Skip to main content
Erschienen in: Neuroinformatics 2/2013

01.04.2013 | Original Article

Computer Aided Alignment and Quantitative 4D Structural Plasticity Analysis of Neurons

verfasst von: Ping-Chang Lee, Hai-yan He, Chih-Yang Lin, Yu-Tai Ching, Hollis T. Cline

Erschienen in: Neuroinformatics | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

The rapid development of microscopic imaging techniques has greatly facilitated time-lapse imaging of neuronal morphology. However, analysis of structural dynamics in the vast amount of 4-Dimensional data generated by in vivo or ex vivo time-lapse imaging still relies heavily on manual comparison, which is not only laborious, but also introduces errors and discrepancies between individual researchers and greatly limits the research pace. Here we present a supervised 4D Structural Plasticity Analysis (4D SPA) computer method to align and match 3-Dimensional neuronal structures across different time points on a semi-automated basis. We demonstrate 2 applications of the method to analyze time-lapse data showing gross morphological changes in dendritic arbor morphology and to identify the distribution and types of branch dynamics seen in a series of time-lapse images. Analysis of the dynamic changes of neuronal structure can be done much faster and with greatly improved consistency and reliability with the 4D SPA supervised computer program. Users can format the neuronal reconstruction data to be used for this analysis. We provide file converters for Neurolucida and Imaris users. The program and user manual are publically accessible and operate through a graphical user interface on Windows and Mac OSX.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Al-Kofahi, O., Radke, R. J., et al. (2006). Automated semantic analysis of changes in image sequences of neurons in culture. IEEE Transactions on Biomedical Engineering, 53(6), 1109–1123.PubMedCrossRef Al-Kofahi, O., Radke, R. J., et al. (2006). Automated semantic analysis of changes in image sequences of neurons in culture. IEEE Transactions on Biomedical Engineering, 53(6), 1109–1123.PubMedCrossRef
Zurück zum Zitat Antonini, A., & Stryker, M. P. (1993). Rapid remodeling of axonal arbors in the visual cortex. Science, 260(5115), 1819–1821.PubMedCrossRef Antonini, A., & Stryker, M. P. (1993). Rapid remodeling of axonal arbors in the visual cortex. Science, 260(5115), 1819–1821.PubMedCrossRef
Zurück zum Zitat Besl, P. J., & MaKay, N. D. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions PAMI, 14(2), 239–256.CrossRef Besl, P. J., & MaKay, N. D. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions PAMI, 14(2), 239–256.CrossRef
Zurück zum Zitat Bestman, J. E., & Cline, H. T. (2008). The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20494–20499.PubMedCrossRef Bestman, J. E., & Cline, H. T. (2008). The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20494–20499.PubMedCrossRef
Zurück zum Zitat Bestman, J. E., & Cline, H. T. (2009). The relationship between dendritic branch dynamics and CPEB-labeled RNP granules captured in vivo. Front Neural Circuits, 3, 10.PubMedCrossRef Bestman, J. E., & Cline, H. T. (2009). The relationship between dendritic branch dynamics and CPEB-labeled RNP granules captured in vivo. Front Neural Circuits, 3, 10.PubMedCrossRef
Zurück zum Zitat Bestman, J. E., Lee-Osbourne, J., et al. (2012). In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. The Journal of Comparative Neurology, 520(2), 401–433.PubMedCrossRef Bestman, J. E., Lee-Osbourne, J., et al. (2012). In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles. The Journal of Comparative Neurology, 520(2), 401–433.PubMedCrossRef
Zurück zum Zitat Cantallops, I., Haas, K., et al. (2000). Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nature Neuroscience, 3(10), 1004–1011.PubMedCrossRef Cantallops, I., Haas, K., et al. (2000). Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nature Neuroscience, 3(10), 1004–1011.PubMedCrossRef
Zurück zum Zitat Chen, J. L., Lin, W. C., et al. (2011). Structural basis for the role of inhibition in facilitating adult brain plasticity. Nature Neuroscience, 14(5), 587–594.PubMedCrossRef Chen, J. L., Lin, W. C., et al. (2011). Structural basis for the role of inhibition in facilitating adult brain plasticity. Nature Neuroscience, 14(5), 587–594.PubMedCrossRef
Zurück zum Zitat Chiu, S. L., Chen, C. M., et al. (2008). Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron, 58(5), 708–719.PubMedCrossRef Chiu, S. L., Chen, C. M., et al. (2008). Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron, 58(5), 708–719.PubMedCrossRef
Zurück zum Zitat Cline, H. T. (1999). Dendrite development in dendrites. London: Oxford Univ. Press. Cline, H. T. (1999). Dendrite development in dendrites. London: Oxford Univ. Press.
Zurück zum Zitat Cohen-Cory, S. (2002). The developing synapse: construction and modulation of synaptic structures and circuits. Science, 298(5594), 770–776.PubMedCrossRef Cohen-Cory, S. (2002). The developing synapse: construction and modulation of synaptic structures and circuits. Science, 298(5594), 770–776.PubMedCrossRef
Zurück zum Zitat De Paola, V., Holtmaat, A., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49(6), 861–875.PubMedCrossRef De Paola, V., Holtmaat, A., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49(6), 861–875.PubMedCrossRef
Zurück zum Zitat Donte, D., Foggia, P., et al. (2004). Thirty years of graph matching in pattern recognition. IJPRAI, 18, 265–298. Donte, D., Foggia, P., et al. (2004). Thirty years of graph matching in pattern recognition. IJPRAI, 18, 265–298.
Zurück zum Zitat Dumay, A. C. M., R. J. Geest, et al. (1992). “Consistent inexact graph matching applied to labeling coronary segments in arteriograms.” Proc.Int. Conf. Pattern Recognition Conf.: 439–442. Dumay, A. C. M., R. J. Geest, et al. (1992). “Consistent inexact graph matching applied to labeling coronary segments in arteriograms.” Proc.Int. Conf. Pattern Recognition Conf.: 439–442.
Zurück zum Zitat Haas, K., Li, J., et al. (2006). AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12127–12131.PubMedCrossRef Haas, K., Li, J., et al. (2006). AMPA receptors regulate experience-dependent dendritic arbor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12127–12131.PubMedCrossRef
Zurück zum Zitat Halavi, M., Hamilton, K. A., et al. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience, 6, 49.PubMedCrossRef Halavi, M., Hamilton, K. A., et al. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience, 6, 49.PubMedCrossRef
Zurück zum Zitat Haris, K., Efstratiadis, S. N., et al. (1999). Model-based morphological segmentation and labeling of coronary angiograms. IEEE Transactions on Medical Imaging, 18(10), 1003–1015.PubMedCrossRef Haris, K., Efstratiadis, S. N., et al. (1999). Model-based morphological segmentation and labeling of coronary angiograms. IEEE Transactions on Medical Imaging, 18(10), 1003–1015.PubMedCrossRef
Zurück zum Zitat He, H. Y., & Cline, H. T. (2011). Diadem X: automated 4 dimensional analysis of morphological data. Neuroinformatics, 9(2–3), 107–112.PubMedCrossRef He, H. Y., & Cline, H. T. (2011). Diadem X: automated 4 dimensional analysis of morphological data. Neuroinformatics, 9(2–3), 107–112.PubMedCrossRef
Zurück zum Zitat Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRef Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRef
Zurück zum Zitat Hochman, D. W. (2012). The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia, 53(Suppl 1), 18–25.PubMedCrossRef Hochman, D. W. (2012). The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia, 53(Suppl 1), 18–25.PubMedCrossRef
Zurück zum Zitat Lu, S. M., Tremblay, M. E., et al. (2011). HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PloS One, 6(9), e23915.PubMedCrossRef Lu, S. M., Tremblay, M. E., et al. (2011). HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PloS One, 6(9), e23915.PubMedCrossRef
Zurück zum Zitat Reh, T. A., & Constantine-Paton, M. (1985). Eye-specific segregation requires neural activity in three-eyed Rana pipiens. Journal of Neuroscience, 5(5), 1132–1143.PubMed Reh, T. A., & Constantine-Paton, M. (1985). Eye-specific segregation requires neural activity in three-eyed Rana pipiens. Journal of Neuroscience, 5(5), 1132–1143.PubMed
Zurück zum Zitat Ruthazer, E. S., Akerman, C. J., et al. (2003). Control of axon branch dynamics by correlated activity in vivo. Science, 301(5629), 66–70.PubMedCrossRef Ruthazer, E. S., Akerman, C. J., et al. (2003). Control of axon branch dynamics by correlated activity in vivo. Science, 301(5629), 66–70.PubMedCrossRef
Zurück zum Zitat Thal, D. R., L. T. Grinberg, et al. (2012). “Vascular dementia: Different forms of vessel disorders contribute to the development of dementia in the elderly brain.” Experimental Gerontology. Thal, D. R., L. T. Grinberg, et al. (2012). “Vascular dementia: Different forms of vessel disorders contribute to the development of dementia in the elderly brain.” Experimental Gerontology.
Zurück zum Zitat Tremblay, M., Fugere, V., et al. (2009). Regulation of radial glial motility by visual experience. Journal of Neuroscience, 29(45), 14066–14076.PubMedCrossRef Tremblay, M., Fugere, V., et al. (2009). Regulation of radial glial motility by visual experience. Journal of Neuroscience, 29(45), 14066–14076.PubMedCrossRef
Zurück zum Zitat Tremblay, M. E., Lowery, R. L., et al. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biology, 8(11), e1000527.PubMedCrossRef Tremblay, M. E., Lowery, R. L., et al. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biology, 8(11), e1000527.PubMedCrossRef
Zurück zum Zitat Turney, S. G., & Lichtman, J. W. (2008). Chapter 11: imaging fluorescent mice in vivo using confocal microscopy. Methods in Cell Biology, 89, 309–327.PubMedCrossRef Turney, S. G., & Lichtman, J. W. (2008). Chapter 11: imaging fluorescent mice in vivo using confocal microscopy. Methods in Cell Biology, 89, 309–327.PubMedCrossRef
Zurück zum Zitat Wilt, B. A., Burns, L. D., et al. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRef Wilt, B. A., Burns, L. D., et al. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRef
Zurück zum Zitat Zhang, S., Boyd, J., et al. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. Journal of Neuroscience, 25(22), 5333–5338.PubMedCrossRef Zhang, S., Boyd, J., et al. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. Journal of Neuroscience, 25(22), 5333–5338.PubMedCrossRef
Zurück zum Zitat Zudaire, E., Gambardella, L., et al. (2011). A computational tool for quantitative analysis of vascular networks. PloS One, 6(11), e27385.PubMedCrossRef Zudaire, E., Gambardella, L., et al. (2011). A computational tool for quantitative analysis of vascular networks. PloS One, 6(11), e27385.PubMedCrossRef
Metadaten
Titel
Computer Aided Alignment and Quantitative 4D Structural Plasticity Analysis of Neurons
verfasst von
Ping-Chang Lee
Hai-yan He
Chih-Yang Lin
Yu-Tai Ching
Hollis T. Cline
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 2/2013
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-013-9179-0

Weitere Artikel der Ausgabe 2/2013

Neuroinformatics 2/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.