Skip to main content
Erschienen in: Critical Care 5/2007

Open Access 01.10.2007 | Research

Chest computed tomography with multiplanar reformatted images for diagnosing traumatic bronchial rupture: a case report

verfasst von: Morgan Le Guen, Catherine Beigelman, Belaid Bouhemad, Yang Wenjïe, Frederic Marmion, Jean-Jacques Rouby

Erschienen in: Critical Care | Ausgabe 5/2007

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction

Unnoticed bronchial injury during the early stage of resuscitation of multiple trauma is not rare and increases mortality and morbidity.

Methods

Three-dimensional reconstruction of the airways using a workstation connected to a multidetector chest computed tomography (CT) scanner may change the diagnostic strategy in patients with blunt chest trauma with clinical signs evocative of bronchial rupture.

Results

In this case report of a young motor biker, a complete disruption of the intermediary trunk was first misdiagnosed using standard chest helical CT and bronchoscopy. Postprocessing procedures including three-dimensional extraction of the tracheobronchial tree were determinants for establishing the diagnosis, and emergent surgical repair was successfully performed. Follow-up using CT with three-dimensional reconstructions evidenced a bronchial stenosis located at the site of the rupture.

Conclusion

The present study demonstrates the potential interest of performing three-dimensional reconstructions by extraction of the tracheal–bronchial tree in patients with severe blunt chest trauma suspected of bronchial rupture.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​cc6109) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MLG suggested, drafted and promoted this case report with FM's help in analyzing the literature. CB and YW took an active part in the diagnosis, and brought knowledge of choosing images and accurate corrections of the whole radiologic comments. BB and J-JR revised the manuscript for important intellectual content. All authors read and approved the final manuscript.
Abkürzungen
CT
computed tomography
3D
three-dimensional.

Introduction

Tracheobronchial injuries, although rarely observed following blunt chest trauma [13], are associated with a mortality ranging between 9% and 30% [35]. Traumatic injury of the airways is suspected in the presence of subcutaneous cervical emphysema expanding with mechanical ventilation, pneumomediastinum and recurrent pneumothorax due to a persisting air leak [6]. To date, tracheobronchoscopy remains the reference diagnostic tool [1, 611]. The procedure, however, is accurate only when performed by trained thoracic or trauma surgeons and pneumologists [7, 12]. Moreover, the tracheobronchial injury may be very difficult to diagnose even by an experienced practitioner. As a consequence, tracheobronchial injury may go unnoticed during the early stage of resuscitation and can lead to increased mortality [5] and morbidity through recurrent pneumonia, mediastinitis and atelectasis delaying the mechanical ventilation withdrawal [8, 13].
Chest computed tomography (CT) is considered the more relevant diagnostic tool in hemodynamically stable patients with blunt chest trauma following the basic and essential chest X-ray scan. CT has a significant therapeutic impact [14]. Multidetector CT provides high spatial resolution images of the whole lung without any anatomical gap. The postprocessing procedure mainly requires a minimum-intensity projection technique for airway imaging. The technique consists of projecting the voxels with the lowest attenuation value in every view through the volume explored, at various angles depending on the airway involved. If tracheobronchial injury is suspected, three-dimensional (3D) extraction of the airways may be useful by focusing the 3D volume-rendering technique on the tracheobronchial tree. This technique is classically used for analyzing stenosis or distortion of the tracheobronchial tree but may also allow the diagnosis of tracheobronchial injury by demonstrating a wall defect and/or an abnormal position of lobar and segmental bronchi [15]. Surprisingly, reports on the use of CT for diagnosing traumatic tracheobronchial rupture are scarce [1618] and show disappointing results [16].
The present clinical report demonstrates that chest CT with 3D reconstruction of the tracheobronchial tree may be of unique value for the emergency diagnosis of bronchial rupture.

Case report

A 19-year-old motor biker was involved in a high-velocity accident against a fixed obstacle. At the scene, the patient was unconscious (Coma Glasgow Scale = 5/15) and severely hypoxemic (oxygen saturation = 80%) with a cervicothoracic emphysema. The patient was intubated, mechanically ventilated and transported to our Level I Trauma Centre. As shown in Figure 1, bedside frontal chest radiography showed bilateral and compressive pneumothorax, pneumomediastinum and extensive subcutaneous emphysema. Arterial oxygenation immediately improved following emergency chest tube placement, and a new chest radiography showed incomplete re-expansion of the right lung with a persistent air leak despite continuous suction.
The patient was then transported to the Department of Radiology for a total body scan (16 slices; Lightspeed GE, General Electric, Milwaukee, WI, United States of America)). The following injuries were diagnosed: brain damage, related to a left parietal contusion with mild subarachnoid hemorrhage (Fisher II); and bilateral pneumothorax with a small hemothorax predominating on the left side, pneumomediastinum, pulmonary interstitial emphysema (Macklin effect [19]), pneumopericardium, subcutaneous emphysema and multiple rib fractures (Figure 2). It has to be pointed out that the right-upper-lobe bronchus was displaced posteriorly without a characteristic CT fallen sign as described by Tack and colleagues [18]. Other concomitant injuries were: myocardial contusion, diagnosed as the presence of sinus tachycardia with an anterior and septal elevation of the ST-segment on EKG (electrocardiogram) and an initial cardiac troponin I value of 10.25 IU (normal value, <0.04 IU); fracture of the first thoracic vertebra without neurological consequence; and right femoral fracture. Orthopedic surgical repair was performed without delay.
Tracheobronchial injury was suspected because the bedside chest radiography performed after orthopedic surgery showed persisting right apical pneumothorax with continuous air leakage and extensive cervicothoracic emphysema. The diagnosis, however, could not be confirmed by bronchoscopy because of the rapid drop in oxygen saturation and the abundant bleeding of the respiratory tract. Consequently, a new CT scan was performed using a technique specifically aimed at visualizing the airways. After contrast material injection, 1.25 mm CT sections at 0.6 mm intervals were acquired and 3D images were obtained following multiplanar reformation.
The axial slice demonstrated a parietal defect of the posterior wall of the intermediate trunk (Figure 3). Multiple oblique reformations of the right lung and 3D reconstruction of the airways brought definitive evidence of a complete right bronchial disruption just below the origin of the upper right bronchus associated with a partial collapse of the right-middle lobe and of the right-lower lobe (Figure 4). A surgical procedure was decided upon, and confirmed a complete disruption of the right bronchus immediately below the origin of the right upper bronchus with an atelectasis of the right middle and inferior lobes. End-to-end anastomosis of the disrupted bronchus was performed through a right thoracotomy and resulted in an immediate re-aeration of the lower lobe, a cessation of the air leak through the right chest tube and a rapid regression of the subcutaneous emphysema, whereas the right-middle lobe remained atelectatic. The decision to perform anastomosis rather than lung resection was based on the patient's young age, the early diagnosis (<24 hours) and the quality of bronchial tissue. Because an anatomical sleeve was present keeping the lower lobe partially aerated, a re-aeration of the middle lobe was expected after re-establishing bronchial continuity.
A bronchoscopy performed on the second postoperative day demonstrated a watertight suture with local inflammation. The postoperative course was complicated by early ventilator-associated pneumonia caused by Escherichia coli leading to acute respiratory distress syndrome. Mechanical ventilation with a limited tidal volume, a limited peak airway pressure and a limited positive end expiratory pressure was delivered according to recent recommendations [2022]. A second ventilator-associated pneumonia caused by Pseudomonas aeruginosa delayed withdrawal of the patient from mechanical ventilation, which was successfully achieved on day 18.
A new CT scan was performed on day 22, before the patient left the intensive care unit. Transversal CT sections demonstrated a normal aeration of the right lung whereas 3D reconstruction of the airways demonstrated a short but tight bronchial stenosis located at the site of the initial rupture (Figure 5). In the absence of new respiratory symptoms, prolonged medical supervision was decided upon and the patient left the intensive care unit on day 28 for a rehabilitation center.

Results and discussion

Although always symptomatic [23], tracheobronchial injury is a rare entity, not easy to diagnose. The lack of specificity of subcutaneous emphysema, stridor, bronchopleural fistula, pneumomediastinum, hemoptysis, pneumothorax and the occult nature of the injury frequently result in a delayed diagnosis. In addition, associated injuries such as head trauma [24] can mask the diagnosis in the early period following hospital admission, and emergency surgical procedures may also interfere with the diagnostic procedures.
Among all clinical and radiological signs that are frequently observed in tracheobronchial rupture [10, 14, 25, 26], the simultaneous presence of pneumomediastinum and cervical emphysema appears to be the most frequent association [27]. In a retrospective series of 14 patients with confirmed tracheal disruption, the association was observed in each individual patient [27]. In patients with tracheal rupture, the pneumomediastinum results directly from the tracheal air leak. In the present case report, the pneumomediastinum was related to the bronchial rupture into the hilum with a retrograde dissection into the mediastinum. Logically, tracheobronchial rupture should not be associated with pulmonary interstitial emphysema, a radiological sign resulting from alveolar ruptures at the lung periphery [28]. In the present clinical report, a Macklin effect was observed on the initial CT scan, suggesting a peripheral lung barotrauma rather than a bronchial disruption. This finding is in accordance with a previous study that reported the presence of a Macklin effect in a patient with tracheobronchial injury [19], and suggests that alveolar barotrauma and tracheobronchial rupture might be associated in patients with severe blunt chest trauma.
Most trauma centers agree that the diagnosis of tracheobronchial rupture should be confirmed before undertaking surgical repair. Ideally, bronchoscopy preceded by rigid bronchoscopy for clearing blood and secretions from the aiways remains the reference diagnostic tool in patients with blunt chest trauma [10, 2931]. Indeed, airway injuries are mainly located on the initial part of the respiratory track: 19% of ruptures are purely tracheal and 76% are exclusively bronchial, either on the right main stem bronchus (47%) or on the left main stem bronchus (32%) [5]. Bronchoscopy, however, and even more rigid bronchoscopy, is a procedure that requires specific skills, and therefore is not always and easily available under emergency conditions. Endotracheal intubation often precludes the use of rigid bronchoscopy, limiting the procedure and as a consequence limiting bronchoscopy. In the present clinical report, rigid bronchoscopy was not available at admission and the patient was intubated. Although bronchoscopy was performed by an experienced physician, the technical conditions of the procedure were precarious, characterized by abundant bleeding of the respiratory tract and a rapid drop of arterial oxygen saturation, all factors that precluded diagnostic confirmation.
A second lung CT scan was then performed with thinner sections to optimize under specific technical conditions the 3D extraction of the tracheobronchial tree reconstruction (Figure 3). To our knowledge, the present clinical case reports for the first time a right bronchial rupture that could be easily diagnosed using CT 3D reconstruction. In the immediate postinjury period, between 30% and 68% of tracheobronchial ruptures are overlooked by conventional radiographies [32, 33]. A few studies have suggested that conventional axial two-dimensional CT is superior to conventional radiographs for diagnosing tracheobronchial rupture [27, 3436]. Two-dimensional CT may evidence pneumomediastinum unsuspected on conventional radiographies, is the reference radiological tool for diagnosing the Macklin effect, and has, theoretically, the ability to identify the site of the tracheobronchial tear [18, 27, 35].
In a retrospective series of 14 patients with tracheal rupture, the tracheal wall injury was directly visualized on CT as a wall defect or discontinuity in 57% of patients and was indirectly suspected as a tracheal wall deformity in 14% of patients [27]. In fact, reading of axial CT sections by the radiologist requires extensive mental integration and remains challenging even for the experienced practitioner, especially when multiple abnormal lucencies are present. As much as 25% of tracheal ruptures remain undiagnosed using conventional axial CT sections. As previously reported [16], it was impossible for the radiologist to definitively assert the diagnosis of right bronchial rupture on the first CT scan performed in our patient, despite the volumetric acquisition with thin slices on the lung window and multiple reformats. Finally, the diagnosis was made thanks to 3D reconstruction.
In patients with blunt chest trauma and subcutaneous emphysema, with pneumomediastinum, with interstitial pulmonary edema, with 'fallen lung sign' [18, 35] and/or with persistent pneumothorax despite adequate drainage [16], we propose the following diagnostic algorithm. A thin-slice CT scan of the chest should be the initial screening tool. If the CT findings are 'evocative' on the axial images, the images should then undergo reformatting and volume subtraction techniques to better define the airway in three dimensions and to rule out artifacts of imaging presenting as 'abnormal lucencies'. If the findings on the reformatted images are still suspicious, or even 'obvious', then the patient should undergo the gold standard test of bronchoscopy. It may be difficult to perform this test in certain patients with airway compromise, but every effort should be made to do so before the patient is subjected to a thoracotomy purely based on the findings of a CT scan reconstruction. One should keep in mind that motion artifacts from the lung and the heart may interfere with the interpretation of the images.
In addition to the diagnosis of upper airway injury, helical CT with 3D reconstruction allows the diagnosis of further tracheobronchial stenosis even with low-dose CT [15, 37]. In the present clinical report, a bronchial stenosis at the site of surgical repair was diagnosed 3 weeks after surgery (Figure 5). Again, the single simple examination of axial CT sections overlooked the diagnosis.

Conclusion

The present study demonstrates the interest of performing 3D reconstructions in patients with severe blunt chest trauma and with clinical symptoms evocative of bronchial rupture undergoing a multislice CT scan. Such a 3D reconstruction may help the clinician to decide to perform a bronchoscopy, which remains the reference diagnostic technique but appears more invasive and risky for the patient. Until well designed prospective studies comparing CT scans and bronchoscopy results are performed, 3D reconstruction should be considered a suitable 'screening' test in a trauma patient suspected of bronchial rupture.

Key messages

  • Care of multiple trauma patients with blunt chest trauma is complex because it increases the risk of unnoticed lesions.
  • Development of new software with a helical chest computer may be of serious help in assessment of the tracheobronchial tree. A trained radiologist's interpretation is important due to possible artifacts.

Acknowledgements

Written consent for publication was obtained from the patient's relative.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MLG suggested, drafted and promoted this case report with FM's help in analyzing the literature. CB and YW took an active part in the diagnosis, and brought knowledge of choosing images and accurate corrections of the whole radiologic comments. BB and J-JR revised the manuscript for important intellectual content. All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Kirsh MM, Orringer MB, Behrendt DM, Sloan H: Management of tracheobronchial disruption secondary to nonpenetrating trauma. Ann Thorac Surg. 1976, 22: 93-101.CrossRefPubMed Kirsh MM, Orringer MB, Behrendt DM, Sloan H: Management of tracheobronchial disruption secondary to nonpenetrating trauma. Ann Thorac Surg. 1976, 22: 93-101.CrossRefPubMed
3.
Zurück zum Zitat Huh J, Milliken JC, Chen JC: Management of tracheobronchial injuries following blunt and penetrating trauma. Am Surg. 1997, 63: 896-899.PubMed Huh J, Milliken JC, Chen JC: Management of tracheobronchial injuries following blunt and penetrating trauma. Am Surg. 1997, 63: 896-899.PubMed
4.
Zurück zum Zitat Kelly JP, Webb WR, Moulder PV, Everson C, Burch BH, Lindsey ES: Management of airway trauma. I: tracheobronchial injuries. Ann Thorac Surg. 1985, 40: 551-555.CrossRefPubMed Kelly JP, Webb WR, Moulder PV, Everson C, Burch BH, Lindsey ES: Management of airway trauma. I: tracheobronchial injuries. Ann Thorac Surg. 1985, 40: 551-555.CrossRefPubMed
5.
Zurück zum Zitat Kiser AC, O'Brien SM, Detterbeck FC: Blunt tracheobronchial injuries: treatment and outcomes. Ann Thorac Surg. 2001, 71: 2059-2065. 10.1016/S0003-4975(00)02453-X.CrossRefPubMed Kiser AC, O'Brien SM, Detterbeck FC: Blunt tracheobronchial injuries: treatment and outcomes. Ann Thorac Surg. 2001, 71: 2059-2065. 10.1016/S0003-4975(00)02453-X.CrossRefPubMed
6.
Zurück zum Zitat Baumgartner F, Sheppard B, de Virgilio C, Esrig B, Harrier D, Nelson RJ, Robertson JM: Tracheal and main bronchial disruptions after blunt chest trauma: presentation and management. Ann Thorac Surg. 1990, 50: 569-574.CrossRefPubMed Baumgartner F, Sheppard B, de Virgilio C, Esrig B, Harrier D, Nelson RJ, Robertson JM: Tracheal and main bronchial disruptions after blunt chest trauma: presentation and management. Ann Thorac Surg. 1990, 50: 569-574.CrossRefPubMed
7.
Zurück zum Zitat Hara KS, Prakash UB: Fiberoptic bronchoscopy in the evaluation of acute chest and upper airway trauma. Chest. 1989, 96: 627-630.CrossRefPubMed Hara KS, Prakash UB: Fiberoptic bronchoscopy in the evaluation of acute chest and upper airway trauma. Chest. 1989, 96: 627-630.CrossRefPubMed
8.
Zurück zum Zitat Barmada H, Gibbons JR: Tracheobronchial injury in blunt and penetrating chest trauma. Chest. 1994, 106: 74-78.CrossRefPubMed Barmada H, Gibbons JR: Tracheobronchial injury in blunt and penetrating chest trauma. Chest. 1994, 106: 74-78.CrossRefPubMed
9.
Zurück zum Zitat Ketai L, Brandt MM, Schermer C: Nonaortic mediastinal injuries from blunt chest trauma. J Thorac Imaging. 2000, 15: 120-127. 10.1097/00005382-200004000-00007.CrossRefPubMed Ketai L, Brandt MM, Schermer C: Nonaortic mediastinal injuries from blunt chest trauma. J Thorac Imaging. 2000, 15: 120-127. 10.1097/00005382-200004000-00007.CrossRefPubMed
10.
Zurück zum Zitat Mussi A, Ambrogi MC, Ribechini A, Lucchi M, Menoni F, Angeletti CA: Acute major airway injuries: clinical features and management. Eur J Cardiothorac Surg. 2001, 20: 46-51. 10.1016/S1010-7940(01)00702-3. discussion 51–52CrossRefPubMed Mussi A, Ambrogi MC, Ribechini A, Lucchi M, Menoni F, Angeletti CA: Acute major airway injuries: clinical features and management. Eur J Cardiothorac Surg. 2001, 20: 46-51. 10.1016/S1010-7940(01)00702-3. discussion 51–52CrossRefPubMed
11.
Zurück zum Zitat Tcherveniakov A, Tchalakov P, Tcherveniakov P: Traumatic and iatrogenic lesions of the trachea and bronchi. Eur J Cardiothorac Surg. 2001, 19: 19-24. 10.1016/S1010-7940(00)00610-2.CrossRefPubMed Tcherveniakov A, Tchalakov P, Tcherveniakov P: Traumatic and iatrogenic lesions of the trachea and bronchi. Eur J Cardiothorac Surg. 2001, 19: 19-24. 10.1016/S1010-7940(00)00610-2.CrossRefPubMed
12.
Zurück zum Zitat Grant WJ, Meyers RL, Jaffe RL, Johnson DG: Tracheobronchial injuries after blunt chest trauma in children – hidden pathology. J Pediatr Surg. 1998, 33: 1707-1711. 10.1016/S0022-3468(98)90615-7.CrossRefPubMed Grant WJ, Meyers RL, Jaffe RL, Johnson DG: Tracheobronchial injuries after blunt chest trauma in children – hidden pathology. J Pediatr Surg. 1998, 33: 1707-1711. 10.1016/S0022-3468(98)90615-7.CrossRefPubMed
13.
Zurück zum Zitat Cassada DC, Munyikwa MP, Moniz MP, Dieter RA, Schuchmann GF, Enderson BL: Acute injuries of the trachea and major bronchi: importance of early diagnosis. Ann Thorac Surg. 2000, 69: 1563-1567. 10.1016/S0003-4975(00)01077-8.CrossRefPubMed Cassada DC, Munyikwa MP, Moniz MP, Dieter RA, Schuchmann GF, Enderson BL: Acute injuries of the trachea and major bronchi: importance of early diagnosis. Ann Thorac Surg. 2000, 69: 1563-1567. 10.1016/S0003-4975(00)01077-8.CrossRefPubMed
14.
Zurück zum Zitat Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L: Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma. 1997, 43: 405-411. discussion 411–412CrossRefPubMed Trupka A, Waydhas C, Hallfeldt KK, Nast-Kolb D, Pfeifer KJ, Schweiberer L: Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma. 1997, 43: 405-411. discussion 411–412CrossRefPubMed
15.
Zurück zum Zitat Silverman PM, Zeiberg AS, Sessions RB, Troost TR, Davros WJ, Zeman RK: Helical CT of the upper airway: normal and abnormal findings on three-dimensional reconstructed images. AJR Am J Roentgenol. 1995, 165: 541-546.CrossRefPubMed Silverman PM, Zeiberg AS, Sessions RB, Troost TR, Davros WJ, Zeman RK: Helical CT of the upper airway: normal and abnormal findings on three-dimensional reconstructed images. AJR Am J Roentgenol. 1995, 165: 541-546.CrossRefPubMed
16.
Zurück zum Zitat Kunisch-Hoppe M, Hoppe M, Rauber K, Popella C, Rau WS: Tracheal rupture caused by blunt chest trauma: radiological and clinical features. Eur Radiol. 2000, 10: 480-483. 10.1007/s003300050080.CrossRefPubMed Kunisch-Hoppe M, Hoppe M, Rauber K, Popella C, Rau WS: Tracheal rupture caused by blunt chest trauma: radiological and clinical features. Eur Radiol. 2000, 10: 480-483. 10.1007/s003300050080.CrossRefPubMed
17.
Zurück zum Zitat Wan YL, Tsai KT, Yeow KM, Tan CF, Wong HF: CT findings of bronchial transection. Am J Emerg Med. 1997, 15: 176-177. 10.1016/S0735-6757(97)90096-6.CrossRefPubMed Wan YL, Tsai KT, Yeow KM, Tan CF, Wong HF: CT findings of bronchial transection. Am J Emerg Med. 1997, 15: 176-177. 10.1016/S0735-6757(97)90096-6.CrossRefPubMed
18.
Zurück zum Zitat Tack D, Defrance P, Delcour C, Genevois PA: The CT fallen-lung sign. Eur Radiol. 2000, 10: 719-721. 10.1007/s003300050992.CrossRefPubMed Tack D, Defrance P, Delcour C, Genevois PA: The CT fallen-lung sign. Eur Radiol. 2000, 10: 719-721. 10.1007/s003300050992.CrossRefPubMed
19.
Zurück zum Zitat Wintermark M, Schnyder P: The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001, 120: 543-547. 10.1378/chest.120.2.543.CrossRefPubMed Wintermark M, Schnyder P: The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001, 120: 543-547. 10.1378/chest.120.2.543.CrossRefPubMed
20.
Zurück zum Zitat Rouby JJ, Lu Q, Goldstein I: Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002, 165: 1182-1186.CrossRefPubMed Rouby JJ, Lu Q, Goldstein I: Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002, 165: 1182-1186.CrossRefPubMed
21.
Zurück zum Zitat Rouby JJ, Constantin JM, Roberto De A, Girardi C, Zhang M, Lu Q: Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2004, 101: 228-234. 10.1097/00000542-200407000-00033.CrossRefPubMed Rouby JJ, Constantin JM, Roberto De A, Girardi C, Zhang M, Lu Q: Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2004, 101: 228-234. 10.1097/00000542-200407000-00033.CrossRefPubMed
22.
Zurück zum Zitat Rouby JJ, Lu Q: Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury. Crit Care. 2005, 9: 465-471. 10.1186/cc3763.PubMedCentralCrossRefPubMed Rouby JJ, Lu Q: Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury. Crit Care. 2005, 9: 465-471. 10.1186/cc3763.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Balci AE, Eren N, Eren S, Ulku R: Surgical treatment of post-traumatic tracheobronchial injuries: 14-year experience. Eur J Cardiothorac Surg. 2002, 22: 984-989. 10.1016/S1010-7940(02)00591-2.CrossRefPubMed Balci AE, Eren N, Eren S, Ulku R: Surgical treatment of post-traumatic tracheobronchial injuries: 14-year experience. Eur J Cardiothorac Surg. 2002, 22: 984-989. 10.1016/S1010-7940(02)00591-2.CrossRefPubMed
24.
Zurück zum Zitat Karaaslan T, Meuli R, Androux R, Duvoisin B, Hessler C, Schnyder P: Traumatic chest lesions in patients with severe head trauma: a comparative study with computed tomography and conventional chest roentgenograms. J Trauma. 1995, 39: 1081-1086.CrossRefPubMed Karaaslan T, Meuli R, Androux R, Duvoisin B, Hessler C, Schnyder P: Traumatic chest lesions in patients with severe head trauma: a comparative study with computed tomography and conventional chest roentgenograms. J Trauma. 1995, 39: 1081-1086.CrossRefPubMed
25.
Zurück zum Zitat Spencer JA, Rogers CE, Westaby S: Clinico-radiological correlates in rupture of the major airways. Clin Radiol. 1991, 43: 371-376. 10.1016/S0009-9260(05)80562-8.CrossRefPubMed Spencer JA, Rogers CE, Westaby S: Clinico-radiological correlates in rupture of the major airways. Clin Radiol. 1991, 43: 371-376. 10.1016/S0009-9260(05)80562-8.CrossRefPubMed
26.
Zurück zum Zitat Nishiumi N, Maitani F, Yamada S, Kaga K, Iwasaki M, Inokuchi S, Inoue H: Chest radiography assessment of tracheobronchial disruption associated with blunt chest trauma. J Trauma. 2002, 53: 372-377.CrossRefPubMed Nishiumi N, Maitani F, Yamada S, Kaga K, Iwasaki M, Inokuchi S, Inoue H: Chest radiography assessment of tracheobronchial disruption associated with blunt chest trauma. J Trauma. 2002, 53: 372-377.CrossRefPubMed
27.
Zurück zum Zitat Chen JD, Shanmuganathan K, Mirvis SE, Killeen KL, Dutton RP: Using CT to diagnose tracheal rupture. AJR Am J Roentgenol. 2001, 176: 1273-1280.CrossRefPubMed Chen JD, Shanmuganathan K, Mirvis SE, Killeen KL, Dutton RP: Using CT to diagnose tracheal rupture. AJR Am J Roentgenol. 2001, 176: 1273-1280.CrossRefPubMed
28.
Zurück zum Zitat Macklin CC: Transport of air along sheath of pulmonic blood vessels from alveoli to mediastinum: clinical implications. Arch Intern Med. 1939, 64: 913-926.CrossRef Macklin CC: Transport of air along sheath of pulmonic blood vessels from alveoli to mediastinum: clinical implications. Arch Intern Med. 1939, 64: 913-926.CrossRef
29.
Zurück zum Zitat Rossbach MM, Johnson SB, Gomez MA, Sako EY, Miller OL, Calhoon JH: Management of major tracheobronchial injuries: a 28-year experience. Ann Thorac Surg. 1998, 65: 182-186. 10.1016/S0003-4975(97)01001-1.CrossRefPubMed Rossbach MM, Johnson SB, Gomez MA, Sako EY, Miller OL, Calhoon JH: Management of major tracheobronchial injuries: a 28-year experience. Ann Thorac Surg. 1998, 65: 182-186. 10.1016/S0003-4975(97)01001-1.CrossRefPubMed
30.
Zurück zum Zitat Wicky S, Wintermark M, Schnyder P, Capasso P, Denys A: Imaging of blunt chest trauma. Eur Radiol. 2000, 10: 1524-1538. 10.1007/s003300000435.CrossRefPubMed Wicky S, Wintermark M, Schnyder P, Capasso P, Denys A: Imaging of blunt chest trauma. Eur Radiol. 2000, 10: 1524-1538. 10.1007/s003300000435.CrossRefPubMed
31.
Zurück zum Zitat Ramzy AI, Rodriguez A, Turney SZ: Management of major tracheobronchial ruptures in patients with multiple system trauma. J Trauma. 1988, 28: 1353-1357.CrossRefPubMed Ramzy AI, Rodriguez A, Turney SZ: Management of major tracheobronchial ruptures in patients with multiple system trauma. J Trauma. 1988, 28: 1353-1357.CrossRefPubMed
32.
Zurück zum Zitat Taskinen SO, Salo JA, Halttunen PE, Sovijarvi AR: Tracheobronchial rupture due to blunt chest trauma: a follow-up study. Ann Thorac Surg. 1989, 48: 846-849.CrossRefPubMed Taskinen SO, Salo JA, Halttunen PE, Sovijarvi AR: Tracheobronchial rupture due to blunt chest trauma: a follow-up study. Ann Thorac Surg. 1989, 48: 846-849.CrossRefPubMed
33.
Zurück zum Zitat Stark P: Imaging of tracheobronchial injuries. J Thorac Imaging. 1995, 10: 206-219. 10.1097/00005382-199522000-00006.CrossRefPubMed Stark P: Imaging of tracheobronchial injuries. J Thorac Imaging. 1995, 10: 206-219. 10.1097/00005382-199522000-00006.CrossRefPubMed
34.
Zurück zum Zitat Weir IH, Muller NL, Connell DG: CT diagnosis of bronchial rupture. J Comput Assist Tomogr. 1988, 12: 1035-1036. 10.1097/00004728-198811000-00023.CrossRefPubMed Weir IH, Muller NL, Connell DG: CT diagnosis of bronchial rupture. J Comput Assist Tomogr. 1988, 12: 1035-1036. 10.1097/00004728-198811000-00023.CrossRefPubMed
35.
Zurück zum Zitat Wintermark M, Schnyder P, Wicky S: Blunt traumatic rupture of a mainstem bronchus: spiral CT demonstration of the 'fallen lung' sign. Eur Radiol. 2001, 11: 409-411. 10.1007/s003300000581.CrossRefPubMed Wintermark M, Schnyder P, Wicky S: Blunt traumatic rupture of a mainstem bronchus: spiral CT demonstration of the 'fallen lung' sign. Eur Radiol. 2001, 11: 409-411. 10.1007/s003300000581.CrossRefPubMed
36.
Zurück zum Zitat Sakai M, Murayama S, Gibo M, Akamine T, Nagata O: Frequent cause of the Macklin effect in spontaneous pneumomediastinum: demonstration by multidetector-row computed tomography. J Comput Assist Tomogr. 2006, 30: 92-94. 10.1097/01.rct.0000187416.07698.8d.CrossRefPubMed Sakai M, Murayama S, Gibo M, Akamine T, Nagata O: Frequent cause of the Macklin effect in spontaneous pneumomediastinum: demonstration by multidetector-row computed tomography. J Comput Assist Tomogr. 2006, 30: 92-94. 10.1097/01.rct.0000187416.07698.8d.CrossRefPubMed
37.
Zurück zum Zitat Zeiberg AS, Silverman PM, Sessions RB, Troost TR, Davros WJ, Zeman RK: Helical (spiral) CT of the upper airway with three-dimensional imaging: technique and clinical assessment. AJR Am J Roentgenol. 1996, 166: 293-299.CrossRefPubMed Zeiberg AS, Silverman PM, Sessions RB, Troost TR, Davros WJ, Zeman RK: Helical (spiral) CT of the upper airway with three-dimensional imaging: technique and clinical assessment. AJR Am J Roentgenol. 1996, 166: 293-299.CrossRefPubMed
Metadaten
Titel
Chest computed tomography with multiplanar reformatted images for diagnosing traumatic bronchial rupture: a case report
verfasst von
Morgan Le Guen
Catherine Beigelman
Belaid Bouhemad
Yang Wenjïe
Frederic Marmion
Jean-Jacques Rouby
Publikationsdatum
01.10.2007
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 5/2007
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc6109

Weitere Artikel der Ausgabe 5/2007

Critical Care 5/2007 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.