Skip to main content
Erschienen in: Angiogenesis 1/2021

Open Access 14.10.2020 | COVID-19 | Original Paper

Microvascular dysfunction in COVID-19: the MYSTIC study

verfasst von: Alexandros Rovas, Irina Osiaevi, Konrad Buscher, Jan Sackarnd, Phil-Robin Tepasse, Manfred Fobker, Joachim Kühn, Stephan Braune, Ulrich Göbel, Gerold Thölking, Andreas Gröschel, Hermann Pavenstädt, Hans Vink, Philipp Kümpers

Erschienen in: Angiogenesis | Ausgabe 1/2021

Abstract

Rationale

Pre-clinical and autopsy studies have fueled the hypothesis that a dysregulated vascular endothelium might play a central role in the pathogenesis of ARDS and multi-organ failure in COVID-19.

Objectives

To comprehensively characterize and quantify microvascular alterations in patients with COVID-19.

Methods

Hospitalized adult patients with moderate-to-severe or critical COVID-19 (n = 23) were enrolled non-consecutively in this prospective, observational, cross-sectional, multi-center study. Fifteen healthy volunteers served as controls. All participants underwent intravital microscopy by sidestream dark field imaging to quantify vascular density, red blood cell velocity (VRBC), and glycocalyx dimensions (perfused boundary region, PBR) in sublingual microvessels. Circulating levels of endothelial and glycocalyx-associated markers were measured by multiplex proximity extension assay and enzyme-linked immunosorbent assay.

Measurements and main results

COVID-19 patients showed an up to 90% reduction in vascular density, almost exclusively limited to small capillaries (diameter 4–6 µm), and also significant reductions of VRBC. Especially, patients on mechanical ventilation showed severe glycocalyx damage as indicated by higher PBR values (i.e., thinner glycocalyx) and increased blood levels of shed glycocalyx constituents. Several markers of endothelial dysfunction were increased and correlated with disease severity in COVID-19. PBR (AUC 0.75, p = 0.01), ADAMTS13 (von Willebrand factor-cleaving protease; AUC 0.74, p = 0.02), and vascular endothelial growth factor A (VEGF-A; AUC 0.73, p = 0.04) showed the best discriminatory ability to predict 60-day in-hospital mortality.

Conclusions

Our data clearly show severe alterations of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Future therapeutic approaches should consider the importance of systemic vascular involvement in COVID-19.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10456-020-09753-7) contains supplementary material, which is available to authorized users.
Alexandros Rovas and Irina Osiaevi have contributed equally and are both considered first authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACE2
Shed ectodomain of angiotensin-converting enzyme 2 receptor
ADAMTS13
A disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13
AKI
Acute kidney injury
Angpt-1
Angiopoietin-1
Angpt-2
Angiopoietin-2
Arb. unit
Arbitrary unit
ARDS
Acute respiratory distress syndrome
AUC
Area under the curve
BMI
Body mass index
CCI score
Charlson comorbidity index
COVID-19
Corona virus disease 2019
CRP
C-reactive protein
D 4–6 µm
Capillary density
eGC
Endothelial glycocalyx
FDR
False discovery rate
HA
Hyaluronic acid
hs-Troponin
High-sensitive troponin
ICU
Intensive care unit
IL-6
Interleukin-6
IMC
Intermediate care ward
IQR
Interquartile range
MAP
Mean arterial pressure
MV
Mechanical ventilation
PaO2/FiO2 index
The ratio of partial pressure of oxygen in blood (PaO2), in millimeters of mercury, and the fraction of oxygen in the inhaled air (FiO2)
PBR
Perfused boundary region
PCT
Procalcitonin
RBC
Red blood cell
RBCW
Red blood cell width
ROC
Receiver operating curve
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
SDF
Sidestream dark field
SIC score
Sepsis-induced coagulopathy score
SOFA score
Sequential Organ Failure Assessment score
Soluble Flt-1
Soluble Fms-like tyrosine kinase-1
Soluble Tie2
Angiopoietin-1 receptor
TF
Tissue factor
TM
Thrombomodulin
TMA
Thrombotic microangiopathy
TNF-α
Tumor necrosis factor a
VEGF-A
Vascular endothelial growth factor A
VEGF-D
Vascular endothelial growth factor D
VRBC
Capillary red blood cell velocity
VWF
von Willebrand factor
UKM
University Hospital Münster
w/
With
w/o
Without

Introduction

Despite about 26 million infections and nearly 870,000 deaths worldwide (04 September 2020), the pathophysiological pathways responsible for the wide clinical spectrum of COVID-19 remain still incompletely understood [1, 2]. Although the natural course of the disease in individuals infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often mild, up to 15% of patients need hospital treatment [3]. These patients not only develop pulmonary disease, eventually culminating in acute respiratory distress syndrome (ARDS), but also display a myriad of extrapulmonary symptoms, including acute kidney injury (AKI), acute cardiac injury, coagulopathy, thromboembolic complications, including stroke and pulmonary embolism, and circulatory shock [2, 4]. Elegant in vitro experiments and autopsy studies revealed that SARS-CoV-2 binds to amply expressed angiotensin-converting enzyme 2 (ACE2) receptor and infests directly the endothelial cells [5, 6]. This finding has fueled the hypothesis that COVID-19 is actually a vascular illness and that systemic leakiness and adhesiveness of the dysregulated vascular endothelium might play a central role in the pathogenesis of ARDS and multi-organ failure [79].
Long underestimated as a passive lining of blood vessels, the vascular endothelium is now perceived as an independent organ system that is centrally involved in the control of thrombosis and thrombolysis, platelet and leucocyte interaction with the vessel wall, regulation of vascular tone, and the passage of fluids [10]. More recent data show that the endothelium is shielded against pathogenic insults by the endothelial glycocalyx (eGC)—a gel-like, negatively charged, up to 3-µm-thick layer consisting of highly sulfated glycosaminoglycans and proteoglycans. In bacterial sepsis, damage of the eGC plays a causative role in leukocyte recruitment, hyperpermeability, and the development of end-organ damage, especially ARDS and AKI [10].
Therefore, the aim of this prospective, cross-sectional, multi-center study was to characterize and quantify endothelial alterations in patients with moderate-to-severe or critical illness due to COVID-19. Besides multiplex analysis of circulating endothelial and glycocalyx-associated markers, we used a novel state-of-the-art image acquisition and analysis approach to detect in vivo even subtle alterations of the sublingual microcirculation.

Materials and methods

Study population and study design

This multi-center, prospective, observational, cross-sectional study took place from May to June 2020 in the intensive care units (ICU) and intermediate care wards (IMC) of the University Hospital Münster (UKM) and three local teaching hospitals (St. Franziskus-Hospital Münster, Clemens Hospital Münster, UKM-Marienhospital Steinfurt). The study was approved by the competent ethics committee (amendments of 2016-073-f-S) and was performed in accordance with the Declaration of Helsinki.
After written informed consent was obtained from the patients or their legal representatives, adult hospitalized patients with moderate/severe (IMC) or critical (ICU) COVID-19 disease were enrolled in a non-consecutive fashion by the same team of investigators. Fifteen apparently healthy volunteers served as controls.
Demographic, laboratory, and physiological variables and scores were documented for each participant immediately before the assessment of the sublingual microvasculature. Sublingual video microscopy was performed by an experienced physician. Plasma samples from patients (n = 23) and controls (n = 11) were obtained, immediately centrifuged at 4 °C with 4000×g for 10 min, and stored at − 80 °C for further analysis of the endothelial and inflammation components.

Follow-up and outcome definition

Patients’ clinical course was prospectively followed up for a period of 60 days after study inclusion or until hospital discharge. In-hospital mortality was the primary outcome studied. Secondary outcomes studied were (a) development of moderate/severe ARDS during hospital stay, defined as a ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2 expressed as a fraction) ≤ 200 mmHg based on the Berlin criteria [11], and (b) presence of thrombotic events, defined as the presence or development of clinically relevant vascular thrombotic or thromboembolic events.

In vivo assessment of the sublingual microcirculation and glycocalyx dimensions

Details of the technique used to assess the sublingual microcirculation are provided in the online data supplement. Briefly, a sidestream dark field (SDF) camera (CapiScope HVCS, KK Technology, Honiton, UK) coupled to the GlycoCheck™ software (Microvascular Health Solutions Inc., Alpine, UT, USA) was used to visualize the sublingual microvasculature on the bedside. The software calculates the dynamic lateral movement of RBCs into the permeable part of the eGC layer, expressed as the perfused boundary region (PBR, in µm) — an inverse parameter of endothelial glycocalyx dimensions.
Vascular perfused density (mm/mm2) can be determined from the number of vascular segments containing RBCs multiplied by vascular segment length (10 µm). All detected RBC-containing vascular segments with a diameter between 4 and 25 µm were automatically counted in the video recordings of each subject. Perfused vascular density (hereafter vascular density) was normalized to tissue surface area. The pooled density of capillaries between 4 and 6 µm is defined as capillary density (D4−6µm).
RBC velocities (µm/s) are expressed in individual vessel segments by cross correlation of longitudinal RBC intensity profiles between consecutive frames of recorded videos and are calculated by dividing RBC displacement by the time between video frames. A correlation coefficient of ≥ 0.85 was required to allow accurate estimates of longitudinal RBC displacement. The median RBC velocities of the capillaries with a diameter between 4 and 7 µm were defined as capillary RBC velocity (VRBC).
To avoid contamination of the equipment, laptop, cables, and camera were covered with a transparent disposable plastic wrap. Between measurements, the whole equipment was cleaned twice with antiviral wipes appropriate for medical products. The physician conducting the video microscopy was equipped with a full personal protective equipment (PPE), as instructed, and was approved by our local department of hygiene.

Circulating markers of endothelial dysfunction, inflammation, and injury

The endothelial markers analyzed in this study were selected a priori because of their pathophysiological relevance for the integrity of the vascular barrier and/or COVID-19 pathophysiology, respectively. Circulating levels of endothelial growth factor A and D (VEGF-A, VEGF-D), angiopoietin-1 (Angpt-1), von Willebrand factor-cleaving protease (ADAMTS13), soluble angiopoietin-1 receptor (soluble TIE2), tissue factor (TF), soluble thrombomodulin (TM), shed ectodomain of angiotensin-converting enzyme 2 receptor (ACE2), and tumor necrosis factor-alpha (TNF-α) were measured in plasma by a customized multiplex proximity extension assay (Olink, Utrecht, the Netherlands). These protein concentrations are presented in arbitrary units (arb. units) on a linear normalized scale.
Plasma levels of glycocalyx-associated proteins syndecan-1 (Diaclone, Besançon, France) and hyaluronic acid (HA; Echelon Biosciences Inc., Salt Lake City, UT, USA), as well as angiopoietin-2 (Angpt-2; R&D Systems, Minneapolis, USA) were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s instructions. Soluble Fms-like tyrosine kinase-1 (sFlt-1), high-sensitive troponin (hs-Troponin), d-dimer, and interleukin-6 (IL-6) were measured as part of clinical routine in the center for laboratory medicine (UKM, Münster, Germany). All measurements were performed in a blinded fashion.

Statistical analysis

Data are presented as absolute numbers, percentages, and medians with corresponding 25th and 75th percentiles (interquartile range; IQR), as appropriate. The non-parametric Mann–Whitney U test and the chi-square test were used to compare parameters between groups. To correct for multiple testing in comparisons of microcirculation parameters per diameter class, we used the false discovery rate (FDR) approach of Benjamini, Krieger, and Yekutieli, setting a q-value < 0.05 as significant. Spearman rank correlation coefficient (rs) was used to assess correlations between variables. Receiver–operator characteristic (ROC) analysis was used to assess the area under the curve (AUC) and identify optimal cut-off values. The distribution of the time-to-event variables was estimated using the Kaplan–Meier method with log-rank testing. All the tests used were two-sided, and statistical significance was set at p < 0.05. SPSS version 26 (IBM Corporation, Armonk, NY, USA) and GraphPad Prism version 8.4.3 (GraphPad Prism Software Inc., San Diego, CA, USA) were used for statistical analyses and preparation of figures.

Results

The COVID-19 cohort consisted of 23 adult patients with median (IQR) age of 62 (54–75) years. Most of the patients were male (n = 20; 87%), overweight (BMI: 26.6 kg/m2 [IQR: 23.4–29.4]), and had a history of arterial hypertension (n = 15; 65%). Fourteen patients (61%) were mechanically ventilated at study inclusion. The clinical and demographic characteristics of COVID-19 patients are shown in Table 1. Fifteen apparently healthy controls (age [IQR]: 35 [28–66]; 53% female) determined the normal range of the different markers.
Table 1
Baseline characteristics of COVID-19 patients stratified for mechanical ventilation
Variable
All patients
w/o Mechanical ventilation
w/ Mechanical ventilation
p value#
Number of participants (n; %)
23
9 (39.1)
14 (60.9)
Female sex (n; %)
3 (13)
2 (22)
1 (7)
0.30
Age (years, median (IQR))
62 (54–75)
64 (53–77)
61 (55–67)
0.52
BMI (kg/m2, median (IQR))
26.6 (23.4–29.4)
24.3 (22.9–27.9)
27.5 (24.1–32.6)
0.11
Positive nasopharyngeal swab (n; %)
22 (96.7)
9 (100)
13 (92.9)*
> 0.99
Viraemia at study inclusion (n; %)
2 (8.7)
0 (0)
2 (14.3)
0.50
Days from hospital admission (median (IQR))
7 (1–17)
2 (0.5–21.5)
10 (2.5–18.3)
0.48
ICU at study inclusion (n; %)
16 (69.5)
2 (22.2)
14 (100)
0.0001
SOFA score (pts, median (IQR))
6 (2–13)
2 (0–4)
11 (6–16)
< 0.0001
 SOFA respiratory (pts, median (IQR))
2 (1–3)
0 (0–2.5)
2.5 (2–3)
0.02
 PaO2/FiO2 ratio (median (IQR))
222.50
(164.17–339.29)
342.85
(196.32–502.38)
194.88
(145.76–234.0)
0.02
 MAP (mmHg, median (IQR))
78.0 (68.7–89.7)
85.3 (77.3–96.5)
73.2 (64.4–85.7)
0.01
 Vasopressors (n; %)
6 (26.1)
1 (11.1)
5 (35.7)
0.34
 Norepinephrine Dose (µg/kg/min, median (IQR))
0 (0–0.03)
0
0 (0.0–0.5)
0.34
 Acute dialysis (n; %)
7 (30.4)
0
7 (50)
0.02
 60-days in-hospital mortality (n; %)
6 (26.1)
1 (11.1)
5 (35.7)
0.34
 CCI score (pts, median (IQR))
1 (0–3)
1 (0–2)
0 (0–3.25)
0.73
Comorbidities (n; %)
    
 Arterial hypertension
15 (65.2)
4 (44.4)
11 (78.6)
0.18
 Chronic respiratory disease
4 (17.4)
2 (22.2)
2 (14.2)
> 0.99
 Congestive heart failure
6 (26.1)
2 (22.2)
4 (28.6)
> 0.99
 Rheumatologic disease
4 (17.4)
2 (22.2)
2 (14.2)
> 0.99
 Malignancy
5 (21.7)
3 (33.3)
2 (14.3)
0.34
 Diabetes mellitus
0
0
0
Sublingual microscopy (median (IQR))
    
 PBR (µm)
2.30 (2.10–2.51)
2.16 (2.01–2.24)
2.44 (2.28–2.55)
0.002
 D4−6 µm (mm/mm2)
24.92 (14.07–52.19)
33.63 (18.22–66.08)
20.80 (11.46–46.79)
0.11
 VRBC (µm/s)
90.0 (79.9–106.8)
106.4 (95.5–121.0)
81.7 (74.3–91.9)
0.004
Endothelial markers (median (IQR))
    
 Syndecan-1 (ng/ml)
163.6 (33.5–246.5)
29.9 (22.8–82.4)
239.0 (162.8–251.5)
< 0.0001
 Hyaluronic acid (ng/ml)
234.2 (139.8–487.6)
139.9 (113.9–393.9)
240.6 (177.8–723.7)
0.20
 Angpt-1 (arb. unit)
122.1 (53.7–183.3)
141.5 (105.0–231.5)
95.7 (40.5–172.4)
0.16
 Angpt-2 (ng/ml)
5.5 (3.9–6.6)
4.2 (2.3–5.5)
6.4 (5.0–6.7)
0.06
 Soluble Tie2 (arb. unit)
122.0 (98.4–142.2)
104.9 (94.9–135.1)
135.0 (101.1–156.3)
0.16
 VEGF-A (arb. unit)
2659.6
(2342.1–4430.5)
2442.6
(1717.2–2660.7)
4067.2
(2584.4–4883.3)
0.005
 VEGF-D (arb. unit)
107.4 (80.8–141.3)
140.3 (102.2–147.6)
91.8 (62.3–130.3)
0.051
 sFLT-1 (pg/ml)
144.0 (86.1–575.0)
86.1 (71.3–116.5)
471.5 (131.7–672.3)
0.003
 ADAMTS13 (arb. unit)
19.0 (16.9–20.7)
20.2 (19.9–24.3)
17.3 (14.7–18.8)
0.001
 ACE2 (arb. unit)
27.6 (10.4–41.6)
10.6 (6.4–26.7)
34.1 (23.5–51.8)
0.007
 Soluble thrombomodulin (arb. Unit)
685.2 (536.3–909.1)
537.3 (416.0–649.3)
857.1 (646.6–1036.6)
0.004
 Tissue factor (arb. Unit)
53.8 (41.0–68.4)
50.85 (30.4–63.4)
59.0 (46.5–69.9)
0.21
 d-Dimers (mg/l)
2.52 (1.70–6.04)
1.70 (0.72–2.31)
4.83 (2.90–10.30)
0.001
Inflammatory markers (median (IQR))
    
 CRP (mg/dl)
12.2 (4.5–21.9)
10.3 (0.9–16.5)
14.2 (11.1–28.0)
0.06
 IL-6 (pg/ml)
62.0 (25.0–131.0)
30.0 (9.5–154.0)
69.0 (48.5–154.3)
0.14
 Ferritin (µg/l)
1085
(468–1499)
712
(301–972)
1244
(582–2079)
0.12
 PCT (ng/ml)
0.64 (0.13–3.16)
0.13 (0.11–0.43)
2.10 (0.40–5.60)
0.006
 TNF-a (arb. unit)
8.6 (6.1–10.8)
6.9 (4.8–7.8)
10.3 (8.2–13.3)
0.007
 hs-Troponin (ng/l)
76.7 (27.2–198.0)
28.8 (10.5–65.4)
121.0 (36.6–251.0)
0.06
#p-values were calculated between the two COVID-19 groups (with and without mechanical ventilation)
*One patient had negative nasopharyngeal swab, but typical signs, symptoms, and radiological findings on the chest computed tomography (CT) at study inclusion
Abbreviations:
ACE2 shed ectodomain of angiotensin-converting enzyme 2 receptor, ADAMTS13 a disintegrin and metalloprotease with thrombospondin type 1 motif member 13, Angpt-1 Angiopoietin-1, Angpt-2 Angiopoietin-2, Arb. unit Arbitrary unit, BMI Body mass index, CCI score Charlson Comorbidity Index, CRP C-reactive protein, hs-Troponin high-sensitive Troponin, ICU Intensive care unit, IL-6 Interleukin-6, IQR interquartile range, MAP Mean arterial pressure, PBR Perfused boundary region, PCT Procalcitonin, RBC Red blood cell, SOFA score Sequential Organ Failure Assessment score, Soluble Flt-1 Soluble Fms-like tyrosine kinase-1, Soluble Tie2 Angiopoietin-1 receptor, TNF-a Tumor necrosis factor a, VEGF-A Vascular endothelial growth factor A, VEGF-D Vascular endothelial growth factor D, w/ with, w/o without

Vascular density, RBC velocity, and glycocalyx damage

Sublingual video microscopy showed severe alterations of the microvasculature in COVID-19 patients. First, we compared vascular density between healthy controls and COVID-19 patients in a diameter-class-wise fashion (Fig. 1a, b). This approach revealed a tremendous decrease in vascular density in the diameter classes 4–10 µm in mechanically ventilated patients compared to controls. A similar, albeit less pronounced, pattern was observed in patients without need for mechanical ventilation (MV) (Fig. 1a, b). Interestingly, the capillary density loss (D4−6µm) in COVID-19 patients correlated with d-dimer levels (rs = − 0.43, p = 0.04, Figure E1: Online Supplement). Density of microvessels > 10 µm was not different between the three groups, indicating that the small capillaries are primarily affected. Moreover, VRBC in these capillaries was significantly lower in mechanically ventilated patients compared to healthy individuals (81.7 µm/s [74.3–91.9] vs. 106.4 µm/s [95.5–121.0], p = 0.004). COVID-19 patients without need for MV showed normal VRBC values (106.4 µm/s [95.5–121.1] vs. 99.4 µm/s [86.8–118.0], p = 0.29) (Fig. 1c).
Next, we analyzed the PBR which has been identified as a robust and reliable estimate of glycocalyx damage [1214]. COVID-19 patients on MV showed significantly higher PBR values (i.e., thinner glycocalyx layer) compared to non-ventilated patients (2.44 µm [2.28–2.55] vs. 2.16 µm [2.01–2.24], p = 0.002) and controls (2.44 µm [2.28–2.55] vs. 2.24 [2.12–2.33], p = 0.008), respectively. This finding was corroborated by highly elevated plasma levels of HA and syndecan-1, circulating markers of glycocalyx shedding, which markedly increased with need for MV in COVID-19 patients (Fig. 1d–f). PBR values and syndecan-1 concentrations correlated moderately not only with each other (rs = 0.50 [95% CI 0.10–0.76], p = 0.02), but also with further markers of endothelial dysfunction and injury (Figure E1: Online Supplement). In summary, COVID-19 patients show severe alterations of the microcirculation and the endothelial glycocalyx, which increase with disease severity.

Circulating markers of endothelial dysfunction, inflammation, and injury

The endothelium-specific Angpt/Tie2system controls endothelial activation in a non-redundant fashion [15]. While the protective TIE2-agonisic ligand Angpt-1 was not different between the groups, its leakage-inducing antagonist Angpt-2 was significantly increased in COVID-19 patients, especially in those on MV. Soluble TIE2, generated by proteolytic cleavage and release of the ectodomain from full-length receptor located at the cell surface [16], increased in COVID-19 patients (Table 1; Fig. 2a–c).
The vasodilating and permeability factor VEGF-A and its endogenous inhibitor sFlt-1, a truncated and circulating form of the VEGF-A receptor Flt-1, were markedly increased in COVID-19 patients and correlated with disease severity. VEGF-D, which promotes angiogenesis and lymphangiogenesis [17], was lower in COVID-19 patients on MV compared to healthy controls and patients without need for MV (Table 1; Fig. 2d–f).
Levels of ADAMTS13, an antithrombotic metalloprotease which cleaves highly adhesive large von Willebrand factor (VWF) multimers after their release from activated endothelium [18], decreased significantly with increasing COVID-19 severity (Fig. 2g). Circulating fragments of TM, an endothelial injury marker, were markedly increased in COVID-19 patients and correlated with disease severity (Fig. 2h). Levels of the shed ectodomain of ACE2, the main host cell receptor of SARS-CoV-2, correlated with disease activity and increased approximately tenfold in COVID-19 patients on MV (Fig. 2i).
Among routine markers of inflammation, PCT and TNF-α, but not CRP, IL-6 or ferritin, were higher in COVID-19 patients on MV compared to those not on MV (Table 1).
Figure E1 (online supplement) shows a correlation matrix including D4−6µm, VRBC, glycocalyx and endothelial-associated markers, and inflammatory cytokines. Of note, markers of glycocalyx damage, namely PBR and syndecan-1, correlated positively with d-Dimer levels (PBR: rs = 0.56, p < 0.01; syndecan-1: rs = 0.56; p < 0.01 ), ACE2 (PBR: rs = 0.46, p < 0.05; syndecan-1: rs = 0.59; p < 0.01), and inversely with ADAMTS13 antigen levels (PBR: rs = − 0.52, p < 0.05; syndecan-1: rs = − 0.64, p < 0.01). D4−6µm correlated inversely with d-dimer (rs = − 0.43, p < 0.05) and ACE2 (rs = − 0.46, p < 0.05) antigen levels. ADAMTS13 showed moderate to strong inverse association with Angpt-2 (rs = − 0.47, p < 0.05), ACE2 (rs = − 0.57, p < 0.01), TM (rs = − 0.64, p < 0.01), d-Dimers (rs = − 0.52, p < 0.05), and VEGF-A (rs = − 0.85, p < 0.001).
In summary, our data show a plausible but complex pattern of endothelial dysfunction and damage, in which counter-regulatory mechanisms seem to be operative.

Association of endothelial dysfunction with clinical parameters and outcome

Table E1 (Online Supplement) shows correlations of selected endothelial parameters with metric clinical variables, such as PaO2/FiO2 index, Sequential organ failure assessment (SOFA) score, Sepsis-induced coagulopathy (SIC) score, hs-troponin, and hemodynamics. The performance of endothelial markers to predict clinical outcomes was evaluated using ROC analysis (Table E2 – online supplement). The AUC of ADAMTS13 and syndecan-1 was 0.91 (p < 0.0001) while ACE2, d-Dimer, PBR, and VEGF-A showed AUCs ≥ 0.85 (p < 0.0001) in predicting development of moderate-to-severe ARDS during hospital stay. d-Dimers showed the highest AUC for association of thrombotic events (AUC 0.80, p = 0.001), followed by markers of glycocalyx damage, PBR (AUC 0.78, p = 0.02), and syndecan-1 (AUC 0.76, p = 0.02).
Regarding in-hospital 60-day mortality, PBR (AUC 0.75, p = 0.01), ADAMTS13 (AUC 0.74, p = 0.02), and VEGF-A (AUC 0.73, p = 0.04) showed the best discriminatory ability. ROC-derived cut-off values of these markers were used to divide the COVID-19 cohort into two groups of high and low values, respectively. As shown by Kaplan–Meier curves, high PBR values (p = 0.045) and reduced ADAMTS13 antigen levels (p = 0.047) were associated with mortality (Fig. 3).

Discussion

Our comprehensive analysis approach, comprising functional and biomarker data clearly shows severe alterations of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Several of those markers were closely related to disease severity and predicted ARDS development. Of note, sublingual glycocalyx thickness and circulating ADAMTS13 and VEGF-A levels, but not initially proposed (inflammatory) markers such as ferritin, CRP, IL-6 or hs-troponin, predicted 60-day in-hospital mortality. Thus, our data provide further evidence for the importance of systemic vascular involvement in COVID-19.
An unspecified, small reduction in total and perfused vascular density in sublingual microvessels of ventilated COVID-19 patients has been recently reported [19, 20]. However, neither outcome nor endothelial or glycocalyx markers have been assessed in these studies. Our detailed per-diameter analysis shows for the first time the exact localization (i.e., true capillaries, D4 − 6µm) and incredible extent of capillary dropout (> 60%) in mechanically ventilated COVID-19 patients. Capillary impairment (VRBC and D4 − 6 µm) correlated with SOFA and SIC score as well as oxygenation index, indicating that sublingual capillaries are, at least in part, representative of the pulmonary ones. Capillary clogging by fibrinous microthrombi, which has been shown by autopsy studies in lungs from COVID-19 patients [5, 21], is thus the putative histopathological correlate of capillary rarefication in sublingual capillaries as well. Consistent with this notion, d-dimers levels were closely associated with microcirculatory alterations in our and the abovementioned studies [19, 20].
Local formation of microthrombi and subsequent capillary clogging requires a switch of the endothelial phenotype from quiescence to a pro-adhesive, pro-inflammatory activational state. Interestingly, this process is non-redundantly controlled by Tie2, a receptor that is highly enriched in the endothelium and actively signals vascular quiescence [22]. Under physiological conditions, Tie2 is tonically activated by Angpt-1, a vasculoprotective protein secreted by peri-endothelial cells and platelets [23]. In human sepsis, its intrinsic antagonist called Angpt-2 is rapidly released from activated endothelium, competitively inhibits Tie2 and predicts mortality as a biomarker [15, 24, 25]. Elegant translation work by Higgins et al. showed that Angpt-2-driven Tie2 deactivation is central to microvascular thrombus formation in sepsis [26]. Angpt-2 was already increased in non-ventilated SARS-CoV-2 infected patients, indicating that Angpt-2 may unleash endothelial inflammation in COVID-19 early on. In this regard, Smadja et al. identified an Angpt-2 cut-off of 5.0 ng/ml as best early predictor for ICU admission in 40 consecutive COVID-19 patients admitted to the emergency department [27]. Although Angpt-2 correlated with SOFA and SIC scores, it didn´t predict clinical outcomes in our cohort of COVID-19 patients.
Among the VEGF system, VEGF-D [28], and sFLT-1 [29] have been discussed in the pathophysiology of COVID-19. Kong et al. reported a positive correlation between VEGF-D: a still not fully understood member of the VEGF family – and disease severity in COVID-19 patients [28]. Surprisingly, we found a clear negative correlation between VEGF-D and SOFA score. A reason for this discrepancy could be the cross-sectional design of our study, as VEGF-D levels seem to fluctuate during hospital stay [28]. However, VEGF-A, a strong permeability-inducing factor related to disease severity and survival in sepsis [30], correlated positively with disease severity and ARDS development in our cohort. The bioavailability of elevated VEGF-A, however, is difficult to deduce, since sFlt-1 acts as a scavenger receptor and neutralizes VEGF-A. Under healthy conditions, sFlt-1 binds electrostatically to proteoglycans and is, thus, buffered within the glycocalyx [31]. Not surprisingly, glycocalyx damage coincides with excess sFlt-1 levels in COVID-19 patients.
In a comprehensive study on the hypercoagulability in COVID-19, Goshua et al. found evidence of excessive VWF release, but absence of DIC. Both VWF antigen and soluble thrombomodulin, a specific marker of endothelial cell injury were significantly correlated with mortality [32]. In sepsis, elevated VWF antigen and activity can be accompanied by reductions in the ADAMTS13 metalloproteinase responsible for cleaving ultra-large VWF multimers into smaller VWF forms. Mounting VWF/ADAMTS13 imbalance, culminating in the accumulation of uncleaved VWF molecules has been shown to increases the risk of developing secondary thrombotic microangiopathy in sepsis. In line with this finding, ADAMTS13 antigen correlated inversely with glycocalyx damage and SOFA score and predicted ARDS and 60-day mortality in our study [33]. Evidence of reduced ADAMTS13 activity in the presence of schistocytes (~ 2–4%) appeared compatible with thrombotic microangiopathy (TMA) secondary to COVID-19 [34].
Although some endothelial markers, such as thrombomodulin, have been already linked to mortality in COVID-19 patients [32], the predictive value of the PBR as an estimate of glycocalyx thickness has not been reported yet. Interestingly, previous work by our group revealed that damage and refurbishment of the eGC are tightly controlled by Tie2 in human sepsis [12, 35]. Mechanistically, Angpt-2 causes heparanase secretion from distinctive cellular storage pools with consecutive enzymatic degradation of the glycocalyx [35]. A groundbreaking translational study by Schmidt et al. provided compelling evidence that prevention of heparanase-mediated degradation of the pulmonary endothelial glycocalyx—by blocking heparanase via a non-coagulant heparin fragment—is sufficient to eliminate vascular hyperpermeability and ARDS in murine endotoxemia [36]. It is intriguing to speculate that a possible off-target effect of heparin, which appears to improve mortality in COVID-19 patients [37], may be the stabilization or restoration of the endothelial glycocalyx. However, the involvement of heparanase in COVID-19-induced glycocalyx damage has yet to be formally demonstrated and needs further study.
We acknowledge some limitations in our study. First, sublingual video microscopy in COVID-19 patients is challenging due to the increased risk of transmission. We therefore started the measurements only after we had developed a safe hygiene protocol. Given that the number of infections in the City of Münster was very low anyway, we had to conduct the study in a cross-sectional fashion with a limited sample size. Therefore, we cannot exclude that the identified predictors may be less meaningful in early disease stages or outpatients, respectively. Second, this study was neither designed nor powered to test the performance of endothelial or microvascular parameters for outcome prediction. However, our findings are plausible, hypothesis-generating, and clearly deserve validation in larger, prospective studies with serial blood drawings and microscopic measurements. Third, although participating centers regularly exchanged information on the basic treatment strategies, these may have differed in detail and, therefore, could have influenced the results. Lastly, most of the COVID-19 patients were of male sex. Indeed, male individuals are more often infected by SARS-CoV2. Our results are therefore only transferable to the female sex with caution.

Conclusion and outlook

Our data clearly support that COVID-19 is accompanied by endothelial activation, glycocalyx damage, and severe capillary impairment (Fig. 4). Although our data cannot prove causality, it is very likely that COVID-19 has a distinctive vascular phenotype or even represents a novel vascular multisystemic disease. A precise quantification of endothelial glycocalyx damage could be a new parameter for outcome prediction. Future prediction models and therapeutic approaches should, thus, consider the importance of the vascular endothelium and its glycocalyx in COVID-19.

Acknowledgements

Open Access funding enabled and organized by Projekt DEAL. We would like to acknowledge the support of the Open Access Publication Fund of the University of Münster.

Compliance with ethical standards

Conflict of interest

IO, KB, JS, PRT, MF, JK, SB, UG, GT, AG, HP, and PK declare no competing interests. AR holds shares of Novavax, Moderna, and Curevac. HV is Chief Science Officer of GlycoCheck BV, The Netherlands.
Patients were enrolled upon after obtaining written informed consent from them or their legal representatives.

Ethics approval

The study was performed in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the General Medical Council Westfalen-Lippe and the WWU Münster, Germany (file number: amendments of 2016-073-f-S).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohan S, Bauer KA, Leon MB, Krumholz HM, Uriel N, Mehra MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26(7):1017–1032. https://doi.org/10.1038/s41591-020-0968-3CrossRefPubMed Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohan S, Bauer KA, Leon MB, Krumholz HM, Uriel N, Mehra MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26(7):1017–1032. https://​doi.​org/​10.​1038/​s41591-020-0968-3CrossRefPubMed
12.
Zurück zum Zitat Drost CC, Rovas A, Kusche-Vihrog K, Van Slyke P, Kim H, Hoang VC, Maynes JT, Wennmann DO, Pavenstadt H, Linke W, Lukasz A, Hesse B, Kumpers P (2019) Tie2 activation promotes protection and reconstitution of the endothelial glycocalyx in human sepsis. Thromb Haemost 119(11):1827–1838. https://doi.org/10.1055/s-0039-1695768CrossRefPubMed Drost CC, Rovas A, Kusche-Vihrog K, Van Slyke P, Kim H, Hoang VC, Maynes JT, Wennmann DO, Pavenstadt H, Linke W, Lukasz A, Hesse B, Kumpers P (2019) Tie2 activation promotes protection and reconstitution of the endothelial glycocalyx in human sepsis. Thromb Haemost 119(11):1827–1838. https://​doi.​org/​10.​1055/​s-0039-1695768CrossRefPubMed
23.
Zurück zum Zitat Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7):1161–1169CrossRefPubMed Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7):1161–1169CrossRefPubMed
27.
Zurück zum Zitat Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B, Juvin P, Hauw-Berlemont C, Augy JL, Peron N, Messas E, Planquette B, Sanchez O, Charbit B, Gaussem P, Duffy D, Terrier B, Mirault T, Diehl JL (2020) Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. https://doi.org/10.1007/s10456-020-09730-0CrossRefPubMedPubMedCentral Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B, Juvin P, Hauw-Berlemont C, Augy JL, Peron N, Messas E, Planquette B, Sanchez O, Charbit B, Gaussem P, Duffy D, Terrier B, Mirault T, Diehl JL (2020) Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. https://​doi.​org/​10.​1007/​s10456-020-09730-0CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Dupont V, Kanagaratnam L, Goury A, Poitevin G, Bard M, Julien G, Bonnivard M, Champenois V, Noel V, Mourvillier B, Nguyen P (2020) Excess soluble fms-like tyrosine kinase 1 correlates with endothelial dysfunction and organ failure in critically ill COVID-19 patients. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1007CrossRefPubMed Dupont V, Kanagaratnam L, Goury A, Poitevin G, Bard M, Julien G, Bonnivard M, Champenois V, Noel V, Mourvillier B, Nguyen P (2020) Excess soluble fms-like tyrosine kinase 1 correlates with endothelial dysfunction and organ failure in critically ill COVID-19 patients. Clin Infect Dis. https://​doi.​org/​10.​1093/​cid/​ciaa1007CrossRefPubMed
32.
Zurück zum Zitat Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, Dela Cruz CS, Dumont A, Halene S, Hwa J, Koff J, Menninger H, Neparidze N, Price C, Siner JM, Tormey C, Rinder HM, Chun HJ, Lee AI (2020) Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 7(8):e575–e582. https://doi.org/10.1016/S2352-3026(20)30216-7CrossRefPubMedPubMedCentral Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, Dela Cruz CS, Dumont A, Halene S, Hwa J, Koff J, Menninger H, Neparidze N, Price C, Siner JM, Tormey C, Rinder HM, Chun HJ, Lee AI (2020) Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 7(8):e575–e582. https://​doi.​org/​10.​1016/​S2352-3026(20)30216-7CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18(8):1217–1223. https://doi.org/10.1038/nm.2843CrossRefPubMed Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18(8):1217–1223. https://​doi.​org/​10.​1038/​nm.​2843CrossRefPubMed
37.
Zurück zum Zitat Nadkarni GN, Lala A, Bagiella E, Chang HL, Moreno P, Pujadas E, Arvind V, Bose S, Charney AW, Chen MD, Cordon-Cardo C, Dunn AS, Farkouh ME, Glicksberg B, Kia A, Kohli-Seth R, Levin MA, Timsina P, Zhao S, Fayad ZA, Fuster V (2020) Anticoagulation, mortality, bleeding and pathology among patients hospitalized with COVID-19: a single health system study. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2020.08.041CrossRefPubMedPubMedCentral Nadkarni GN, Lala A, Bagiella E, Chang HL, Moreno P, Pujadas E, Arvind V, Bose S, Charney AW, Chen MD, Cordon-Cardo C, Dunn AS, Farkouh ME, Glicksberg B, Kia A, Kohli-Seth R, Levin MA, Timsina P, Zhao S, Fayad ZA, Fuster V (2020) Anticoagulation, mortality, bleeding and pathology among patients hospitalized with COVID-19: a single health system study. J Am Coll Cardiol. https://​doi.​org/​10.​1016/​j.​jacc.​2020.​08.​041CrossRefPubMedPubMedCentral
Metadaten
Titel
Microvascular dysfunction in COVID-19: the MYSTIC study
verfasst von
Alexandros Rovas
Irina Osiaevi
Konrad Buscher
Jan Sackarnd
Phil-Robin Tepasse
Manfred Fobker
Joachim Kühn
Stephan Braune
Ulrich Göbel
Gerold Thölking
Andreas Gröschel
Hermann Pavenstädt
Hans Vink
Philipp Kümpers
Publikationsdatum
14.10.2020
Verlag
Springer Netherlands
Schlagwort
COVID-19
Erschienen in
Angiogenesis / Ausgabe 1/2021
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-020-09753-7

Weitere Artikel der Ausgabe 1/2021

Angiogenesis 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.