Skip to main content
Erschienen in: Journal of Anesthesia 1/2021

Open Access 25.09.2020 | Original Article

Clotting functional stability of withdrawing blood in storage for acute normovolemic hemodilution: a pilot study

verfasst von: Hirotaka Kinoshita, Junichi Saito, Kishiko Nakai, Satoko Noguchi, Daiki Takekawa, Yoshiko Tamai, Masato Kitayama, Kazuyoshi Hirota

Erschienen in: Journal of Anesthesia | Ausgabe 1/2021

Abstract

Purpose

This study was conducted to time-course changes of clotting function of withdrawing blood for acute normovolemic hemodilution (ANH).

Methods

Twelve enrolled patients who underwent ANH from August, 2018 to January, 2019. Blood was withdrawn into blood collection pack and shaken at 60–80 rpm for 24 h in room temperature. Clot formation was evaluated using rotational thromboelastometry (ROTEM™) just after blood withdrawal (control) and 4, 8, 12 and 24 h after blood withdrawal. We compared with the control value and each value of extrinsically-activated test with tissue factor (EXTEM), intrinsically-activated test using ellagic acid (INTEM) and fibrin-based extrinsically activated test with tissue factor (FIBTEM).

Results

Maximum clot firmness (MCF) of FIBTEM did not change significantly. MCF of EXTEM was significantly decreased time-dependent manner but all MCF of EXTEM were within a normal range. Maximum percent change in MCF of EXTEM was 12.4% [95% confidence interval (CI): 9.0–15.8%]. The difference in the maximum clot elasticity (MCE) between EXTEM and FIBTEM (MCEEXTEM−MCEFIBTEM) was significantly decrease from 8 h after blood withdrawal. Maximum percent change in MCEEXTEM−MCEFIBTEM was 30.2% (95% CI:17.6–42.9%) at 24 h after blood withdrawal.

Conclusion

Even though the MCE significantly decreased in a time-dependent manner, MCF of FIBTEM and EXTEM was normal up to 24 h storage. The blood of ANH can use for the purpose of hemostasis at least 8 h stored at room temperature after blood withdrawal. Future studies are needed to elucidate the clinical impact on the patient after delayed transfusion of ANH blood with regard to patient’s hemostasis.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00540-020-02856-x) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Acute normovolemic hemodilution (ANH) is usually carried out to preserve red blood cell, leading reduce the amount of intra- and postoperative allogenic blood transfusion in several clinical settings [15]. Moreover, in cardiovascular surgical setting, in addition to the reduction of the risk of postoperative allogeneic blood transfusion, ANH also can reduce the amount of post-operative blood loss [6]. Since ANH blood has not been exposed to the cardiopulmonary bypass (CPB), coagulation factors including fibrinogen and platelet function should be preserved and contribute to hemostasis after surgery.
ANH blood is usually stored at ambient temperature to maintain platelet function during surgery. Storing whole blood at ambient temperature for 24 h has minimal effect on the coagulation activity of plasma, except factor VIII (fVIII) which was loss of 20–30% during first 8 h [7, 8]. However, time dependent changes of clotting function of whole blood has not well determined. We hypothesized that coagulation activity of ANH storing at room temperature would be maintained throughout 24 h. To evaluate our hypothesis, we conducted this study to determine the time dependent changes of the clotting function of the ANH withdrawing blood in storage.

Methods

The protocol of this prospective observational study was approved by the local Ethics committee, publicized on our hospital homepage (2018–1040) and was registered prior to patient enrollment in a publicly accessible database, the UMIN clinical trial registry, which is one registry of the Japan primary registries network (UMIN000033017, Principal investigator: Junichi SAITO, Date of registration: 15 Jun, 2018). Written informed consent from each patient was waived because blood samples in the tube of blood packs were usually thrown away and the Ethic committee approved the waiver. We enrolled 12 patients who was scheduled to conduct 800 mL of ANH before surgery at Hirosaki University Hospital from August 1, 2018 to January 31, 2019. The primary outcome was the time dependent changes of clotting function of ANH until 24 h after withdrawal of ANH.

ANH procedure and collected blood sample

The principle indication of ANH in our hospital is an estimated blood loss more than 500 mL or request by surgeons for patients to have more than 10 g/dL of hemoglobin (Hb) after surgery. The amount of blood withdrawal for ANH was 800 mL in all cases, about 20% of blood volume. Autologous whole blood of 400 mL was collected using a decompression blood collecting equipment (Hemo-Quic; AC-181 TERUMO, Tokyo, Japan). After induction of anesthesia in the operating room, blood was withdrawn twice from the central venous line into each standard blood collection pack (JMS Blood Bag CPD400; JMS, Tokyo, Japan) containing citrate phosphate dextrose solution with hemodilution with 500–1000 mL of 6% hydroxyethyl starch (130/0.4) (Voluvein; Fresenius Kabi, Bad Homburg, Germany) to maintain the patient's normovolemia and mean artery pressure ≥ 60 mmHg. ANH procedure took 20–25 min to collect 800 mL of blood. After collection of blood into the blood pack, tube was sealed by tube sealer. Blood in the tube put in the test tube containing citrate phosphate dextrose solution 1.5 mL which was same solution of the standard blood collection packs. As the company supplies the sodium citrate contained tube for measuring rotational thromboelastometry (ROTEM™: Pentapharm GmbH, Munich, Germany), the impact of storage solution on ROTEM™ measurement is considered to be limited. The amount of blood in the tube of each blood pack was 5 mL. About 10 mL of blood sample (mixing the blood of both blood packs) was collected from each patient. ROTEM has some advantages to evaluate the entire clotting function using smaller amount of blood compared with conventional clotting functional test and, thus, ROTEM was suitable to measure clotting function repeatedly in this study. Blood sample in the test tube were shaken 60–80 rpm during 24 h in the room temperature. When a specimen was removed, collected autologous blood was reinfused to the patient.

Data collection and global tests of hemostasis

Patient’s demographics, pre-operative platelet counts, prothrombin time and activated partial thromboplastin time were collected. Intraoperative laboratory data, including hemoglobin, hematocrit and platelet counts after withdrawal blood and after re-infusion ANH blood to the patients were also collected. Clot formation was evaluated by ROTEM™ (Fig. 1) and the measurements were at just after withdrawal of blood (within 1 h) and 4, 8, 12 and 24 h after withdrawal. To ensure the accuracy of the ROTEM™ measurement, designated two physicians measured ROTEM™ with the same ROTEM™ machine. The measurements were clotting time (CT), clot formation time (CFT), and maximum clot firmness (MCF) of extrinsically-activated test with tissue factor (EXTEM), intrinsically-activated test using ellagic acid (INTEM) and fibrin-based extrinsically activated test with tissue factor and the platelet inhibitor cytochalasin D (FIBTEM). The platelets contribution to clot elasticity (platelet component parameter) can be calculated from the difference in the maximum clot elasticity (MCE) between EXTEM and FIBTEM (MCEEXTEM−MCEFIBTEM). MCE was calculated using the following formula: MCE = (MCF × 100)/(100 − MCF) [9].

Statistical analyses

The statistical analyses were performed using GraphPad Prism V7 (GraphPad Software, La Jolla, CA). Repeated-measures analysis of variance (ANOVA) with Bonferroni post hoc corrections was used to compare with the control value and each value of EXTEM, INTEM and FIBTEM. The sample size was calculated using with G × Power 3.1.9.2 (Universität Düsseldorf, Düsseldorf, Germany). When running a power analysis on a repeated-measures ANOVA with 5 measurements, a power of 0.8, an alpha level of 0.0125, correlation among repeated measures of 0.66, nonsphericity correction of 0.25, and a medium effect size (f = 0.25) [10], the required sample size is at least 52. The authors included 12 patients with 60 sample readings. All data are presented as mean ± the standard error of the mean (SEM) or median (25th to 75th percentile). All statistical tests were two-sided, and a p value of < 0.05 was considered statistically significant.

Results

Demographic and preoperative laboratory data were presented in the Table 1. The baseline values of each variable of ROTEM™ were within the normal range. CT of EXTEM (Table 2), INTEM (supplemental Table 1) and FIBTEM (Table 3) did not change significantly during the study period. CFT of EXTEM and INTEM was increased in a time-dependent manner but that of EXTEM 24 h after blood withdrawal and INTEM 12 h after blood withdrawal was significantly increased. MCF of FIBTEM did not change significantly but that of EXTEM and INTEM were decreased in a time-dependent manner. That of EXTEM were significantly decreased from 8 h after withdrawing blood but all MCF of EXTEM were within normal physiological ranges. That of INTEM were significantly decreased from 4 h after blood withdrawal and only one reading (49 mm of MCF of INTEM) was below the normal limit (52–72 mm of MCF INTEM) [11]. Maximum percent changes in MCF of EXTEM and INTEM were 12.4% [95% confidence interval (CI): 9.0–15.8%] and 11.6% (95% CI: 6.8–16.4%), respectively (Fig. 2a and Supplemental Fig. 1). MCE of EXTEM and INTEM were significantly decreased time-dependent manner but that of FIBTEM did not changed. MCEEXTEM−MCEFIBTEM was significantly decrease from 8 h after blood withdrawal. Maximum percent change in MCEEXTEM−MCEFIBTEM was 30.2% [95% CI: 17.6–42.9%] at 24 h after blood withdrawal (Fig. 2b).
Table 1 
Characteristics of 12 patients and peri-operative laboratory data
Characteristics of patients
Male, n (%)
6 (50)
Age, years
64 (56, 70)
Height, cm
157 (155, 160)
Body weight, kg
57 ± 16
Intra-operative data
Blood loss, g
604 ± 748
Urine out, mL
1326 ± 1454
Crystalloid solution, mL
2735 ± 1655
Colloid solution, mL
816 ± 489
RBC, n (%)
2 (17)
FFP, n (%)
2 (17)
PC, n (%)
1 (8)
Laboratory data
Pre-ANH
After withdrawal
After re-transfusion
Hb, g/dL
13.9 ± 1.4
9.5 ± 1.6
9.5 ± 1.8
Ht. %
40.9 ± 3.6
27.6 ± 4.2
27.6 ± 5.1
Plt × 104/µL
22.9 ± 5.1
15.8 ± 5.2
14.7 ± 4.4
PT, s
11.5 ± 0.8
 
PT-INR
0.99 ± 0.08
APTT, s
28.5 (27.9, 31.9)
Fibrinogen, mg/dL
274 (252, 294)
Mean ± SD, Median (25th, 75th percentile), n (%): the number and proportion of patients
ANH acute normovolemic hemodilution, RBC red blood cells, FFP fresh frozen plasma, PC platelets concentrate, Hb hemoglobin, Ht hematocrit, Plt platelet count, PT prothrombin time, INR international normalized ratio, APTT activated partial thromboplastin time
Table 2 
Changes in each variable in EXTEM
EXTEM
Reference range [11]
0
4 h
8 h
12 h
24 h
CT, s
42–74
67 ± 6
55 ± 5
61 ± 7
60 ± 3
64 ± 6
CFT, s
46–148
111 ± 5
121 ± 11
133 ± 9
120 ± 9
141 ± 7**
MCF, mm
49–71
62 ± 1
61 ± 1
58 ± 1***
56 ± 2*
55 ± 1***
MCE,
(G dynes/cm2)/50
105–235
167 ± 6
155 ± 4
139 ± 6***
131 ± 10*
121 ± 5***
Mean ± SEM
CT clotting time CFT clot formation time, MCF maximum clot firmness, MCE maximal clot elasticity;
*p < 0.05, **p < 0.01, ***p < 0.001vs. 0
Table 3 
Changes in each variable in FIBTEM
FIBTEM
Reference
range [11]
0
4 h
8 h
12 h
24 h
CT, s
43–69
59 ± 3
56 ± 5
61 ± 4
47 ± 4
52 ± 3
MCF, mm
9–25
15 ± 2
15 ± 2
13 ± 1
14 ± 1
14 ± 1
MCE,
(G dynes/cm2)/50
13–27
18 ± 2
19 ± 4
15 ± 2
17 ± 2
16 ± 1
Mean ± SEM
CT clotting time, CFT clot formation time, MCF maximum clot firmness, MCE maximal clot elasticity

Discussion

This prospective observational study revealed clinical important issues. Even though platelet component parameter (MCEEXTEM−MCEFIBTEM) was significantly decreased in a time-dependent manner from 8 h after blood withdrawal, MCF of FIBTEM remained unchanged and that of EXTEM and INTEM was within reference ranges after 24 h after blood withdrawal. This result suggests that the blood of ANH can use for the purpose of hemostasis at least 8 h stored at the room temperature after blood withdrawal.
Stability of MCF of FIBTEM in this study is supported by the fact that plasma fibrinogen concentration remains unchanged after 24 h after blood collection [7, 8, 12]. In addition, a prospective observational study investigated the coagulation profiles of cold-stored autologous whole blood in using ROTEM™ and revealed that CT of EXTEM and INTEM increased with increasing cold storage duration (7–33 days) but fibrinogen level was not affected by the storage duration. These results indicated that cold-stored autologous whole blood retains fibrin polymerization properties throughout 33 days even though extrinsic and intrinsic coagulation factors decreased in a time-dependent manner [13]. MCF of FIBTEM and plasma fibrinogen concentration have strong correlation in pediatric and adult surgical patients [14, 15]. The unchanged MCF of FIBTEM is estimated to have no change in the plasma fibrinogen concentration in the blood of ANH.
Platelet component parameter (MCEEXTEM−MCEFIBTEM) was significantly decreased in a time-dependent manner from 8 h after blood withdrawal. Maximum percent change in MCEEXTEM−MCEFIBTEM was about 30% at 24 h after blood withdrawal. Even if the whole blood was stored at room temperature and no apparent clot formation in the tube, the platelet function or platelet count could decrease in a time-dependent manner. Transfusion of ANH blood to the patients as soon as possible may be suitable from the perspective of maintaining platelet function or platelet count.
Platelets are recommended to store at room temperature with agitation because refrigeration (2–6 °C) led to rapid clearance from the circulation upon transfusion (t1/2 = 1–2 days), which was significantly reduced compared to room temperature storage (22–24 °C) (t1/2 = 7–9 days) [16]. However, there is growing evidence that cold storage of platelets is superior to room temperature storage of platelets [17]. Platelet rich plasma storing at cold temperature enhances platelet activation and aggregation, and cold storage of platelets in whole blood improves their performance in a panel of functional assays compared to platelets storing at room temperature [18, 19]. Storage temperature of platelets and whole blood is still controversial, and warrant further studies regarding the impact of storage temperature on ANH coagulation.
To our knowledge, the changes in the activity of coagulation factors and platelets on clotting function of whole blood were not well evaluated. However, our present findings support the report that the storage of whole blood at room temperature could change the clotting function of whole blood within several hours [20]. A recent clinical study showed that CFT, α-angle and MCF of EXTEM and FIBTEM significantly changed between withdrawing and reinfusion of the ANH blood after an average of almost 5 h in storage in patients undergoing cardiac surgery [20]. They also showed the decrease in platelets aggregation induced by thrombin receptor activating peptide 6 stimulation during storage, even though the magnitude of change was not significantly correlated with time of storage [20]. These results suggest that platelet function affects the clotting function of ANH and the ROTEM™ measurements.
CFT and MCF of EXTEM and INTEM of the blood of ANH were significantly changed in a time-dependent manner. Activity of fVIII rapidly decreases 20–30% during first 8 h of storage [7, 8]. One retrospective study showed that fVIII was strongly correlated (r ≤ − 0.8 or ≥ 0.8) with MCF and CFT of EXTEM and INTEM and MCF of FIBTEM in major surgical patients with hemorrhage [21]. This result suggests that not only platelets, fibrinogen and fXIII [22] but also fVIII had a significant impact on ROTEM™ measurements.
Changes in activity of each coagulation factor during storage at room temperature have been well evaluated in the previous studies [7, 8, 12]. In addition to activity of fVIII, activities of fII, fIX, fX, protein C and protein S were significantly decreased 24 h after blood collection [8]. Even though the activity of all coagulation factors in plasma produced from whole blood stored for 24 h remained above 0.50 U/mL [8], the present results suggested that decreased activity of these factors has an impact on ROTEM™ measurements. Changes in CFT and MCF might reflect of decreased activity of coagulation factors, especially fVIII, in our study.
This study has some limitations. First, the ROTEM™ measurement was once at each measurement point. A coefficient of variation (CV) of ROTEM™ is small; the average ± SD of the CV between-dupilcates vas 4.3% ± 3.8% of CFT and 1.2% ± 1.1% of MCF, respectively [23]. Thus, the impact of ROTEM™ measurement on the result is likely not significant. Second, standard platelet function test and platelet count were not measured in this study. Even though previous studies revealed that the donated blood stored overnight (18–26 h) has little impact on these laboratory examination [2426], it is well known that many factors could affect platelet function and quality during storage [27], especially oxygen partial pressure, pH and glucose level are affected by the storage duration [26], we should pay more attention to maintain the storage condition. Further studies for the future are needed to elucidate the clinical impact on the patient after delayed transfusion of ANH blood with regard to hemostasis. Third, we did not evaluate the bacterial contamination during storage. Longer duration of storage might increase the risk of bacterial infection. But almost all surgical patients are received anti-bacterial drugs just after induction of anesthesia. The risk of bacterial contamination seems less compared with normal blood donation. Nevertheless, we should pay attention to maintain sterilized condition during ANH procedure and storage.
In conclusion, even though platelet component parameter (MCEEXTEM−MCEFIBTEM) was significantly decreased time-dependent manner from 8 h after blood withdrawal, MCF of FIBTEM remained unchanged and that of EXTEM was within reference ranges after 24 h after blood withdrawal. This result suggests that the blood of ANH can use for the purpose of hemostasis at least 8 h stored at the room temperature after blood withdrawal. Future prospective studies are needed to elucidate the clinical impact on the patient after delayed transfusion of ANH blood with regard to hemostasis.

Acknowledgements

The authors thank to Prof Daqing Ma, Imperial College London for his critical comments during manuscript preparation.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest. All authors read and approved the final manuscript and attest to the integrity of the original data and the analysis reported in this manuscript.

Ethical approval

This study protocol was approved by Hirosaki University's Ethics Committee (2018–1040).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Guo JR, Jin XJ, Yu J, Xu F, Zhang YW, Shen HC, Shao Y. Acute normovolemic hemodilution effects on perioperative coagulation in elderly patients undergoing hepatic carcinectomy. Asian Pac J Cancer Prev. 2013;14:4529–32.CrossRef Guo JR, Jin XJ, Yu J, Xu F, Zhang YW, Shen HC, Shao Y. Acute normovolemic hemodilution effects on perioperative coagulation in elderly patients undergoing hepatic carcinectomy. Asian Pac J Cancer Prev. 2013;14:4529–32.CrossRef
2.
Zurück zum Zitat Zhou X, Zhang C, Wang Y, Yu L, Yan M. Preoperative acute normovolemic hemodilution for minimizing allogeneic blood transfusion: a meta-analysis. Anesth Analg. 2015;121:1443–555.CrossRef Zhou X, Zhang C, Wang Y, Yu L, Yan M. Preoperative acute normovolemic hemodilution for minimizing allogeneic blood transfusion: a meta-analysis. Anesth Analg. 2015;121:1443–555.CrossRef
3.
Zurück zum Zitat Tanner EJ, Filippova OT, Gardner GJ, Long Roche KC, Sonoda Y, Zivanovic O, Fischer M, Chi DS. A prospective trial of acute normovolemic hemodilution in patients undergoing primary cytoreductive surgery for advanced ovarian cancer. Gynecol Oncol. 2018;151:433–7.CrossRef Tanner EJ, Filippova OT, Gardner GJ, Long Roche KC, Sonoda Y, Zivanovic O, Fischer M, Chi DS. A prospective trial of acute normovolemic hemodilution in patients undergoing primary cytoreductive surgery for advanced ovarian cancer. Gynecol Oncol. 2018;151:433–7.CrossRef
4.
Zurück zum Zitat Saito J, Masui K, Noguchi S, Nakai K, Tamai Y, Midorikawa Y, Kinoshita H, Mikami N, Kitayama M, Hashimoto H, Hirota K. The efficacy of acute normovolemic hemodilution for preventing perioperative allogeneic blood transfusion in gynecological cancer patients. J Clin Anesth. 2020;60:42–3.CrossRef Saito J, Masui K, Noguchi S, Nakai K, Tamai Y, Midorikawa Y, Kinoshita H, Mikami N, Kitayama M, Hashimoto H, Hirota K. The efficacy of acute normovolemic hemodilution for preventing perioperative allogeneic blood transfusion in gynecological cancer patients. J Clin Anesth. 2020;60:42–3.CrossRef
5.
Zurück zum Zitat Takekawa D, Saito J, Kinoshita H, Hashiba EI, Hirai N, Yamazaki Y, Kushikata T, Hirota K. Acute normovolemic hemodilution reduced allogeneic blood transfusion without increasing perioperative complications in patients undergoing free-flap reconstruction of the head and neck. J Anesth. 2020;34:187–94.CrossRef Takekawa D, Saito J, Kinoshita H, Hashiba EI, Hirai N, Yamazaki Y, Kushikata T, Hirota K. Acute normovolemic hemodilution reduced allogeneic blood transfusion without increasing perioperative complications in patients undergoing free-flap reconstruction of the head and neck. J Anesth. 2020;34:187–94.CrossRef
6.
Zurück zum Zitat Barile L, Fominskiy E, Di Tomasso N, Alpìzar Castro LE, Landoni G, De Luca M, Bignami E, Sala A, Zangrillo A, Monaco F. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis of randomized trials. Anesth Analg. 2017;124:743–52.CrossRef Barile L, Fominskiy E, Di Tomasso N, Alpìzar Castro LE, Landoni G, De Luca M, Bignami E, Sala A, Zangrillo A, Monaco F. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis of randomized trials. Anesth Analg. 2017;124:743–52.CrossRef
7.
Zurück zum Zitat O'Neill EM, Rowley J, Hansson-Wicher M, McCarter S, Ragno G, Valeri CR. Effect of 24-hour whole-blood storage on plasma clotting factors. Transfusion. 1999;39:488–91.CrossRef O'Neill EM, Rowley J, Hansson-Wicher M, McCarter S, Ragno G, Valeri CR. Effect of 24-hour whole-blood storage on plasma clotting factors. Transfusion. 1999;39:488–91.CrossRef
8.
Zurück zum Zitat Cardigan R, Van der Meer PF, Pergande C, Cookson P, Baumann-Baretti B, Cancelas JA, Devine D, Gulliksson H, Vassallo R, de Wildt-Eggen J. Coagulation factor content of plasma produced from whole blood stored for 24 hours at ambient temperature: results from an international multicenter BEST collaborative study. Transfusion. 2011;51(Suppl 1):50–7.CrossRef Cardigan R, Van der Meer PF, Pergande C, Cookson P, Baumann-Baretti B, Cancelas JA, Devine D, Gulliksson H, Vassallo R, de Wildt-Eggen J. Coagulation factor content of plasma produced from whole blood stored for 24 hours at ambient temperature: results from an international multicenter BEST collaborative study. Transfusion. 2011;51(Suppl 1):50–7.CrossRef
9.
Zurück zum Zitat Lang T, Johanning K, Metzler H, Piepenbrock S, Solomon C, Rahe-Meyer N, Tanaka KA. The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia. Anesth Analg. 2009;108:751–8.CrossRef Lang T, Johanning K, Metzler H, Piepenbrock S, Solomon C, Rahe-Meyer N, Tanaka KA. The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia. Anesth Analg. 2009;108:751–8.CrossRef
10.
Zurück zum Zitat Cohen J. The analysis of variance, in Cohen JM: statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1998. Cohen J. The analysis of variance, in Cohen JM: statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1998.
11.
Zurück zum Zitat Lang T, Bauters A, Braun SL, Pötzsch B, von Pape KW, Kolde HJ, Lakner M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16:301–10.CrossRef Lang T, Bauters A, Braun SL, Pötzsch B, von Pape KW, Kolde HJ, Lakner M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16:301–10.CrossRef
12.
Zurück zum Zitat Thomas S. Ambient overnight hold of whole blood prior to the manufacture of blood components. Transfus Med. 2010;20:361–8.CrossRef Thomas S. Ambient overnight hold of whole blood prior to the manufacture of blood components. Transfus Med. 2010;20:361–8.CrossRef
13.
Zurück zum Zitat Iwata S, Hirasaki Y, Nomura M, Ozaki M. Thromboelastometric evaluation of coagulation profiles of cold-stored autologous whole blood: a prospective observational study. Medicine (Baltimore). 2019;98:e17357.CrossRef Iwata S, Hirasaki Y, Nomura M, Ozaki M. Thromboelastometric evaluation of coagulation profiles of cold-stored autologous whole blood: a prospective observational study. Medicine (Baltimore). 2019;98:e17357.CrossRef
14.
Zurück zum Zitat Mace H, Lightfoot N, McCluskey S, Selby R, Roy D, Timoumi T, Karkouti K. Validity of thromboelastometry for rapid assessment of fibrinogen levels in heparinized samples during cardiac surgery: a retrospective, single-center observational study. J Cardiothorac Vasc Anesth. 2016;30:90–5.CrossRef Mace H, Lightfoot N, McCluskey S, Selby R, Roy D, Timoumi T, Karkouti K. Validity of thromboelastometry for rapid assessment of fibrinogen levels in heparinized samples during cardiac surgery: a retrospective, single-center observational study. J Cardiothorac Vasc Anesth. 2016;30:90–5.CrossRef
15.
Zurück zum Zitat Haas T, Spielmann N, Mauch J, Madjdpour C, Speer O, Schmugge M, Weiss M. Comparison of thromboelastometry (ROTEM(R)) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth. 2012;108:36–41.CrossRef Haas T, Spielmann N, Mauch J, Madjdpour C, Speer O, Schmugge M, Weiss M. Comparison of thromboelastometry (ROTEM(R)) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth. 2012;108:36–41.CrossRef
16.
Zurück zum Zitat Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability–deleterious effect of refrigerated storage. N Engl J Med. 1969;280:1094–8.CrossRef Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability–deleterious effect of refrigerated storage. N Engl J Med. 1969;280:1094–8.CrossRef
17.
Zurück zum Zitat Reddoch-Cardenas KM, Bynum JA, Meledeo MA, Nair PM, Wu X, Darlington DN, Ramasubramanian AK, Cap AP. Cold-stored platelets: a product with function optimized for hemorrhage control. Transfus Apher Sci. 2019;58:16–22.CrossRef Reddoch-Cardenas KM, Bynum JA, Meledeo MA, Nair PM, Wu X, Darlington DN, Ramasubramanian AK, Cap AP. Cold-stored platelets: a product with function optimized for hemorrhage control. Transfus Apher Sci. 2019;58:16–22.CrossRef
18.
Zurück zum Zitat Montgomery RK, Reddoch KM, Evani SJ, Cap AP, Ramasubramanian AK. Enhanced shear-induced platelet aggregation due to low-temperature storage. Transfusion. 2013;53:1520–30.CrossRef Montgomery RK, Reddoch KM, Evani SJ, Cap AP, Ramasubramanian AK. Enhanced shear-induced platelet aggregation due to low-temperature storage. Transfusion. 2013;53:1520–30.CrossRef
19.
Zurück zum Zitat Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, Valdez-Delgado KK, Montgomery RK, Reddoch KM, Rodriguez AC, Aden JK, Jones JA, Bryant RS, Scherer MR, Reddy HL, Goodrich RP, Cap AP. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion. 2013;53(Suppl 1):137S–49S.CrossRef Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, Valdez-Delgado KK, Montgomery RK, Reddoch KM, Rodriguez AC, Aden JK, Jones JA, Bryant RS, Scherer MR, Reddy HL, Goodrich RP, Cap AP. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion. 2013;53(Suppl 1):137S–49S.CrossRef
20.
Zurück zum Zitat Scott KJ, Shteamer JW, Szlam F, Sniecinski RM. Platelet function, but not thrombin generation, is impaired in acute normovolemic hemodilution (ANH) blood. J Clin Anesth. 2019;58:39–433.CrossRef Scott KJ, Shteamer JW, Szlam F, Sniecinski RM. Platelet function, but not thrombin generation, is impaired in acute normovolemic hemodilution (ANH) blood. J Clin Anesth. 2019;58:39–433.CrossRef
21.
Zurück zum Zitat Theusinger OM, Schröder CM, Eismon J, Emmert MY, Seifert B, Spahn DR, Baulig W. The influence of laboratory coagulation tests and clotting factor levels on rotation thromboelastometry (ROTEM(R)) during major surgery with hemorrhage. Anesth Analg. 2013;117:314–21.CrossRef Theusinger OM, Schröder CM, Eismon J, Emmert MY, Seifert B, Spahn DR, Baulig W. The influence of laboratory coagulation tests and clotting factor levels on rotation thromboelastometry (ROTEM(R)) during major surgery with hemorrhage. Anesth Analg. 2013;117:314–21.CrossRef
22.
Zurück zum Zitat Theusinger OM, Baulig W, Asmis LM, Seifert B, Spahn DR. In vitro factor XIII supplementation increases clot firmness in rotation thromboelastometry (ROTEM). Thromb Haemost. 2010;104:385–91.CrossRef Theusinger OM, Baulig W, Asmis LM, Seifert B, Spahn DR. In vitro factor XIII supplementation increases clot firmness in rotation thromboelastometry (ROTEM). Thromb Haemost. 2010;104:385–91.CrossRef
23.
Zurück zum Zitat Scalambrino E, Padovan L, Clerici M, Chantarangkul V, Biliou S, Peyvandi F, Tripodi A. Thromboelastometry. Reproducibility of duplicate measurement performed by the RoTem(R) device. Thromb Res. 2018;172:139–41.CrossRef Scalambrino E, Padovan L, Clerici M, Chantarangkul V, Biliou S, Peyvandi F, Tripodi A. Thromboelastometry. Reproducibility of duplicate measurement performed by the RoTem(R) device. Thromb Res. 2018;172:139–41.CrossRef
24.
Zurück zum Zitat Dijkstra-Tiekstra MJ, van der Meer PF, Cardigan R, Devine D, Prowse C, Sandgren P, de Wildt-Eggen J. Biomedical excellence for safer transfusion collaborative platelet concentrates from fresh or overnight-stored blood, an international study. Transfusion. 2011;51(Suppl 1):38–44S.CrossRef Dijkstra-Tiekstra MJ, van der Meer PF, Cardigan R, Devine D, Prowse C, Sandgren P, de Wildt-Eggen J. Biomedical excellence for safer transfusion collaborative platelet concentrates from fresh or overnight-stored blood, an international study. Transfusion. 2011;51(Suppl 1):38–44S.CrossRef
25.
Zurück zum Zitat van der Meer PF, Cancelas JA, Vassallo RR, Rugg N, Einarson M, Hess JR. BEST collaborative. Evaluation of the overnight hold of whole blood at room temperature before component processing: platelets PLTs from PLT-rich plasma. Transfusion. 2011;51(Suppl1):45–9.CrossRef van der Meer PF, Cancelas JA, Vassallo RR, Rugg N, Einarson M, Hess JR. BEST collaborative. Evaluation of the overnight hold of whole blood at room temperature before component processing: platelets PLTs from PLT-rich plasma. Transfusion. 2011;51(Suppl1):45–9.CrossRef
26.
Zurück zum Zitat van der Meer PF, de Korte D. The effect of holding times of whole blood and its components during processing on in vitro and in vivo quality. Transfus Med Rev. 2015;29:24–34.CrossRef van der Meer PF, de Korte D. The effect of holding times of whole blood and its components during processing on in vitro and in vivo quality. Transfus Med Rev. 2015;29:24–34.CrossRef
27.
Zurück zum Zitat Ohto H, Nollet KE. Overview on platelet preservation: better controls over storage lesion. Transfus Apher Sci. 2011;44:321–5.CrossRef Ohto H, Nollet KE. Overview on platelet preservation: better controls over storage lesion. Transfus Apher Sci. 2011;44:321–5.CrossRef
Metadaten
Titel
Clotting functional stability of withdrawing blood in storage for acute normovolemic hemodilution: a pilot study
verfasst von
Hirotaka Kinoshita
Junichi Saito
Kishiko Nakai
Satoko Noguchi
Daiki Takekawa
Yoshiko Tamai
Masato Kitayama
Kazuyoshi Hirota
Publikationsdatum
25.09.2020
Verlag
Springer Singapore
Erschienen in
Journal of Anesthesia / Ausgabe 1/2021
Print ISSN: 0913-8668
Elektronische ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-020-02856-x

Weitere Artikel der Ausgabe 1/2021

Journal of Anesthesia 1/2021 Zur Ausgabe

Letter to the Editor

Reply to the letter

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.