Skip to main content
Erschienen in: Clinical Pharmacokinetics 12/2019

22.07.2019 | Commentary

Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients

verfasst von: Roger K. Verbeeck, Bonifasius S. Singu, Dan Kibuule

Erschienen in: Clinical Pharmacokinetics | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Excerpt

The standard dose regimen for active pulmonary tuberculosis (TB) consists of an initial 2-month intensive treatment phase with rifampicin, isoniazid, pyrazinamide, and ethambutol, followed by a 4-month continuation phase with rifampicin, isoniazid, and ethambutol [1]. Despite the use of standard dose regimens, weight-banding, and directly observed treatment, the pharmacokinetics (PK) of rifampicin show very high interindividual variability, which may be explained by various factors, including variable oral absorption, pharmacogenetic differences in drug-metabolizing/transporter activities, nutritional status, sex differences, drug–drug interactions, comorbidities such as diabetes, and HIV co-infection [24]. The high interindividual variability in the PK of rifampicin leads to highly variable systemic exposure, with supratherapeutic plasma concentrations potentially leading to adverse reactions such as liver toxicity, and subtherapeutic plasma concentrations resulting in slow response to treatment and development of drug resistance [5, 6]. Consequently, therapeutic drug monitoring of first-line anti-TB drugs has been proposed to improve treatment outcomes in certain patient groups, such as slow responders, patients with diabetes, and those with HIV co-infection [7, 8]. This commentary focuses on the potential consequences of interpatient variability in plasma binding of rifampicin on its PK and pharmacodynamics (PD). …
Literatur
2.
Zurück zum Zitat Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.CrossRef Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.CrossRef
3.
Zurück zum Zitat Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review of the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–66.CrossRef Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review of the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–66.CrossRef
4.
Zurück zum Zitat Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.CrossRef Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.CrossRef
5.
Zurück zum Zitat Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRef Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRef
6.
Zurück zum Zitat Satyaraddi A, Velpandian T, Sharma SK, Vishnubhatla S, Sharma A, Sirohiwal A, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014;18(2):188–95.CrossRef Satyaraddi A, Velpandian T, Sharma SK, Vishnubhatla S, Sharma A, Sirohiwal A, et al. Correlation of plasma anti-tuberculosis drug levels with subsequent development of hepatotoxicity. Int J Tuberc Lung Dis. 2014;18(2):188–95.CrossRef
7.
Zurück zum Zitat Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2014;74(8):839–54.CrossRef Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2014;74(8):839–54.CrossRef
8.
Zurück zum Zitat Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–16.CrossRef Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–16.CrossRef
9.
Zurück zum Zitat Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.CrossRef Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.CrossRef
10.
Zurück zum Zitat Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.CrossRef
11.
Zurück zum Zitat Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.CrossRef Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.CrossRef
12.
Zurück zum Zitat Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.CrossRef Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.CrossRef
13.
Zurück zum Zitat te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef te Brake LHM, Ruslami R, Later-Nijland H, Mooren F, Teulen M, Apriani L, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef
14.
Zurück zum Zitat Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother. 2018;61(7):e00641–718. Alghamdi WA, Al-Shaer MH, Peloquin CA. Protein binding of first-line antituberculosis drugs. Antimicrob Agents Chemother. 2018;61(7):e00641–718.
15.
Zurück zum Zitat Litjens CHC, Aarnoutse RA, van Ewijk-Beneken Kolmer EWJ, Svensson EM, Colbers A, Burger DM, et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother. 2019;74(4):986–90.CrossRef Litjens CHC, Aarnoutse RA, van Ewijk-Beneken Kolmer EWJ, Svensson EM, Colbers A, Burger DM, et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother. 2019;74(4):986–90.CrossRef
16.
Zurück zum Zitat Buchanan N, Van Der Walt NA. The binding of antituberculous drugs to normal and Kwashiorkor serum. S Afr Med J. 1977;52(13):522–5.PubMed Buchanan N, Van Der Walt NA. The binding of antituberculous drugs to normal and Kwashiorkor serum. S Afr Med J. 1977;52(13):522–5.PubMed
17.
Zurück zum Zitat Johnson DA, Smith KD. The efficacy of certain anti-tuberculosis drugs is affected by binding to α-1-acid glycoprotein. Biomed Chromatogr. 2006;20(6–7):551–60.CrossRef Johnson DA, Smith KD. The efficacy of certain anti-tuberculosis drugs is affected by binding to α-1-acid glycoprotein. Biomed Chromatogr. 2006;20(6–7):551–60.CrossRef
18.
Zurück zum Zitat Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.CrossRef Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94.CrossRef
19.
Zurück zum Zitat Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.CrossRef Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.CrossRef
20.
Zurück zum Zitat Almeida MLD, Barbieri MA, Gurgel RQ, Abdurrahman ST, Baba UA, Hart CA, et al. α1-Acid glycoprotein and α1-antitrypsin as early markers of treatment response in patients receiving the intensive phase of tuberculosis therapy. Trans R Soc Trop Hyg. 2009;103(6):575–80.CrossRef Almeida MLD, Barbieri MA, Gurgel RQ, Abdurrahman ST, Baba UA, Hart CA, et al. α1-Acid glycoprotein and α1-antitrypsin as early markers of treatment response in patients receiving the intensive phase of tuberculosis therapy. Trans R Soc Trop Hyg. 2009;103(6):575–80.CrossRef
21.
Zurück zum Zitat Dickinson JM, Aber VR, Allen BW, Ellard GA, Mitchison DA. Assay of rifampicin in serum. J Clin Pathol. 1974;27(2):457–62.CrossRef Dickinson JM, Aber VR, Allen BW, Ellard GA, Mitchison DA. Assay of rifampicin in serum. J Clin Pathol. 1974;27(2):457–62.CrossRef
22.
Zurück zum Zitat Furesz S. Chemical and biological properties of rifampicin. Antibiot Chemother. 1970;16:316–51.CrossRef Furesz S. Chemical and biological properties of rifampicin. Antibiot Chemother. 1970;16:316–51.CrossRef
23.
Zurück zum Zitat Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11):S301–8.PubMed Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;3(11):S301–8.PubMed
24.
Zurück zum Zitat Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.CrossRef Loos U, Musch E, Jensen JC, Mikus G, Schwabe HK, Eichelbaum M. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr. 1985;63(23):1205–11.CrossRef
25.
Zurück zum Zitat Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.CrossRef Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.CrossRef
26.
Zurück zum Zitat Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.CrossRef Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.CrossRef
27.
Zurück zum Zitat Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.CrossRef Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.CrossRef
28.
Zurück zum Zitat Antwi S, Yanh H, Enimil A, Sarfo AM, Gillani FS, Anong D, et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother. 2017;61(2):e01701–16.PubMedPubMedCentral Antwi S, Yanh H, Enimil A, Sarfo AM, Gillani FS, Anong D, et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother. 2017;61(2):e01701–16.PubMedPubMedCentral
29.
Zurück zum Zitat Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokineics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guielines. Antimicrob Agents Chemother. 2016;60(4):2171–9.CrossRef Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokineics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guielines. Antimicrob Agents Chemother. 2016;60(4):2171–9.CrossRef
30.
Zurück zum Zitat McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.CrossRef McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.CrossRef
31.
Zurück zum Zitat Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.CrossRef Chideya S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–94.CrossRef
32.
Zurück zum Zitat Ramachandran G, Kumar AK, Bhavani PK, Kannan T, Kumar SR, Gangadevi NP, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in india. Antimicrob Agents Chemother. 2015;59(2):1162–7.CrossRef Ramachandran G, Kumar AK, Bhavani PK, Kannan T, Kumar SR, Gangadevi NP, et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in india. Antimicrob Agents Chemother. 2015;59(2):1162–7.CrossRef
33.
Zurück zum Zitat Ramachandran G, Kumar AK, Kannan T, Bhavani PK, Kumar SR, Gangadevi NP, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530–4.CrossRef Ramachandran G, Kumar AK, Kannan T, Bhavani PK, Kumar SR, Gangadevi NP, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530–4.CrossRef
34.
Zurück zum Zitat Polasa K, Murthy KJR, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol. 1984;17(4):481–4.CrossRef Polasa K, Murthy KJR, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol. 1984;17(4):481–4.CrossRef
35.
Zurück zum Zitat Gumbo T, Louie A, Deziel MR, Liu W, Parson LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.CrossRef Gumbo T, Louie A, Deziel MR, Liu W, Parson LM, Salfinger M, et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.CrossRef
36.
Zurück zum Zitat Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics–pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.CrossRef Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics–pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother. 2011;55(1):24–34.CrossRef
37.
Zurück zum Zitat Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26(2):274–88.CrossRef Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26(2):274–88.CrossRef
38.
Zurück zum Zitat Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol. 2019;85(5):865–7.CrossRef Leroux S, van den Anker JN, Smits A, Pfister M, Allegaert K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br J Clin Pharmacol. 2019;85(5):865–7.CrossRef
39.
Zurück zum Zitat Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aernoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.CrossRef Ruslami R, Nijland HMJ, Adhiarta IGN, Kariadi SHKS, Alisjahbana B, Aernoutse RE, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.CrossRef
40.
Zurück zum Zitat Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JAL, Derendorf H, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4904–10.CrossRef Egelund EF, Weiner M, Singh RP, Prihoda TJ, Gelfond JAL, Derendorf H, et al. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2014;58(8):4904–10.CrossRef
Metadaten
Titel
Clinical Significance of the Plasma Protein Binding of Rifampicin in the Treatment of Tuberculosis Patients
verfasst von
Roger K. Verbeeck
Bonifasius S. Singu
Dan Kibuule
Publikationsdatum
22.07.2019
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 12/2019
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00800-1

Weitere Artikel der Ausgabe 12/2019

Clinical Pharmacokinetics 12/2019 Zur Ausgabe

Acknowledgement to Referees

Acknowledgement to Referees