Skip to main content
Erschienen in: Journal of Neural Transmission 12/2018

20.09.2018 | Psychiatry and Preclinical Psychiatric Studies - Original Article

Chronic oral methylphenidate treatment increases microglial activation in rats

verfasst von: Emily Carias, John Hamilton, Lisa S. Robison, Foteini Delis, Rina Eiden, Teresa Quattrin, Michael Hadjiargyrou, David Komatsu, Panayotis K. Thanos

Erschienen in: Journal of Neural Transmission | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Methylphenidate (MP) is a widely prescribed psychostimulant used to treat attention deficit hyperactivity disorder. Previously, we established a drinking paradigm to deliver MP to rats at doses that result in pharmacokinetic profiles similar to treated patients. In the present study, adolescent male rats were assigned to one of three groups: control (water), low-dose MP (LD; 4/10 mg/kg), and high dose MP (HD; 30/60 mg/kg). Following 3 months of treatment, half of the rats in each group were euthanized, and the remaining rats received only water throughout a 1-month-long abstinence phase. In vitro autoradiography using [3H] PK 11195 was performed to measure microglial activation. HD MP rats showed increased [3H] PK 11195 binding compared to control rats in several cerebral cortical areas: primary somatosensory cortex including jaw (68.6%), upper lip (80.1%), barrel field (88.9%), and trunk (78%) regions, forelimb sensorimotor area (87.3%), secondary somatosensory cortex (72.5%), motor cortices 1 (73.2%) and 2 (69.3%), insular cortex (59.9%); as well as subcortical regions including the thalamus (62.9%), globus pallidus (79.4%) and substantia nigra (22.7%). Additionally, HD MP rats showed greater binding compared to LD MP rats in the hippocampus (60.6%), thalamus (59.6%), substantia nigra (38.5%), and motor 2 cortex (55.3%). Following abstinence, HD MP rats showed no significant differences compared to water controls; however, LD MP rats showed increased binding in pre-limbic cortex (78.1%) and ventromedial caudate putamen (113.8%). These findings indicate that chronic MP results in widespread microglial activation immediately after treatment and following the cessation of treatment in some brain regions.
Literatur
Zurück zum Zitat Bogle KE, Smith BH (2009) Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences. Curr Drug Abuse Rev 2(2):157–176CrossRefPubMed Bogle KE, Smith BH (2009) Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences. Curr Drug Abuse Rev 2(2):157–176CrossRefPubMed
Zurück zum Zitat Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Rev Neurotox Res 8(3–4):199–206CrossRef Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Rev Neurotox Res 8(3–4):199–206CrossRef
Zurück zum Zitat Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14(4):2260–2271CrossRefPubMedPubMedCentral Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14(4):2260–2271CrossRefPubMedPubMedCentral
Zurück zum Zitat Delis F, Weber A, Thanos PK (2017) Chronic oral methylphenidate intake affects white matter morphology and NMDA receptor density in normal rats. In: 27th meeting of the Hellenic Society for Neuroscience, Athens Delis F, Weber A, Thanos PK (2017) Chronic oral methylphenidate intake affects white matter morphology and NMDA receptor density in normal rats. In: 27th meeting of the Hellenic Society for Neuroscience, Athens
Zurück zum Zitat Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287CrossRefPubMed Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287CrossRefPubMed
Zurück zum Zitat Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther 295(1):51–57PubMed Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther 295(1):51–57PubMed
Zurück zum Zitat Gomes KM, Petronilho FC, Mantovani M, Garbelotto T, Boeck CR, Dal-Pizzol F, Quevedo J (2008) Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem Res 33(6):1024–1027CrossRefPubMed Gomes KM, Petronilho FC, Mantovani M, Garbelotto T, Boeck CR, Dal-Pizzol F, Quevedo J (2008) Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem Res 33(6):1024–1027CrossRefPubMed
Zurück zum Zitat Greenhill L, Beyer DH, Finkleson J, Shaffer D, Biederman J, Conners CK, Gillberg C, Huss M, Jensen P, Kennedy JL, Klein R, Rapoport J, Sagvolden T, Spencer T, Swanson JM, Volkow N (2002a) Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J Atten Disord 6(Suppl 1):S89–S100CrossRefPubMed Greenhill L, Beyer DH, Finkleson J, Shaffer D, Biederman J, Conners CK, Gillberg C, Huss M, Jensen P, Kennedy JL, Klein R, Rapoport J, Sagvolden T, Spencer T, Swanson JM, Volkow N (2002a) Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J Atten Disord 6(Suppl 1):S89–S100CrossRefPubMed
Zurück zum Zitat Greenhill LL, Findling RL, Swanson JM, Group AS (2002b) A double-blind, placebo-controlled study of modified-release methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics 109(3):E39CrossRefPubMed Greenhill LL, Findling RL, Swanson JM, Group AS (2002b) A double-blind, placebo-controlled study of modified-release methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics 109(3):E39CrossRefPubMed
Zurück zum Zitat Heyser CJ, Pelletier M, Ferris JS (2004) The effects of methylphenidate on novel object exploration in weanling and periadolescent rats. Ann N Y Acad Sci 1021(1):465–469CrossRefPubMed Heyser CJ, Pelletier M, Ferris JS (2004) The effects of methylphenidate on novel object exploration in weanling and periadolescent rats. Ann N Y Acad Sci 1021(1):465–469CrossRefPubMed
Zurück zum Zitat Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151(1):55–63CrossRefPubMed Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151(1):55–63CrossRefPubMed
Zurück zum Zitat Komatsu DE, Thanos PK, Mary MN, Janda HA, John CM, Robison L, Ananth M, Swanson JM, Volkow ND, Hadjiargyrou M (2012) Chronic exposure to methylphenidate impairs appendicular bone quality in young rats. Bone 50(6):1214–1222CrossRefPubMedPubMedCentral Komatsu DE, Thanos PK, Mary MN, Janda HA, John CM, Robison L, Ananth M, Swanson JM, Volkow ND, Hadjiargyrou M (2012) Chronic exposure to methylphenidate impairs appendicular bone quality in young rats. Bone 50(6):1214–1222CrossRefPubMedPubMedCentral
Zurück zum Zitat Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296(3):876–883PubMed Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296(3):876–883PubMed
Zurück zum Zitat Motaghinejad M, Motevalian M, Shabab B (2016) Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 619:106–113CrossRefPubMed Motaghinejad M, Motevalian M, Shabab B (2016) Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 619:106–113CrossRefPubMed
Zurück zum Zitat Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z (2017a) Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of Hippocampus via CREB/BDNF pathway in rats. Neurotox Res 31(3):373–399CrossRefPubMed Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z (2017a) Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of Hippocampus via CREB/BDNF pathway in rats. Neurotox Res 31(3):373–399CrossRefPubMed
Zurück zum Zitat Motaghinejad M, Motevalian M, Shabab B, Fatima S (2017b) Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J Neural Transm 124(1):121–131CrossRefPubMed Motaghinejad M, Motevalian M, Shabab B, Fatima S (2017b) Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J Neural Transm 124(1):121–131CrossRefPubMed
Zurück zum Zitat Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130(2):169–175CrossRefPubMed Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130(2):169–175CrossRefPubMed
Zurück zum Zitat Purves A, Fitzpatrick D (2001) Neuroscience, 2nd edn. Sinauer Associates, Sunderland Purves A, Fitzpatrick D (2001) Neuroscience, 2nd edn. Sinauer Associates, Sunderland
Zurück zum Zitat Robison LS, Ananth M, Hadjiargyrou M, Komatsu DE, Thanos PK (2017a) Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J Neural Transm 124(5):655–667CrossRefPubMed Robison LS, Ananth M, Hadjiargyrou M, Komatsu DE, Thanos PK (2017a) Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J Neural Transm 124(5):655–667CrossRefPubMed
Zurück zum Zitat Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam C-Y, Mauceri A, Vitale M, Lee J, Paeng S (2017b) Sex differences in the physiological and behavioral effects of chronic oral Methylphenidate treatment in rats. Front Behav Neurosci 11:53CrossRefPubMedPubMedCentral Robison LS, Michaelos M, Gandhi J, Fricke D, Miao E, Lam C-Y, Mauceri A, Vitale M, Lee J, Paeng S (2017b) Sex differences in the physiological and behavioral effects of chronic oral Methylphenidate treatment in rats. Front Behav Neurosci 11:53CrossRefPubMedPubMedCentral
Zurück zum Zitat Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS One 7(3):e33693CrossRefPubMedPubMedCentral Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS One 7(3):e33693CrossRefPubMedPubMedCentral
Zurück zum Zitat Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 15(7 Pt 2):5263–5274CrossRefPubMedPubMedCentral Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 15(7 Pt 2):5263–5274CrossRefPubMedPubMedCentral
Zurück zum Zitat Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, Masad I, Muniz JA, Grant SC, Gold MS (2016a) Chronic methamphetamine effects on brain structure and function in rats. PloS One 11(6):e0155457CrossRefPubMedPubMedCentral Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, Masad I, Muniz JA, Grant SC, Gold MS (2016a) Chronic methamphetamine effects on brain structure and function in rats. PloS One 11(6):e0155457CrossRefPubMedPubMedCentral
Zurück zum Zitat Uddin SM, Robison LS, Fricke D, Chernoff E, Hadjiargyrou M, Thanos PK, Komatsu DE (2018) Methylphenidate regulation of osteoclasts in a dose-and sex-dependent manner adversely affects skeletal mechanical integrity. Sci Rep 8(1):1515CrossRefPubMedPubMedCentral Uddin SM, Robison LS, Fricke D, Chernoff E, Hadjiargyrou M, Thanos PK, Komatsu DE (2018) Methylphenidate regulation of osteoclasts in a dose-and sex-dependent manner adversely affects skeletal mechanical integrity. Sci Rep 8(1):1515CrossRefPubMedPubMedCentral
Zurück zum Zitat Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386(6627):827–830. https://doi.org/10.1038/386827a0 CrossRefPubMed Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386(6627):827–830. https://​doi.​org/​10.​1038/​386827a0 CrossRefPubMed
Zurück zum Zitat Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21(2):RC121CrossRefPubMedPubMedCentral Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21(2):RC121CrossRefPubMedPubMedCentral
Zurück zum Zitat Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Attent Disord 6(Suppl 1):S31–S43CrossRef Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Attent Disord 6(Suppl 1):S31–S43CrossRef
Metadaten
Titel
Chronic oral methylphenidate treatment increases microglial activation in rats
verfasst von
Emily Carias
John Hamilton
Lisa S. Robison
Foteini Delis
Rina Eiden
Teresa Quattrin
Michael Hadjiargyrou
David Komatsu
Panayotis K. Thanos
Publikationsdatum
20.09.2018
Verlag
Springer Vienna
Erschienen in
Journal of Neural Transmission / Ausgabe 12/2018
Print ISSN: 0300-9564
Elektronische ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-018-1931-z

Weitere Artikel der Ausgabe 12/2018

Journal of Neural Transmission 12/2018 Zur Ausgabe

Neurology and Preclinical Neurological Studies - Original Article

Effect of serum uric acid on cognition in patients with idiopathic REM sleep behavior disorder

Neurology and Preclinical Neurological Studies - Original Article

Is the dual-task cost of walking and texting unique in people with multiple sclerosis?

High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article

Prenatal stress and enhanced developmental plasticity

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.