Skip to main content
Erschienen in: The Cerebellum 3/2009

01.09.2009

Cerebellar Contributions to the Processing of Saccadic Errors

verfasst von: P. C. A. van Broekhoven, C. K. L. Schraa-Tam, A. van der Lugt, M. Smits, M. A. Frens, J. N. van der Geest

Erschienen in: The Cerebellum | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

Saccades are fast eye movements that direct the point of regard to a target in the visual field. Repeated post-saccadic visual errors can induce modifications of the amplitude of these saccades, a process known as saccadic adaptation. Two experiments using the same paradigm were performed to study the involvement of the cerebrum and the cerebellum in the processing of saccadic errors using functional magnetic resonance imaging and in-scanner eye movement recordings. In the first active condition, saccadic adaptation was prevented using a condition in which the saccadic target was shifted to a variable position during the saccade towards it. This condition induced random saccadic errors as opposed to the second active condition in which the saccadic target was not shifted. In the baseline condition, subjects looked at a stationary dot. Both active conditions compared with baseline evoked activation in the expected saccade-related regions using a stringent statistical threshold [the frontal and parietal eye fields, primary visual area, MT/V5, and the precuneus (V6) in the cerebrum; vermis VI–VII; and lobule VI in the cerebellum, known as the oculomotor vermis). In the direct comparison between the two active conditions, significantly more cerebellar activation (vermis VIII, lobules VIII-X, left lobule VIIb) was observed with random saccadic errors (using a more relaxed statistical threshold). These results suggest a possible role for areas outside the oculomotor vermis of the cerebellum in the processing of saccadic errors. Future studies of these areas with, e.g., electrophysiological recordings, may reveal the nature of the error signals that drive the amplitude modification of saccadic eye movements.
Literatur
1.
Zurück zum Zitat Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50(2–3):133–254PubMedCrossRef Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50(2–3):133–254PubMedCrossRef
2.
Zurück zum Zitat Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72(1):27–53PubMedCrossRef Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72(1):27–53PubMedCrossRef
3.
Zurück zum Zitat Leigh RJ, Zee DS (1999) The neurology of eye movements, 3rd edn. Oxford University, New York Leigh RJ, Zee DS (1999) The neurology of eye movements, 3rd edn. Oxford University, New York
4.
Zurück zum Zitat Ramat S, Leigh RJ, Zee DS, Optican LM (2007) What clinical disorders tell us about the neural control of saccadic eye movements. Brain 130(Pt 1):10–35PubMed Ramat S, Leigh RJ, Zee DS, Optican LM (2007) What clinical disorders tell us about the neural control of saccadic eye movements. Brain 130(Pt 1):10–35PubMed
5.
Zurück zum Zitat Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study. Brain 117(Pt 5):1073–1084PubMedCrossRef Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study. Brain 117(Pt 5):1073–1084PubMedCrossRef
6.
Zurück zum Zitat Desmurget M, Pelisson D, Urquizar C, Prablanc C, Alexander GE, Grafton ST (1998) Functional anatomy of saccadic adaptation in humans. Nat Neurosci 1(6):524–528PubMedCrossRef Desmurget M, Pelisson D, Urquizar C, Prablanc C, Alexander GE, Grafton ST (1998) Functional anatomy of saccadic adaptation in humans. Nat Neurosci 1(6):524–528PubMedCrossRef
7.
Zurück zum Zitat Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54(1):148–155PubMed Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54(1):148–155PubMed
8.
Zurück zum Zitat Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica 216(6):399–405PubMedCrossRef Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica 216(6):399–405PubMedCrossRef
9.
Zurück zum Zitat McLaughlin S (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362 McLaughlin S (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362
10.
Zurück zum Zitat Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80(5):2405–2416PubMed Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80(5):2405–2416PubMed
11.
Zurück zum Zitat Robinson FR, Noto CT, Bevans SE (2003) Effect of visual error size on saccade adaptation in monkey. J Neurophysiol 90(2):1235–1244PubMedCrossRef Robinson FR, Noto CT, Bevans SE (2003) Effect of visual error size on saccade adaptation in monkey. J Neurophysiol 90(2):1235–1244PubMedCrossRef
12.
Zurück zum Zitat Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C et al (2000) Functional adaptation of reactive saccades in humans: a PET study. Exp Brain Res 132(2):243–259PubMedCrossRef Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C et al (2000) Functional adaptation of reactive saccades in humans: a PET study. Exp Brain Res 132(2):243–259PubMedCrossRef
13.
Zurück zum Zitat Frens MA, Van der Geest JN (2004) Single errors predict the dynamics of saccade adaptation. Society for Neuroscience Meeting, 3781. San Diego, USA Frens MA, Van der Geest JN (2004) Single errors predict the dynamics of saccade adaptation. Society for Neuroscience Meeting, 3781. San Diego, USA
14.
Zurück zum Zitat Srimal R, Diedrichsen J, Ryklin EB, Curtis CE (2008) Obligatory adaptation of saccade gains. J Neurophysiol 99(3):1554–1558PubMedCrossRef Srimal R, Diedrichsen J, Ryklin EB, Curtis CE (2008) Obligatory adaptation of saccade gains. J Neurophysiol 99(3):1554–1558PubMedCrossRef
15.
Zurück zum Zitat Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V (1995) Functional magnetic resonance imaging of the brain. Ann Intern Med 122(4):296–303PubMed Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V (1995) Functional magnetic resonance imaging of the brain. Ann Intern Med 122(4):296–303PubMed
16.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289PubMedCrossRef
17.
Zurück zum Zitat Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R et al (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18(2):231–246PubMedCrossRef Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R et al (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18(2):231–246PubMedCrossRef
18.
Zurück zum Zitat Matsuda T, Matsuura M, Ohkubo T, Ohkubo H, Matsushima E, Inoue K et al (2004) Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks. Psychiatry Res 131(2):147–155PubMedCrossRef Matsuda T, Matsuura M, Ohkubo T, Ohkubo H, Matsushima E, Inoue K et al (2004) Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks. Psychiatry Res 131(2):147–155PubMedCrossRef
19.
Zurück zum Zitat Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMedCrossRef Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMedCrossRef
20.
Zurück zum Zitat Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573PubMedCrossRef Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573PubMedCrossRef
21.
Zurück zum Zitat Dejardin S, Dubois S, Bodart JM, Schiltz C, Delinte A, Michel C et al (1998) PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. Eur J Neurosci 10(7):2328–2336PubMedCrossRef Dejardin S, Dubois S, Bodart JM, Schiltz C, Delinte A, Michel C et al (1998) PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. Eur J Neurosci 10(7):2328–2336PubMedCrossRef
22.
Zurück zum Zitat Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kompf D et al (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22(2):155–164PubMedCrossRef Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kompf D et al (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22(2):155–164PubMedCrossRef
23.
Zurück zum Zitat Kase M, Miller DC, Noda H (1980) Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol 300:539–555PubMed Kase M, Miller DC, Noda H (1980) Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol 300:539–555PubMed
24.
Zurück zum Zitat Ohtsuka K, Noda H (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol 74(5):1828–1840PubMed Ohtsuka K, Noda H (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol 74(5):1828–1840PubMed
25.
Zurück zum Zitat Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58(2):359–378PubMed Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58(2):359–378PubMed
26.
Zurück zum Zitat Krauzlis RJ, Miles FA (1998) Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 80(4):2046–2062PubMed Krauzlis RJ, Miles FA (1998) Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 80(4):2046–2062PubMed
27.
Zurück zum Zitat Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80((4):1911–1931PubMed Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80((4):1911–1931PubMed
28.
Zurück zum Zitat Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19(24):10931–10939PubMed Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19(24):10931–10939PubMed
29.
Zurück zum Zitat Botzel K, Rottach K, Buttner U (1993) Normal and pathological saccadic dysmetria. Brain 116(Pt 2):337–353PubMedCrossRef Botzel K, Rottach K, Buttner U (1993) Normal and pathological saccadic dysmetria. Brain 116(Pt 2):337–353PubMedCrossRef
30.
Zurück zum Zitat Straube A, Deubel H, Ditterich J, Eggert T (2001) Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 57(11):2105–2108PubMed Straube A, Deubel H, Ditterich J, Eggert T (2001) Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology 57(11):2105–2108PubMed
31.
Zurück zum Zitat Catz N, Dicke PW, Thier P (2005) Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol 15(24):2179–2189PubMedCrossRef Catz N, Dicke PW, Thier P (2005) Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol 15(24):2179–2189PubMedCrossRef
32.
Zurück zum Zitat Soetedjo R, Fuchs AF (2006) Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26(29):7741–7755PubMedCrossRef Soetedjo R, Fuchs AF (2006) Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26(29):7741–7755PubMedCrossRef
33.
Zurück zum Zitat Keller EL, Slakey DP, Crandall WF (1983) Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Res 288(1–2):131–143PubMedCrossRef Keller EL, Slakey DP, Crandall WF (1983) Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Res 288(1–2):131–143PubMedCrossRef
34.
Zurück zum Zitat Waespe W, Baumgartner R (1992) Enduring dysmetria and impaired gain adaptivity of saccadic eye movements in Wallenberg’s lateral medullary syndrome. Brain 115(Pt 4):1123–1146PubMed Waespe W, Baumgartner R (1992) Enduring dysmetria and impaired gain adaptivity of saccadic eye movements in Wallenberg’s lateral medullary syndrome. Brain 115(Pt 4):1123–1146PubMed
35.
Zurück zum Zitat Coesmans M, Smitt PA, Linden DJ, Shigemoto R, Hirano T, Yamakawa Y et al (2003) Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 53(3):325–336PubMedCrossRef Coesmans M, Smitt PA, Linden DJ, Shigemoto R, Hirano T, Yamakawa Y et al (2003) Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 53(3):325–336PubMedCrossRef
36.
Zurück zum Zitat Haller S, Fasler D, Ohlendorf S, Radue EW, Greenlee MW (2008) Neural activation associated with corrective saccades during tasks with fixation, pursuit and saccades. Exp Brain Res 184(1):83–94PubMedCrossRef Haller S, Fasler D, Ohlendorf S, Radue EW, Greenlee MW (2008) Neural activation associated with corrective saccades during tasks with fixation, pursuit and saccades. Exp Brain Res 184(1):83–94PubMedCrossRef
37.
Zurück zum Zitat Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W (2005) The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements—an fMRI study. Prog Brain Res 148:151–164PubMedCrossRef Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W (2005) The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements—an fMRI study. Prog Brain Res 148:151–164PubMedCrossRef
38.
Zurück zum Zitat Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87(2):912–924PubMed Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87(2):912–924PubMed
39.
Zurück zum Zitat Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15(6):645–652PubMedCrossRef Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15(6):645–652PubMedCrossRef
40.
Zurück zum Zitat Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349(1):51–72PubMedCrossRef Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J (1994) Visual pontocerebellar projections in the macaque. J Comp Neurol 349(1):51–72PubMedCrossRef
41.
Zurück zum Zitat Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58(1):62–74PubMedCrossRef Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58(1):62–74PubMedCrossRef
42.
Zurück zum Zitat Noda H, Mikami A (1986) Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 56(4):1129–1146PubMed Noda H, Mikami A (1986) Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 56(4):1129–1146PubMed
43.
44.
Zurück zum Zitat Winkelman B, Frens M (2006) Motor coding in floccular climbing fibers. J Neurophysiol 95(4):2342–2351PubMedCrossRef Winkelman B, Frens M (2006) Motor coding in floccular climbing fibers. J Neurophysiol 95(4):2342–2351PubMedCrossRef
45.
Zurück zum Zitat Raymond JL, Lisberger SG (1996) Error signals in horizontal gaze velocity Purkinje cells under stimulus conditions that cause learning in the VOR. Ann N Y Acad Sci 781:686–689PubMedCrossRef Raymond JL, Lisberger SG (1996) Error signals in horizontal gaze velocity Purkinje cells under stimulus conditions that cause learning in the VOR. Ann N Y Acad Sci 781:686–689PubMedCrossRef
46.
Zurück zum Zitat Barnes GR, Asselman PT (1991) The assessment of predictive effects in smooth eye movement control. Acta Otolaryngol Suppl 481:343–347PubMedCrossRef Barnes GR, Asselman PT (1991) The assessment of predictive effects in smooth eye movement control. Acta Otolaryngol Suppl 481:343–347PubMedCrossRef
47.
Zurück zum Zitat Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94(3):1938–1951PubMedCrossRef Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94(3):1938–1951PubMedCrossRef
Metadaten
Titel
Cerebellar Contributions to the Processing of Saccadic Errors
verfasst von
P. C. A. van Broekhoven
C. K. L. Schraa-Tam
A. van der Lugt
M. Smits
M. A. Frens
J. N. van der Geest
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2009
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-009-0116-6

Weitere Artikel der Ausgabe 3/2009

The Cerebellum 3/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.