedCrossRef
Zurück zum Zitat Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 4(2):123–124PubMedCrossRef Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 4(2):123–124PubMedCrossRef
Zurück zum Zitat Talbot SA, Marshall WH (1941) Physiological studies on neural mechanisms of visual localization and discrimination. Am J Ophthalmol 24(11):1255–1264 Talbot SA, Marshall WH (1941) Physiological studies on neural mechanisms of visual localization and discrimination. Am J Ophthalmol 24(11):1255–1264
Zurück zum Zitat Tootell RBH, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998) The Retinotopy of Visual Spatial Attention. Neuron 21(6):1409–1422PubMedCrossRef Tootell RBH, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998) The Retinotopy of Visual Spatial Attention. Neuron 21(6):1409–1422PubMedCrossRef
Zurück zum Zitat Tower D (1954) Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. J Comp Neurol 101:19–51PubMedCrossRef Tower D (1954) Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. J Comp Neurol 101:19–51PubMedCrossRef
Zurück zum Zitat Tower D, Young O (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 20:269–278PubMedCrossRef Tower D, Young O (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 20:269–278PubMedCrossRef
Zurück zum Zitat Trayhurn P, Duncan J, Hoggard N, Rayner D (1998) Regulation of leptin production: a dominant role for the sympathetic nervous system? Proc Nutr Soc 57:413–419PubMedCrossRef Trayhurn P, Duncan J, Hoggard N, Rayner D (1998) Regulation of leptin production: a dominant role for the sympathetic nervous system? Proc Nutr Soc 57:413–419PubMedCrossRef
Zurück zum Zitat Uddin M, Goodman M, Erez O, Romero R, Liu G, Islam M, Opazo JC, Sherwood CC, Grossman LI, Wildman DE (2008) Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution. Proc Natl Acad Sci 105(9):3215–3220. doi:10.1073/pnas.0712400105 PubMedCrossRef Uddin M, Goodman M, Erez O, Romero R, Liu G, Islam M, Opazo JC, Sherwood CC, Grossman LI, Wildman DE (2008) Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution. Proc Natl Acad Sci 105(9):3215–3220. doi:10.​1073/​pnas.​0712400105 PubMedCrossRef
Zurück zum Zitat Vallender EJ, Mekel-Bobrov N, Lahn BT (2008) Genetic basis of human brain evolution. Trends Neurosci 31(12):637–644PubMedCrossRef Vallender EJ, Mekel-Bobrov N, Lahn BT (2008) Genetic basis of human brain evolution. Trends Neurosci 31(12):637–644PubMedCrossRef
Zurück zum Zitat Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23PubMedCrossRef Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23PubMedCrossRef
Zurück zum Zitat Walker JA (2007) A general model of functional constraints on phenotypic evolution. Am Nat 170:681–689PubMedCrossRef Walker JA (2007) A general model of functional constraints on phenotypic evolution. Am Nat 170:681–689PubMedCrossRef
Zurück zum Zitat Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA 103(9):3203–3208 Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R (2006) Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA 103(9):3203–3208
Zurück zum Zitat Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec Adv Integr Anat Evol Biol 292(7):994–1027CrossRef Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec Adv Integr Anat Evol Biol 292(7):994–1027CrossRef
Zurück zum Zitat Wong-Riley MT, Hevner R, Cutlan R, Earnest M, Egan R, Frost J, Nguyen T (1993) Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain. Vis Neurosci 10(1):41–58PubMedCrossRef Wong-Riley MT, Hevner R, Cutlan R, Earnest M, Egan R, Frost J, Nguyen T (1993) Cytochrome oxidase in the human visual cortex: distribution in the developing and the adult brain. Vis Neurosci 10(1):41–58PubMedCrossRef
Zurück zum Zitat Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–431PubMedCrossRef Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–431PubMedCrossRef
Zurück zum Zitat Zhao J, Kunz TH, Tumba N, Clamon Schulz L, Li C, Reeves M, Widmaier EP (2003) Comparative analysis of expression and secretion of placental leptin in mammals. Am J Physiol Regul Integr Comp Physiol 285(2):R438–R446. doi:10.1152/ajpregu.00776.2002 PubMed Zhao J, Kunz TH, Tumba N, Clamon Schulz L, Li C, Reeves M, Widmaier EP (2003) Comparative analysis of expression and secretion of placental leptin in mammals. Am J Physiol Regul Integr Comp Physiol 285(2):R438–R446. doi:10.​1152/​ajpregu.​00776.​2002 PubMed
Zurück zum Zitat Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524PubMedCrossRef Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524PubMedCrossRef
Metadaten
Titel
Cellular signatures in the primary visual cortex of phylogeny and placentation
verfasst von
Eric Lewitus
Chet C. Sherwood
Patrick R. Hof
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 2/2012
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-011-0338-5

Weitere Artikel der Ausgabe 2/2012

Brain Structure and Function 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.