Skip to main content
Erschienen in: Journal of Translational Medicine 1/2019

Open Access 01.12.2019 | Research

Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study

verfasst von: Rui Fang, Weimin Yang, Xin Zhao, Fang Xiong, Caiqing Guo, Jianping Xiao, Li Chen, Xiaoqing Song, Honghua Wang, Jie Chen, Xiao Xiao, Bing Yao, Li-Yi Cai

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2019

Abstract

Background

Previous studies from this as well as other research groups suggested that non-invasive chromosome screening (NICS) with embryo culture medium can be used to identify chromosomal ploidy and chromosomal abnormalities. We here report a series of clinical cases utilizing the technology.

Methods

A total of 45 couples underwent in vitro fertilisation during a period between February 2016 and February 2017. Karyotyping revealed normal chromosomes in both partners in 23 couples, and chromosomal rearrangements in at least one partner in 22 couples. Intracytoplasmic sperm injection (ICSI) was used for fertilization. NICS was carried out using embryo culture medium at the blastocyst stage via multiple annealing and looping-based amplification cycles, whole-genome amplification and next-generation sequencing.

Results

A total of 413 embryos were obtained; 170 blastocysts were subjected to NICS. The screening showed euploidy in 79 embryos, aneuploidy in 52 embryos, and mosaic ploidy for 33 embryos. The rate of euploidy was comparable in couples with normal karyotype (50.7%; 38/75) vs. chromosomal rearrangement (43.2%; 41/95). A total of 52 euploid embryos (50 oocyte retrieval cycles) were transferred in 43 women. Biochemical pregnancy rate was 72.0% (36/50). Clinical pregnancy rate was 58.0% (29/50). The rate of spontaneous miscarriage was 3/29 (none with chromosomal aneuploidy). A total of 27 healthy babies were delivered.

Conclusions

NICS could identify embryo chromosomal abnormalities in couples either with or without chromosomal rearrangement, with satisfying clinical outcomes.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12967-019-1827-1) contains supplementary material, which is available to authorized users.
Rui Fang and Weimin Yang contributed equally to this work
Abkürzungen
NICS
non-invasive chromosome screening
ICSI
intracytoplasmic sperm injection
PGS
preimplantation genetic screening
PGD
preimplantation genetic diagnosis

Background

One of the greatest challenges for in vitro fertilisation and intracytoplasmic sperm injection (ICSI) is accurately selecting viable embryos that are more likely to achieve healthy livebirths following implantation. Currently, this selection is based on morphological assessment [1], but embryo morphology does not always correlate with chromosome status. In fact, a substantial proportion of human blastocysts designated as high grade based on morphology has chromosomal aneuploidy [2].
Embryo biopsy and preimplantation genetic screening (PGS) provide more direct assessment of chromosome status, and could improve the rate of implantation and clinical pregnancy [3, 4]. The biopsy procedure involves removing either a single cell at the cleavage stage or several trophectoderm cells at the blastocyst stage [5]. PGS has seen limited clinical application because of technical difficulties and concerns over the long-term health of the offsprings. Animal studies suggest embryo biopsy could delay blastocoel formation and increase the risk of neurodegeneration and dysfunction in the offsprings [68].
A less invasive alternative is to analyse genomic DNA from embryo culture medium or blastocyst cavity fluid [914]. Culture medium may be a more reliable source because screening of blastocyst cavity fluid often gives results inconsistent with those from embryo biopsy [1117]. In addition, collecting blastocyst cavity fluid can be as challenging as embryo biopsy.
Previous studies from this research group as well as others have shown that DNA testing using embryo culture medium on days 5 or 6 could detect chromosome aneuploidy with resonable positive predictive value and high negative predictive value [18, 19], suggesting that the NICS assay could be used for selecting chromosomally normal embryos.
Here, we report the clinical outcomes of using NICS to select embryos for implantation in a total of 45 couples (22 with normal karyotype and 23 with chromosomal rearrangement in at least one partner).

Methods

Study design and patients

This study was conducted from February 1, 2016 to January 31, 2017, with the approval by the Ethics Committee of the Wuxi Maternal and Child Health Care Hospital. All women had a history of recurrent spontaneous abortion (≥ 3 events) or repeated implantation failure ( ≥ 3 events). All couples had a consultation with a clinical geneticist and were karyotyped. Study design is shown in Fig. 1.

Ovarian stimulation and oocyte retrieval

Ovarian stimulation was carried out using clomiphene citrate and gonadotropin. Briefly, clomiphene citrate (50 mg/day) was administered orally on an extended regimen from cycle day 3 until the day before induction of final oocyte maturation. Human menopausal gonadotropin or recombinant follicular stimulating hormone was given by injection (150–225 IU/day) from cycle day 4. Ultrasound images and hormone profile (oestradiol [E2], luteinising hormone, progesterone) were monitored daily starting on day 8 and until the triggering day. Oocytes were retrieved at 36 h after trigger administration of human chorionic gonadotropin.

Blastocyst culture

All embryos were fertilised using ICSI. Embryos with two pronuclei were transferred to individual 30-µL droplets of cleavage-stage SAGE culture medium (CooperSurgical Fertility, Malov, Denmark) in a 30-mm Falcon culture dish overlaid with 2.5-mL mineral oil (CooperSurgical Fertility) and cultured at 37 °C in an atmosphere containing 5% O2 and 5.5% CO2. On day 3 after fertilisation, the embryo was repeatedly pipetted using 135-μm stripper tips (CooperSurgical Fertility), then individual embryos were placed in 30-µL droplets of Quinn's Advantage Protein Plus blastocyst culture medium (CooperSurgical Fertility) and cultured for 2–3 days to the blastocyst stage in an atmosphere containing 5% O2 and 5.5% CO2 at 37 °C. On day 5 or 6, blastocyst development and quality were evaluated as described [20].

Sample collection and blastocyst vitrification

Blastocyst culture medium (20–25 µL) was transferred to DNase- and RNase-free PCR tubes containing 5-µL cell lysis buffer (Yikon Genomics, China), snap-frozen in liquid nitrogen, and stored at − 80 °C until NICS. Blastocysts were frozen via vitrification and stored in liquid nitrogen (Cryotop Safety Kit; Kitazato Corp., Tokyo, Japan).

Whole-genome amplification and DNA sequencing

NICS was performed using culture medium as previously described [19]. DNA for whole-genome amplification was amplified using multiple annealing and looping-based amplification cycles (cat no. YK001B, Yikon Genomics). Amplification products were sequenced on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA) with approximately two million sequencing reads per sample. The read numbers were counted along the whole genome with a bin size of 1 Mb and normalised based on GC content and a reference dataset. The number of read counts served as the index of ploidy: a 50% increase indicates an increase in the number of chromosomes from 2 to 3, whereas a 50% decrease indicates a reduction in the number of chromosomes from 2 to 1 [21, 22].

Endometrial preparation and blastocyst transfer

The endometrium was prepared for transfer of frozen–thawed blastocysts using an artificial cycle [2325]. Hormone replacement therapy (oral E2 valerate at 6 mg/day) was started on day 3 of the menstrual cycle. Ultrasound was performed, and the serum progesterone level was measured after 12 days of E2 replacement. When the endometrium was 8-mm thick, luteal support was started with daily oral progesterone or vaginal micronised progesterone gel administration (Crinone 8%, Merck Serono KGaA, Darmstadt, Germany). E2 valerate and progesterone administration continued until 10 weeks of gestation.
Blastocysts were selected based on traditional morphological assessment and NICS results, and transferred on day 6 of progesterone administration. Vitrified blastocysts were warmed using Kitazato vitrification thawing solution as described [19]. Before transfer, the cryotop strip of frozen embryos was immersed in thawing solution (1-mol/L sucrose) for 60 s at 37 °C, then in dilution solution (0.5-mol/L sucrose) for 3 min. Blastocysts were washed in washing solution without sucrose for 3–5 min. Surviving blastocysts were incubated in an atmosphere of 5% O2 and 5.5% CO2 at 37 °C for 1–2 h before transfer to the uterus.

Clinical outcomes

Biochemical pregnancy was defined as human chorionic gonadotropin  > 10 mIU/mL at 10 days after blastocyst transfer. The rate of clinical pregnancy was calculated as the number of transfer cycles in which transferred blastocysts developed to a stage at which foetal heartbeat was visible by ultrasound, divided by the total number of freeze-thaw blastocyst transfer cycles. The miscarriage rate was defined as the number of spontaneous pregnancies lost, divided by the number of freeze-thaw blastocyst transfer cycles leading to clinical pregnancy.

Statistical analysis

Continuous variables are reported as mean ± standard deviation. Categorical variables are presented as frequencies. Inter-group differences were assessed for significance using Fisher's exact test. P < 0.05 (2-sided) was considered statistically significant. All statistical analyses were performed using SPSS 20.0 (IBM, Armonk, NY, USA).

Results

Patient characteristics

A total of 45 couples were included. The average age of the women was 30.7  5.0 years (range 23–42 years). A total of 501 oocytes (47 cycles) in metaphase of the second meiotic division were obtained (Table 1). ICSI produced 421 zygotes and 413 embryos, of which 179 (43.3%) developed into transplantable blastocysts. Karyotyping revealed chromosome rearrangements in 23 couples, including Robertson translocation (n = 4), balanced translocation (n = 10), chromosome inversion (n = 4), and 47XYY (n = 1) (Additional file 1: Table S1). The remaining 4 couples had unbalanced chromosome rearrangements involving deletions or duplications.
Table 1
Clinical characteristics of patients for whom NICS was performed on embryo culture medium
 
Chromosomal rearrangement (n = 23)
Normal karyotype (n = 22)
Entire cohort (n = 45)
Female age (years)
29.4 ± 5.4
31.7 ± 4.5
30.7 ± 5.0
Female body mass index (kg/m2)
21.5 ± 3.1
23.0 ± 3.2
22.3 ± 3.2
Baseline FSH (mIU/mL)
6.8 ± 2.5
6.8 ± 1.4
6.8 ± 2.1
Baseline LH (mIU/mL)
5.0 ± 3.4
5.6 ± 2.4
5.4 ± 2.9
Infertility duration (years)
3.0 ± 1.9
3.2 ± 2.7
3.1 ± 2.4
Number of cycles
25
22
47
CCOCs
345
292
637
MII
285
216
501
Zygotes
237 (83.2%)
184 (85.2%)
421 (84.0%)
Embryos obtained
234 (98.7%)
179 (97.3%)
413 (98.1%)
Blastocysts obtained
97 (41.5%)
82 (45.8%)
179 (43.3%)
Blastocysts subjected to NICS
95
75
170
 Euploid
41 (43.2%)
38 (50.7%)
79 (46.5%)
 Aneuploid
31 (32.6%)
21 (28.0%)
52 (30.6%)
 Mosaic
17 (17.9%)
16 (21.3%)
33 (19.4%)
 Unsuitable for implantation by NICS
6 (6.3%)
0
6 (3.5%)
Cycles without transferable blastocysts
4% (1/25)
4.5% (1/22)
4.3% (2/47)
Values shown are n, n (%) or mean ± SD
CCOCs, cumulus oophorus-oocyte complex; FSH, follicle-stimulating hormone; LH, luteinizing hormone; MII, mature oocyte; NICS, non-invasive chromosome screening

Correlation of embryo morphology with euploidy

Whole-genome amplification and next-generation sequencing of DNA in culture medium from 164 blastocysts revealed that 79 (46.5%) were euploid; 52 (30.6%) aneuploid; and 33 (19.4%) mosaic (Table 2). No usable signal was obtained in the remaining 6 blastocysts.
Table 2
Embryo morphology and ploidy
 
Euploid
Aneuploid
Mosaic
No result
OR (95% CI)
P
Day 5 embryos
75 (46.6%)
47 (29.2%)
33 (20.5%)
6 (3.7%)
1.09 (0.282–4.208)
0.900
Day 6 embryos
4 (44.4%)
5 (55.6%)
0
0
1
 
Morphology
 Expansion
  4
72 (46.5%)
46 (29.7%)
32 (20.6%)
5 (3.2%)
0.867
0.864
  5
4 (44.4%)
3 (33.3%)
1 (11.1%)
1 (11.1%)
0.800
0.833
  6
3 (50.0%)
3 (50.0%)
0
0
1
 
 Inner cell mass
  A
35 (49.3%)
23 (32.4%)
11 (15.5%)
2 (2.8%)
0.972 (0.130–7.288)
0.978
  B
42 (44.2%)
27 (28.4%)
22 (23.2%)
4 (4.2%)
0.792 (0.107–5.863)
0.792
  C
2 (50.0%)
2 (50.0%)
0
0
1
 
 Trophectoderm
  A
37 (54.4%)
23 (33.8%)
7 (10.3%)
1 (1.5%)
1.432 (0.702–2.924)
0.324
  B
17 (36.2%)
15 (31.9%)
11 (23.4%)
4 (8.5%)
0.68 (0.306–1.509)
0.343
  C
25 (45.5%)
14 (25.5%)
15 (27.3%)
1 (1.8%)
1
 
 Embryo morphology grade
E
 
  1 (AA)
33 (55.0%)
20 (33.3%)
6 (10.0%)
1 (1.7%)
1.504 (0.728–3.108)
0.27
  2 (AB, BA, BB)
19 (37.3%)
16 (31.4%)
12 (23.5%)
4 (7.8%)
0.769 (0.359–1.647)
0.50
  3 (AC, BC, CA, CB)
27 (45.8%)
16 (27.1%)
15 (25.4%)
1 (1.7%)
1
 
Values shown are n (%), unless otherwise noted
Of the 60 embryos assigned morphology grade 1 (AA), 33 (55%) were euploid; of the 51 embryos with morphology grade 2 (AB, BA and BB), 19 (37.3%) were euploid; and of the 59 embryos with grade 3 (AC, CA, BC and CB), 27 (45.5%) were euploid (Table 2). Logistic regression showed no significant association between euploidy and morphology grade. In comparison to the embryos with morphology grade 3, there are no significant difference in the probability of euploidy in blastocysts with morphology grade 1 (OR = 1.504, P = 0.27) and 2 (OR = 0.769, P = 0.50) (Table 2).

NICS

Based on NICS of 95 embryos from couples with chromosomal rearrangements, 41 embryos (43.2%) were euploid, 31 (32.6%) were aneuploid and 17 (17.9%) showed mosaic ploidy (Table 1). Ploidy could not be determined in 6 embryos (6.3%).
Based on NICS of 75 embryos from couples with normal karyotypes, 38 (50.7%) were euploid, 21 (28.0%) aneuploid and 16 (21.3%) mosaic. The two groups of couples did not differ significantly in the rate of ploidy abnormalities. Transferable blastocysts were not obtained from 1 oocyte retrieval cycle in each group.

Clinical outcomes

Twenty-five euploid blastocysts were transferred into 22 patients who underwent preimplantation genetic diagnosis (PGD); three women underwent two embryo transfers. 27 euploid blastocysts were implanted in 21 patients who underwent PGS; the implantation was performed within 25 cycles, with four women undergoing two transplantations and two women receiving two embryos per cycle (Table 3).
Table 3
Pregnancy outcomes with NICS
 
Chromosomal rearrangement
Normal karyotype
Total
Total ET
 Cycles
25
25
50
 Patients
22
21
43
(SET/DET)
25/0
23/2
48/2
Transferred euploid blastocysts
25
27
52
Biochemical pregnancies
68% (17/25)
76% (19/25)
72.0% (36/50)
Clinical pregnancies
52% (13/25)
64% (16/25)
58.0% (29/50)
Miscarriages
15.4% (2/13)
6.2% (1/16)
10.3% (3/29)
Deliveries
11
15
26
Singleton/twins
11/0
14/1
25/1
Babies born (male/female)
11 (6/5)
16 (9/7)
27 (15/12)
Birth weight (g, mean ± SD)
3283.7 ± 412.4
3174.7 ± 391.5
3217.5 ± 403.4
DET, double embryos transfer; ET, embryo transfer; NICS, non-invasive chromosome screening; SET, single embryo transfer
Biochemical pregnancy rate was 68% (17/25) in the PGD group and 76% (19/25) in the PGS group (Table 3). The clinical pregnancy rate was 52% (13/25) and 63% (16/25), respectively. Neither biochemical or clinical pregnancy rate differ significantly between the groups. Miscarriages occurred in 2 of the 13 (15.4%) pregnancies in the PGD group and in 1 of the 16 (6.2%) pregnancies in the PGS group. All three miscarried foetuses were euploid based on foetal tissue examination.
26 women in each group had given birth to healthy babies. Birth weight did not differ significantly between the two groups.

Discussion

The results from this pilot study suggest that NICS can be used to screen chromosomal ploidy in embryos and identify chromosomal rearrangements. The overall clinical pregnancy rate was 58% (64% in couples with normal karyotype, and 52% in couples with chromosomal rearrangements). The clinical pregnancy rate of 52% in couples with chromosomal rearrangements in the current study is similar to the rate of 45.1% reported in a study of patients with chromosomal rearrangements who underwent PGD based on next-generation sequencing [26].
The clinical pregnancy rate in the current study is apparently higher than that in the ESHRE study, which reported clinical pregnancy rate of 28–30% among patients undergoing PGS and 25–35% among patients undergoing PGD based on PCR, microarray analysis, or fluorescence in situ hybridization [27]. The miscarriage rate in our study (6.2% in the PGS group and 15.4% in the PGD group) is lower than that reported by in the ESHRE study (9% and 18%, respectively). These results indicated that using NICS to detect chromosomal rearrangements and to screen chromosome ploidy is a viable approach to select embryos with high developmental potential.
Consistent with previous studies [28, 29], we did not observe significant correlation between morphological grade and embryo ploidy. These results argue strongly against morphology-based assessment of an embryo's implantation potential. At the minimum, a combination of morphological assessment with NICS-based PGS can further improve in vitro fertilisation outcomes. This should be examined in future work, preferably in prospective randomised studies.
The sex ratio of the 27 newborns in our study was consistent with NICS prediction. 11 newborns in the PGD group underwent amniocentesis prior to the eventual delivery. Similar to PGS involving embryo biopsy, NICS cannot distinguish normal embryos from those carrying a balanced translocation. However, NICS can accurately identify embryos with balanced chromosomes, since observed variations in chromosome copy number were consistent with NICS predictions for the newborns and aborted foetuses (data not shown).
In our previous study, we validated the NICS assay for identification of chromosomal abnormalities by using donated complete embryo and obtained 0.882 sensitivity and 0.840 specificity [19]. The PPV and NPV were 78.9% and 91.3%, respectively. The relatively low PPV indicated significant false positivity, and could reflect the self-repair process in which abnormal DNA fragments are released by early embryos into culture medium during development [30, 31]. Since the goal of NICS assay is to select healthy embryos for implantation, we believe that the assay is clinically useful considering the relatively high NPV.

Conclusions

Here we demonstrate the usefulness of genomic DNA testing in embryo culture medium, as suggested from previous work [10]. Blastocyst fluid is another source of embryo DNA, but smaller amount of DNA, and thus low rate of detection (63%–76.5%) remains a major challenge. Also, testing results using blastocyst fluid may be inaccurate for preimplantation genetic testing [1217].
Consistent with previous work using the same method [32], the success rate of amplification with NICS was 96.4% in the current study. This likely reflects the appreciable amount of embryonic DNA in the culture medium volume, which is 100-fold greater than the volume of blastocyst fluid with a similar DNA concentration [10]. In addition, multiple annealing and looping-based amplification cycling may reduce the effects of amplification inhibitors present in the embryo culture. We used culture medium from the blastula stage rather than oocyte stage, which may result in higher DNA amounts because the cell mass is greater and because mosaicism occurs more often at the cleavage stage.
Despite the advantages of using culture medium for NICS, it is vulnerable to contamination with sperm and cumulus granulosa cells. Also, serum in the medium could inhibit DNA amplification. At our centre, embryos are repeatedly rinsed when changing the culture medium on day 3 in order to enhance the removal of cumulus cells and other sources of DNA contamination. Future studies are needed to examine the potential effects of these procedures on embryonic development.
Our results should be interpreted with caution given the retrospective, observational study design and the small sample size. The study is subject to a variety of biases, including but not limited to patient selection. In addition, we did not include a control group in which only morphology scoring was used to screen embryos for implantation. Larger, randomised controlled trials are needed to verify and extend our findings.

Authors’ contributions

LYC and YB conceived and designed the study. RF, FX, LC, XQS and HHW performed the experiments. XZ, RF, XX and LY analysed the data. XZ, RF and LYC wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank all the patients who agreed to participate in this study and the nursing and medical staff for their assistance.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Written informed consent was obtained from each study participant.
This study was approved by the Ethics Committee of the Wuxi Maternal and Child Health Care Hospital.

Funding

This work was supported by the major research projects of the Wuxi Health and Family Planning Commission (z201602) and the Basic Research of Nanjing Medical University (2015NJMUZD056).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod Biomed Online. 2013;26:210–21.CrossRef Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod Biomed Online. 2013;26:210–21.CrossRef
2.
Zurück zum Zitat Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31:2245–54.CrossRef Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31:2245–54.CrossRef
3.
Zurück zum Zitat Munne S, Fragouli E, Colls P, Katz-Jaffe M, Schoolcraft W, Wells D. Improved detection of aneuploid blastocysts using a new 12-chromosome FISH test. Reprod Biomed Online. 2010;20:92–7.CrossRef Munne S, Fragouli E, Colls P, Katz-Jaffe M, Schoolcraft W, Wells D. Improved detection of aneuploid blastocysts using a new 12-chromosome FISH test. Reprod Biomed Online. 2010;20:92–7.CrossRef
4.
Zurück zum Zitat Dreesen J, Destouni A, Kourlaba G, Degn B, Mette WC, Carvalho F, et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22:1012–8.CrossRef Dreesen J, Destouni A, Kourlaba G, Degn B, Mette WC, Carvalho F, et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22:1012–8.CrossRef
5.
Zurück zum Zitat Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94:1700–6.CrossRef Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94:1700–6.CrossRef
6.
Zurück zum Zitat Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100:624–30.CrossRef Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100:624–30.CrossRef
7.
Zurück zum Zitat Zhao HC, Zhao Y, Li M, Yan J, Li L, Li R, et al. Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biol Reprod. 2013;89:117.CrossRef Zhao HC, Zhao Y, Li M, Yan J, Li L, Li R, et al. Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biol Reprod. 2013;89:117.CrossRef
8.
Zurück zum Zitat Wu Y, Lv Z, Yang Y, Dong G, Yu Y, Cui Y, et al. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell Mol Life Sci. 2014;71:1761–74.CrossRef Wu Y, Lv Z, Yang Y, Dong G, Yu Y, Cui Y, et al. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell Mol Life Sci. 2014;71:1761–74.CrossRef
9.
Zurück zum Zitat Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28:2652–60.CrossRef Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28:2652–60.CrossRef
10.
Zurück zum Zitat Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107:220–8.CrossRef Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107:220–8.CrossRef
11.
Zurück zum Zitat Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26:603–10.CrossRef Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26:603–10.CrossRef
12.
Zurück zum Zitat Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102:1692–6.CrossRef Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102:1692–6.CrossRef
13.
Zurück zum Zitat Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104:418–25.CrossRef Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104:418–25.CrossRef
14.
Zurück zum Zitat Farra C, Choucair F, Awwad J. Non-invasive pre-implantation genetic testing of human embryos: an emerging concept. Hum Reprod. 2018;33:2162–7.CrossRef Farra C, Choucair F, Awwad J. Non-invasive pre-implantation genetic testing of human embryos: an emerging concept. Hum Reprod. 2018;33:2162–7.CrossRef
15.
Zurück zum Zitat Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105:676–83.CrossRef Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105:676–83.CrossRef
16.
Zurück zum Zitat Perloe M, Welch C, Morton P, Venier W, Wells D, Palini S. Validation of blastocoele fluid aspiration for preimplantation genetic screening using array comparative genomic hybridization (aCGH). Fertil Steril. 2013;100:S208.CrossRef Perloe M, Welch C, Morton P, Venier W, Wells D, Palini S. Validation of blastocoele fluid aspiration for preimplantation genetic screening using array comparative genomic hybridization (aCGH). Fertil Steril. 2013;100:S208.CrossRef
17.
Zurück zum Zitat Poli M, Jaroudi S, Sarasa J, Spath K, Child T, Wells D. The blastocoel fluid as a source of DNA for preimplantation genetic diagnosis and screening. Fertil Steril. 2013;100:S37.CrossRef Poli M, Jaroudi S, Sarasa J, Spath K, Child T, Wells D. The blastocoel fluid as a source of DNA for preimplantation genetic diagnosis and screening. Fertil Steril. 2013;100:S37.CrossRef
18.
Zurück zum Zitat Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106:1312–8.CrossRef Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106:1312–8.CrossRef
19.
Zurück zum Zitat Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. PNAS USA. 2016;113:11907.CrossRef Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. PNAS USA. 2016;113:11907.CrossRef
20.
Zurück zum Zitat Balaban B, Brison D, Calderon G, Catt J, Conaghan J, Cowan L, et al. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270.CrossRef Balaban B, Brison D, Calderon G, Catt J, Conaghan J, Cowan L, et al. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270.CrossRef
21.
Zurück zum Zitat Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114.CrossRef Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114.CrossRef
22.
Zurück zum Zitat Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589.CrossRef Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589.CrossRef
23.
Zurück zum Zitat Greco E, Litwicka K, Arrivi C, Varricchio MT, Caragia A, Greco A, et al. The endometrial preparation for frozen–thawed euploid blastocyst transfer: a prospective randomized trial comparing clinical results from natural modified cycle and exogenous hormone stimulation with GnRH agonist. J Assist Reprod Genet. 2016;33:1–12.CrossRef Greco E, Litwicka K, Arrivi C, Varricchio MT, Caragia A, Greco A, et al. The endometrial preparation for frozen–thawed euploid blastocyst transfer: a prospective randomized trial comparing clinical results from natural modified cycle and exogenous hormone stimulation with GnRH agonist. J Assist Reprod Genet. 2016;33:1–12.CrossRef
24.
Zurück zum Zitat Li S, Jing W, Yan C, Zhou D, Yin T, Xu W, et al. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J Reprod Immunol. 2017;119:15–22.CrossRef Li S, Jing W, Yan C, Zhou D, Yin T, Xu W, et al. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J Reprod Immunol. 2017;119:15–22.CrossRef
25.
Zurück zum Zitat Lattes K, Checa MA, Vassena R, Brassesco M, Vernaeve V. There is no evidence that the time from egg retrieval to embryo transfer affects live birth rates in a freeze-all strategy. Human Reprod. 2016;32:368.CrossRef Lattes K, Checa MA, Vassena R, Brassesco M, Vernaeve V. There is no evidence that the time from egg retrieval to embryo transfer affects live birth rates in a freeze-all strategy. Human Reprod. 2016;32:368.CrossRef
26.
Zurück zum Zitat Minasi MG, Fiorentino F, Ruberti A, Biricik A, Cursio E, Cotroneo E, et al. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approach. Hum Reprod. 2017;32:1–8.CrossRef Minasi MG, Fiorentino F, Ruberti A, Biricik A, Cursio E, Cotroneo E, et al. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approach. Hum Reprod. 2017;32:1–8.CrossRef
27.
Zurück zum Zitat De Rycke M, Belva F, Goossens V, Moutou C, SenGupta SB, Traeger-Synodinos J, et al. ESHRE PGD Consortium data collection XIII: cycles from January to December 2010 with pregnancy follow-up to October 2011. Hum Reprod. 2015;30:1763–89.CrossRef De Rycke M, Belva F, Goossens V, Moutou C, SenGupta SB, Traeger-Synodinos J, et al. ESHRE PGD Consortium data collection XIII: cycles from January to December 2010 with pregnancy follow-up to October 2011. Hum Reprod. 2015;30:1763–89.CrossRef
28.
Zurück zum Zitat Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29:1173–81.CrossRef Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29:1173–81.CrossRef
29.
Zurück zum Zitat Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrezmateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.CrossRef Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrezmateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.CrossRef
30.
Zurück zum Zitat Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.CrossRef Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.CrossRef
31.
Zurück zum Zitat Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.CrossRef Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.CrossRef
32.
Zurück zum Zitat Galluzzi L, Palini S, Stefani SD, Andreoni F, Primiterra M, Diotallevi A, et al. Extracellular embryo genomic DNA and its potential for genotyping applications. Future Sci OA. 2015;1:FSO62.CrossRef Galluzzi L, Palini S, Stefani SD, Andreoni F, Primiterra M, Diotallevi A, et al. Extracellular embryo genomic DNA and its potential for genotyping applications. Future Sci OA. 2015;1:FSO62.CrossRef
Metadaten
Titel
Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study
verfasst von
Rui Fang
Weimin Yang
Xin Zhao
Fang Xiong
Caiqing Guo
Jianping Xiao
Li Chen
Xiaoqing Song
Honghua Wang
Jie Chen
Xiao Xiao
Bing Yao
Li-Yi Cai
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2019
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1827-1

Weitere Artikel der Ausgabe 1/2019

Journal of Translational Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.