Skip to main content
Erschienen in: Hormones 1/2018

01.03.2018 | Review Article

Current understanding of the structure and function of family B GPCRs to design novel drugs

verfasst von: Vlasios Karageorgos, Maria Venihaki, Stelios Sakellaris, Michail Pardalos, George Kontakis, Minos-Timotheos Matsoukas, Achille Gravanis, Andreas Margioris, George Liapakis

Erschienen in: Hormones | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Family B of G-protein-coupled receptors (GPCRs) and their ligands play a central role in a number of homeostatic mechanisms in the endocrine, gastrointestinal, skeletal, immune, cardiovascular and central nervous systems. Alterations in family B GPCR-regulated homeostatic mechanisms may cause a variety of potentially life-threatening conditions, signifying the necessity to develop novel ligands targeting these receptors. Obtaining structural and functional information on family B GPCRs will accelerate the development of novel drugs to target these receptors. Family B GPCRs are proteins that span the plasma membrane seven times, thus forming seven transmembrane domains (TM1-TM7) which are connected to each other by three extracellular (EL) and three intracellular (IL) loops. In addition, these receptors have a long extracellular N-domain and an intracellular C-tail. The upper parts of the TMs and ELs form the J-domain of receptors. The C-terminal region of peptides first binds to the N-domain of receptors. This ‘first-step’ interaction orients the N-terminal region of peptides towards the J-domain of receptors, thus resulting in a ‘second-step’ of ligand-receptor interaction that activates the receptor. Activation-associated structural changes of receptors are transmitted through TMs to their intracellular regions and are responsible for their interaction with the G proteins and activation of the latter, thus resulting in a biological effect. This review summarizes the current information regarding the structure and function of family B GPCRs and their physiological and pathophysiological roles.
Literatur
1.
Zurück zum Zitat Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10:1635–1641PubMedPubMedCentralCrossRef Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10:1635–1641PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRef Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRef
3.
Zurück zum Zitat Alexander SP, Davenport AP, Kelly E et al (2015) The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol 172:5744–5869PubMedPubMedCentralCrossRef Alexander SP, Davenport AP, Kelly E et al (2015) The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol 172:5744–5869PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13:436–444PubMedCrossRef Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13:436–444PubMedCrossRef
5.
Zurück zum Zitat Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279:7264–7274PubMedCrossRef Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279:7264–7274PubMedCrossRef
6.
Zurück zum Zitat Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94:1099–1142PubMedPubMedCentralCrossRef Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94:1099–1142PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Poyner DR, Sexton PM, Marshall I et al (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54:233–246PubMedCrossRef Poyner DR, Sexton PM, Marshall I et al (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54:233–246PubMedCrossRef
8.
Zurück zum Zitat Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67:1655–1665PubMedCrossRef Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67:1655–1665PubMedCrossRef
9.
Zurück zum Zitat Sexton PM, Albiston A, Morfis M, Tilakaratne N (2001) Receptor activity modifying proteins. Cell Signal 13:73–83PubMedCrossRef Sexton PM, Albiston A, Morfis M, Tilakaratne N (2001) Receptor activity modifying proteins. Cell Signal 13:73–83PubMedCrossRef
10.
Zurück zum Zitat Gingell JJ, Simms J, Barwell J et al (2016) An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov 2:16020PubMedPubMedCentralCrossRef Gingell JJ, Simms J, Barwell J et al (2016) An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov 2:16020PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Wootten D, Lindmark H, Kadmiel M et al (2013) Receptor activity modifying proteins (RAMPs) interact with the VPAC2 receptor and CRF1 receptors and modulate their function. Br J Pharmacol 168:822–834PubMedPubMedCentralCrossRef Wootten D, Lindmark H, Kadmiel M et al (2013) Receptor activity modifying proteins (RAMPs) interact with the VPAC2 receptor and CRF1 receptors and modulate their function. Br J Pharmacol 168:822–834PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Christopoulos A, Christopoulos G, Morfis M et al (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278:3293–3297PubMedCrossRef Christopoulos A, Christopoulos G, Morfis M et al (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278:3293–3297PubMedCrossRef
13.
Zurück zum Zitat Degn KB, Juhl CB, Sturis J et al (2004) One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53:1187–1194PubMedCrossRef Degn KB, Juhl CB, Sturis J et al (2004) One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53:1187–1194PubMedCrossRef
14.
Zurück zum Zitat Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M (2002) The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45:195–202PubMedCrossRef Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M (2002) The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45:195–202PubMedCrossRef
15.
Zurück zum Zitat Berkovic MC, Bilic-Curcic I, Herman Mahecic D, Gradiser M, Grgurevic M, Bozek T (2017) Long-term effectiveness of Liraglutide in association with Patients' baseline characteristics in real-life setting in Croatia: an observational, retrospective, multicenter study. Diabetes Ther 8:1297–1308PubMedPubMedCentralCrossRef Berkovic MC, Bilic-Curcic I, Herman Mahecic D, Gradiser M, Grgurevic M, Bozek T (2017) Long-term effectiveness of Liraglutide in association with Patients' baseline characteristics in real-life setting in Croatia: an observational, retrospective, multicenter study. Diabetes Ther 8:1297–1308PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Hiramatsu T, Ozeki A, Ishikawa H, Furuta S (2017) Long term effects of Liraglutide in Japanese patients with type 2 diabetes among the subgroups with different renal functions: results of 2-year prospective study. Drug Res(Stuttg) 67:640–646 Hiramatsu T, Ozeki A, Ishikawa H, Furuta S (2017) Long term effects of Liraglutide in Japanese patients with type 2 diabetes among the subgroups with different renal functions: results of 2-year prospective study. Drug Res(Stuttg) 67:640–646
17.
18.
Zurück zum Zitat JFE M, Orsted DD, Brown-Frandsen K et al LEADER Steering Committee Investigators 2017 Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 377:839–848 JFE M, Orsted DD, Brown-Frandsen K et al LEADER Steering Committee Investigators 2017 Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 377:839–848
19.
Zurück zum Zitat Riddle M, Frias J, Zhang B et al (2007) Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care 30:2794–2799PubMedCrossRef Riddle M, Frias J, Zhang B et al (2007) Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care 30:2794–2799PubMedCrossRef
20.
Zurück zum Zitat Riddle M, Pencek R, Charenkavanich S, Lutz K, Wilhelm K, Porter L (2009) Randomized comparison of pramlintide or mealtime insulin added to basal insulin treatment for patients with type 2 diabetes. Diabetes Care 32:1577–1582PubMedPubMedCentralCrossRef Riddle M, Pencek R, Charenkavanich S, Lutz K, Wilhelm K, Porter L (2009) Randomized comparison of pramlintide or mealtime insulin added to basal insulin treatment for patients with type 2 diabetes. Diabetes Care 32:1577–1582PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Monnier L (2007) Is pramlintide a safe and effective adjunct therapy for patients with type 1 diabetes? Nat Clin Pract Endocrinol Metab 3:332–333PubMedCrossRef Monnier L (2007) Is pramlintide a safe and effective adjunct therapy for patients with type 1 diabetes? Nat Clin Pract Endocrinol Metab 3:332–333PubMedCrossRef
22.
23.
Zurück zum Zitat Miller PD, Bilezikian JP, Deal C, Harris ST, Ci RP (2004) Clinical use of teriparatide in the real world: initial insights. Endocr Pract 10:139–148PubMedCrossRef Miller PD, Bilezikian JP, Deal C, Harris ST, Ci RP (2004) Clinical use of teriparatide in the real world: initial insights. Endocr Pract 10:139–148PubMedCrossRef
24.
Zurück zum Zitat Orwoll ES, Shapiro J, Veith S et al (2014) Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest 124:491–498PubMedPubMedCentralCrossRef Orwoll ES, Shapiro J, Veith S et al (2014) Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest 124:491–498PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Kraenzlin ME, Meier C (2011) Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 7:647–656PubMedCrossRef Kraenzlin ME, Meier C (2011) Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 7:647–656PubMedCrossRef
27.
Zurück zum Zitat Leder BZ, O'Dea LS, Zanchetta JR et al (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100:697–706PubMedCrossRef Leder BZ, O'Dea LS, Zanchetta JR et al (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100:697–706PubMedCrossRef
28.
Zurück zum Zitat Yoh K, Uzawa T, Orito T, Tanaka K (2012) Improvement of quality of life (QOL) in osteoporotic patients by Elcatonin treatment: a trial taking the Participants' preference into account. Jpn Clin Med 3:9–14PubMedPubMedCentralCrossRef Yoh K, Uzawa T, Orito T, Tanaka K (2012) Improvement of quality of life (QOL) in osteoporotic patients by Elcatonin treatment: a trial taking the Participants' preference into account. Jpn Clin Med 3:9–14PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Brunton L, Parker K, Blumenthal D, Buxton I. Goodman and Gilman's. Manual of Pharmacology and Therapeutics. The McGraw-Hill Companies, Inc. Brunton L, Parker K, Blumenthal D, Buxton I. Goodman and Gilman's. Manual of Pharmacology and Therapeutics. The McGraw-Hill Companies, Inc.
30.
Zurück zum Zitat Jeppesen PB (2006) Glucagon-like peptide-2: update of the recent clinical trials. Gastroenterology 130(Suppl 1):27–131 Jeppesen PB (2006) Glucagon-like peptide-2: update of the recent clinical trials. Gastroenterology 130(Suppl 1):27–131
31.
Zurück zum Zitat Jeppesen PB, Sanguinetti EL, Buchman A et al (2005) Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 54:1224–1231PubMedPubMedCentralCrossRef Jeppesen PB, Sanguinetti EL, Buchman A et al (2005) Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 54:1224–1231PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Marier JF, Beliveau M, Mouksassi MS et al (2008) Pharmacokinetics, safety, and tolerability of teduglutide, a glucagon-like peptide-2 (GLP-2) analog, following multiple ascending subcutaneous administrations in healthy subjects. J Clin Pharmacol 48:1289–1299PubMedCrossRef Marier JF, Beliveau M, Mouksassi MS et al (2008) Pharmacokinetics, safety, and tolerability of teduglutide, a glucagon-like peptide-2 (GLP-2) analog, following multiple ascending subcutaneous administrations in healthy subjects. J Clin Pharmacol 48:1289–1299PubMedCrossRef
33.
Zurück zum Zitat Goadsby PJ, Reuter U, Hallstrom Y et al (2017) A controlled trial of Erenumab for episodic migraine. N Engl J Med 377:2123–2132PubMedCrossRef Goadsby PJ, Reuter U, Hallstrom Y et al (2017) A controlled trial of Erenumab for episodic migraine. N Engl J Med 377:2123–2132PubMedCrossRef
34.
Zurück zum Zitat Schuster NM, Rapoport AM (2017) Calcitonin gene-related peptide-targeted therapies for migraine and cluster headache: a review. Clin Neuropharmacol 40:169–174PubMedCrossRef Schuster NM, Rapoport AM (2017) Calcitonin gene-related peptide-targeted therapies for migraine and cluster headache: a review. Clin Neuropharmacol 40:169–174PubMedCrossRef
36.
Zurück zum Zitat Zorrilla EP, Heilig M, de Wit H, Shaham Y (2013) Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism. Drug Alcohol Depend 128:175–186PubMedPubMedCentralCrossRef Zorrilla EP, Heilig M, de Wit H, Shaham Y (2013) Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism. Drug Alcohol Depend 128:175–186PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat 2004 Corticorelin: ACTH RF, corticoliberin, corticotrophin-releasing hormone, corticotropin-releasing factor, human corticotropin-releasing hormone, ovine corticotrophin-releasing factor, Xerecept. Drugs RD 5: 218–219 2004 Corticorelin: ACTH RF, corticoliberin, corticotrophin-releasing hormone, corticotropin-releasing factor, human corticotropin-releasing hormone, ovine corticotrophin-releasing factor, Xerecept. Drugs RD 5: 218–219
38.
Zurück zum Zitat Recht L, Mechtler LL, Wong ET, O'Connor PC, Rodda BE (2013) Steroid-sparing effect of corticorelin acetate in peritumoral cerebral edema is associated with improvement in steroid-induced myopathy. J Clin Oncol 31:1182–1187PubMedCrossRef Recht L, Mechtler LL, Wong ET, O'Connor PC, Rodda BE (2013) Steroid-sparing effect of corticorelin acetate in peritumoral cerebral edema is associated with improvement in steroid-induced myopathy. J Clin Oncol 31:1182–1187PubMedCrossRef
39.
Zurück zum Zitat Kornreich WD, Galyean R, Hernandez JF et al (1992) Alanine series of ovine corticotropin releasing factor (oCRF): a structure-activity relationship study. J Med Chem 35:1870–1876PubMedCrossRef Kornreich WD, Galyean R, Hernandez JF et al (1992) Alanine series of ovine corticotropin releasing factor (oCRF): a structure-activity relationship study. J Med Chem 35:1870–1876PubMedCrossRef
40.
Zurück zum Zitat Nicole P, Lins L, Rouyer-Fessard C et al (2000) Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275:24003–24012PubMedCrossRef Nicole P, Lins L, Rouyer-Fessard C et al (2000) Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275:24003–24012PubMedCrossRef
41.
Zurück zum Zitat Igarashi H, Ito T, Hou W et al (2002) Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and Guinea pig. J Pharmacol Exp Ther 301:37–50PubMedCrossRef Igarashi H, Ito T, Hou W et al (2002) Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and Guinea pig. J Pharmacol Exp Ther 301:37–50PubMedCrossRef
42.
Zurück zum Zitat Bourgault S, Vaudry D, Segalas-Milazzo I et al (2009) Molecular and conformational determinants of pituitary adenylate cyclase-activating polypeptide (PACAP) for activation of the PAC1 receptor. J Med Chem 52:3308–3316PubMedCrossRef Bourgault S, Vaudry D, Segalas-Milazzo I et al (2009) Molecular and conformational determinants of pituitary adenylate cyclase-activating polypeptide (PACAP) for activation of the PAC1 receptor. J Med Chem 52:3308–3316PubMedCrossRef
43.
Zurück zum Zitat Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994) Structure-activity studies of glucagon-like peptide-1. J Biol Chem 269:6275–6278PubMed Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994) Structure-activity studies of glucagon-like peptide-1. J Biol Chem 269:6275–6278PubMed
44.
Zurück zum Zitat Dong M, Le A, Te JA, Pinon DI, Bordner AJ, Miller LJ (2011) Importance of each residue within secretin for receptor binding and biological activity. Biochemistry 50:2983–2993PubMedPubMedCentralCrossRef Dong M, Le A, Te JA, Pinon DI, Bordner AJ, Miller LJ (2011) Importance of each residue within secretin for receptor binding and biological activity. Biochemistry 50:2983–2993PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Watkins HA, Au M, Bobby R et al (2013) Identification of key residues involved in adrenomedullin binding to the AM1 receptor. Br J Pharmacol 169:143–155PubMedPubMedCentralCrossRef Watkins HA, Au M, Bobby R et al (2013) Identification of key residues involved in adrenomedullin binding to the AM1 receptor. Br J Pharmacol 169:143–155PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Bourgault S, Vaudry D, Guilhaudis L et al (2008) Biological and structural analysis of truncated analogs of PACAP27. J Mol Neurosci 36:260–269PubMedCrossRef Bourgault S, Vaudry D, Guilhaudis L et al (2008) Biological and structural analysis of truncated analogs of PACAP27. J Mol Neurosci 36:260–269PubMedCrossRef
47.
Zurück zum Zitat Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397PubMedCrossRef Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397PubMedCrossRef
48.
Zurück zum Zitat Ohta N, Mochizuki T, Hoshino M, Jun L, Kobayashi H, Yanaihara N (1997) Adrenocorticotropic hormone-releasing activity of urotensin I and its fragments in vitro. J Pept Res 50:178–183PubMedCrossRef Ohta N, Mochizuki T, Hoshino M, Jun L, Kobayashi H, Yanaihara N (1997) Adrenocorticotropic hormone-releasing activity of urotensin I and its fragments in vitro. J Pept Res 50:178–183PubMedCrossRef
49.
Zurück zum Zitat Rivier J, Rivier C, Vale W (1984) Synthetic competitive antagonists of corticotropin-releasing factor: effect on ACTH secretion in the rat. Science 224:889–891PubMedCrossRef Rivier J, Rivier C, Vale W (1984) Synthetic competitive antagonists of corticotropin-releasing factor: effect on ACTH secretion in the rat. Science 224:889–891PubMedCrossRef
50.
Zurück zum Zitat Turner JT, Jones SB, Bylund DB (1986) A fragment of vasoactive intestinal peptide, VIP(10-28), is an antagonist of VIP in the colon carcinoma cell line, HT29. Peptides 7:849–854PubMedCrossRef Turner JT, Jones SB, Bylund DB (1986) A fragment of vasoactive intestinal peptide, VIP(10-28), is an antagonist of VIP in the colon carcinoma cell line, HT29. Peptides 7:849–854PubMedCrossRef
51.
Zurück zum Zitat Goke R, Fehmann HC, Linn T et al (1993) Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 268:19650–19655PubMed Goke R, Fehmann HC, Linn T et al (1993) Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 268:19650–19655PubMed
52.
Zurück zum Zitat Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51:658–665PubMedCrossRef Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51:658–665PubMedCrossRef
53.
Zurück zum Zitat Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997) High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272:21201–21206PubMedCrossRef Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997) High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272:21201–21206PubMedCrossRef
54.
Zurück zum Zitat Runge S, Thogersen H, Madsen K, Lau J, Rudolph R (2008) Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 283:11340–11347PubMedCrossRef Runge S, Thogersen H, Madsen K, Lau J, Rudolph R (2008) Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 283:11340–11347PubMedCrossRef
55.
Zurück zum Zitat Underwood CR, Garibay P, Knudsen LB et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285:723–730PubMedCrossRef Underwood CR, Garibay P, Knudsen LB et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285:723–730PubMedCrossRef
56.
Zurück zum Zitat Parthier C, Kleinschmidt M, Neumann P et al (2007) Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci U S A 104:13942–13947PubMedPubMedCentralCrossRef Parthier C, Kleinschmidt M, Neumann P et al (2007) Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci U S A 104:13942–13947PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Sun C, Song D, Davis-Taber RA et al (2007) Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci U S A 104:7875–7880PubMedPubMedCentralCrossRef Sun C, Song D, Davis-Taber RA et al (2007) Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci U S A 104:7875–7880PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A 105:5034–5039PubMedPubMedCentralCrossRef Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A 105:5034–5039PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Grace CR, Perrin MH, Gulyas J et al (2007) Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci U S A 104:4858–4863PubMedPubMedCentralCrossRef Grace CR, Perrin MH, Gulyas J et al (2007) Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci U S A 104:4858–4863PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Inooka H, Ohtaki T, Kitahara O et al (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 8:161–165PubMedCrossRef Inooka H, Ohtaki T, Kitahara O et al (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 8:161–165PubMedCrossRef
61.
Zurück zum Zitat Pallai PV, Mabilia M, Goodman M, Vale W, Rivier J (1983) Structural homology of corticotropin-releasing factor, sauvagine, and urotensin I: circular dichroism and prediction studies. Proc Natl Acad Sci U S A 80:6770–6774PubMedPubMedCentralCrossRef Pallai PV, Mabilia M, Goodman M, Vale W, Rivier J (1983) Structural homology of corticotropin-releasing factor, sauvagine, and urotensin I: circular dichroism and prediction studies. Proc Natl Acad Sci U S A 80:6770–6774PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Dathe M, Fabian H, Gast K et al (1996) Conformational differences of ovine and human corticotropin releasing hormone. A CD, IR, NMR and dynamic light scattering study. Int J Pept Protein Res 47:383–393PubMedCrossRef Dathe M, Fabian H, Gast K et al (1996) Conformational differences of ovine and human corticotropin releasing hormone. A CD, IR, NMR and dynamic light scattering study. Int J Pept Protein Res 47:383–393PubMedCrossRef
63.
Zurück zum Zitat Lau SH, Rivier J, Vale W, Kaiser ET, Kezdy FJ (1983) Surface properties of an amphiphilic peptide hormone and of its analog: corticotropin-releasing factor and sauvagine. Proc Natl Acad Sci U S A 80:7070–7074PubMedPubMedCentralCrossRef Lau SH, Rivier J, Vale W, Kaiser ET, Kezdy FJ (1983) Surface properties of an amphiphilic peptide hormone and of its analog: corticotropin-releasing factor and sauvagine. Proc Natl Acad Sci U S A 80:7070–7074PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Neidigh JW, Fesinmeyer RM, Prickett KS, Andersen NH (2001) Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states. Biochemistry 40:13188–13200PubMedCrossRef Neidigh JW, Fesinmeyer RM, Prickett KS, Andersen NH (2001) Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states. Biochemistry 40:13188–13200PubMedCrossRef
65.
Zurück zum Zitat Chang X, Keller D, Bjørn S, Led JJ (2001) Structure and folding of glucagon-like peptide-1-(7–36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy. Magn Reson Chem 39:477–483CrossRef Chang X, Keller D, Bjørn S, Led JJ (2001) Structure and folding of glucagon-like peptide-1-(7–36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy. Magn Reson Chem 39:477–483CrossRef
66.
Zurück zum Zitat Fry DC, Madison VS, Bolin DR, Greeley DN, Toome V, Wegrzynski BB (1989) Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics. Biochemistry 28:2399–2409PubMedCrossRef Fry DC, Madison VS, Bolin DR, Greeley DN, Toome V, Wegrzynski BB (1989) Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics. Biochemistry 28:2399–2409PubMedCrossRef
67.
Zurück zum Zitat Gronenborn AM, Bovermann G, Clore GM (1987) A 1H-NMR study of the solution conformation of secretin. Resonance assignment and secondary structure. FEBS Lett 215:88–94PubMedCrossRef Gronenborn AM, Bovermann G, Clore GM (1987) A 1H-NMR study of the solution conformation of secretin. Resonance assignment and secondary structure. FEBS Lett 215:88–94PubMedCrossRef
68.
Zurück zum Zitat Braun W, Wider G, Lee KH, Wuthrich K (1983) Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J Mol Biol 169:921–948PubMedCrossRef Braun W, Wider G, Lee KH, Wuthrich K (1983) Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J Mol Biol 169:921–948PubMedCrossRef
69.
Zurück zum Zitat Wray V, Kakoschke C, Nokihara K, Naruse S (1993) Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry 32:5832–5841PubMedCrossRef Wray V, Kakoschke C, Nokihara K, Naruse S (1993) Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry 32:5832–5841PubMedCrossRef
70.
Zurück zum Zitat Sasaki K, Dockerill S, Adamiak DA, Tickle IJ, Blundell T (1975) X-ray analysis of glucagon and its relationship to receptor binding. Nature 257:751–757PubMedCrossRef Sasaki K, Dockerill S, Adamiak DA, Tickle IJ, Blundell T (1975) X-ray analysis of glucagon and its relationship to receptor binding. Nature 257:751–757PubMedCrossRef
71.
Zurück zum Zitat Motta A, Andreotti G, Amodeo P, Strazzullo G, Castiglione Morelli MA (1998) Solution structure of human calcitonin in membrane-mimetic environment: the role of the amphipathic helix. Proteins 32:314–323PubMedCrossRef Motta A, Andreotti G, Amodeo P, Strazzullo G, Castiglione Morelli MA (1998) Solution structure of human calcitonin in membrane-mimetic environment: the role of the amphipathic helix. Proteins 32:314–323PubMedCrossRef
72.
Zurück zum Zitat Thornton K, Gorenstein DG (1994) Structure of glucagon-like peptide (7-36) amide in a dodecylphosphocholine micelle as determined by 2D NMR. Biochemistry 33:3532–3539PubMedCrossRef Thornton K, Gorenstein DG (1994) Structure of glucagon-like peptide (7-36) amide in a dodecylphosphocholine micelle as determined by 2D NMR. Biochemistry 33:3532–3539PubMedCrossRef
73.
Zurück zum Zitat O'Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651PubMedCrossRef O'Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651PubMedCrossRef
74.
Zurück zum Zitat Beyermann M, Rothemund S, Heinrich N et al (2000) A role for a helical connector between two receptor binding sites of a long-chain peptide hormone. J Biol Chem 275:5702–5709PubMedCrossRef Beyermann M, Rothemund S, Heinrich N et al (2000) A role for a helical connector between two receptor binding sites of a long-chain peptide hormone. J Biol Chem 275:5702–5709PubMedCrossRef
75.
Zurück zum Zitat Stroop SD, Kuestner RE, Serwold TF, Chen L, Moore EE (1995) Chimeric human calcitonin and glucagon receptors reveal two dissociable calcitonin interaction sites. Biochemistry 34:1050–1057PubMedCrossRef Stroop SD, Kuestner RE, Serwold TF, Chen L, Moore EE (1995) Chimeric human calcitonin and glucagon receptors reveal two dissociable calcitonin interaction sites. Biochemistry 34:1050–1057PubMedCrossRef
76.
Zurück zum Zitat Lopez de Maturana R, Willshaw A, Kuntzsch A, Rudolph R, Donnelly D (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J Biol Chem 278:10195–10200PubMedCrossRef Lopez de Maturana R, Willshaw A, Kuntzsch A, Rudolph R, Donnelly D (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J Biol Chem 278:10195–10200PubMedCrossRef
77.
Zurück zum Zitat Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283:32900–32912PubMedPubMedCentralCrossRef Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283:32900–32912PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Pal K, Swaminathan K, Xu HE, Pioszak AA (2010) Structural basis for hormone recognition by the human CRFR2{alpha} G protein-coupled receptor. J Biol Chem 285:40351–40361PubMedPubMedCentralCrossRef Pal K, Swaminathan K, Xu HE, Pioszak AA (2010) Structural basis for hormone recognition by the human CRFR2{alpha} G protein-coupled receptor. J Biol Chem 285:40351–40361PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Harikumar KG, Lam PC, Dong M, Sexton PM, Abagyan R, Miller LJ (2007) Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues. J Biol Chem 282:32834–32843PubMedCrossRef Harikumar KG, Lam PC, Dong M, Sexton PM, Abagyan R, Miller LJ (2007) Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues. J Biol Chem 282:32834–32843PubMedCrossRef
80.
Zurück zum Zitat Perrin MH, Sutton S, Bain DL, Berggren WT, Vale WW (1998) The first extracellular domain of corticotropin releasing factor-R1 contains major binding determinants for urocortin and astressin. Endocrinology 139:566–570PubMedCrossRef Perrin MH, Sutton S, Bain DL, Berggren WT, Vale WW (1998) The first extracellular domain of corticotropin releasing factor-R1 contains major binding determinants for urocortin and astressin. Endocrinology 139:566–570PubMedCrossRef
81.
Zurück zum Zitat Klose J, Fechner K, Beyermann M et al (2005) Impact of N-terminal domains for corticotropin-releasing factor (CRF) receptor-ligand interactions. Biochemistry 44:1614–1623PubMedCrossRef Klose J, Fechner K, Beyermann M et al (2005) Impact of N-terminal domains for corticotropin-releasing factor (CRF) receptor-ligand interactions. Biochemistry 44:1614–1623PubMedCrossRef
82.
Zurück zum Zitat Mesleh MF, Shirley WA, Heise CE, Ling N, Maki RA, Laura RP (2007) NMR structural characterization of a minimal peptide antagonist bound to the extracellular domain of the corticotropin-releasing factor1 receptor. J Biol Chem 282:6338–6346PubMedCrossRef Mesleh MF, Shirley WA, Heise CE, Ling N, Maki RA, Laura RP (2007) NMR structural characterization of a minimal peptide antagonist bound to the extracellular domain of the corticotropin-releasing factor1 receptor. J Biol Chem 282:6338–6346PubMedCrossRef
83.
Zurück zum Zitat Runge S, Wulff BS, Madsen K, Brauner-Osborne H, Knudsen LB (2003) Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138:787–794PubMedPubMedCentralCrossRef Runge S, Wulff BS, Madsen K, Brauner-Osborne H, Knudsen LB (2003) Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138:787–794PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Dong M, Pinon DI, Cox RF, Miller LJ (2004) Importance of the amino terminus in secretin family G protein-coupled receptors. Intrinsic photoaffinity labeling establishes initial docking constraints for the calcitonin receptor. J Biol Chem 279:1167–1175PubMedCrossRef Dong M, Pinon DI, Cox RF, Miller LJ (2004) Importance of the amino terminus in secretin family G protein-coupled receptors. Intrinsic photoaffinity labeling establishes initial docking constraints for the calcitonin receptor. J Biol Chem 279:1167–1175PubMedCrossRef
85.
Zurück zum Zitat Gkountelias K, Tselios T, Venihaki M et al (2009) Alanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding. Mol Pharmacol 75:793–800PubMedCrossRef Gkountelias K, Tselios T, Venihaki M et al (2009) Alanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding. Mol Pharmacol 75:793–800PubMedCrossRef
86.
Zurück zum Zitat Assil-Kishawi I, Abou-Samra AB (2002) Sauvagine cross-links to the second extracellular loop of the corticotropin-releasing factor type 1 receptor. J Biol Chem 277:32558–32561PubMedCrossRef Assil-Kishawi I, Abou-Samra AB (2002) Sauvagine cross-links to the second extracellular loop of the corticotropin-releasing factor type 1 receptor. J Biol Chem 277:32558–32561PubMedCrossRef
87.
Zurück zum Zitat Kraetke O, Holeran B, Berger H, Escher E, Bienert M, Beyermann M (2005) Photoaffinity cross-linking of the corticotropin-releasing factor receptor type 1 with photoreactive urocortin analogues. Biochemistry 44:15569–15577PubMedCrossRef Kraetke O, Holeran B, Berger H, Escher E, Bienert M, Beyermann M (2005) Photoaffinity cross-linking of the corticotropin-releasing factor receptor type 1 with photoreactive urocortin analogues. Biochemistry 44:15569–15577PubMedCrossRef
88.
Zurück zum Zitat Assil-Kishawi I, Samra TA, Mierke DF, Abou-Samra AB (2008) Residue 17 of sauvagine cross-links to the first transmembrane domain of corticotropin-releasing factor receptor 1 (CRFR1). J Biol Chem 283:35644–35651PubMedPubMedCentralCrossRef Assil-Kishawi I, Samra TA, Mierke DF, Abou-Samra AB (2008) Residue 17 of sauvagine cross-links to the first transmembrane domain of corticotropin-releasing factor receptor 1 (CRFR1). J Biol Chem 283:35644–35651PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Coin I, Katritch V, Sun T et al (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155:1258–1269PubMedPubMedCentralCrossRef Coin I, Katritch V, Sun T et al (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155:1258–1269PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Bisello A, Adams AE, Mierke DF et al (1998) Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J Biol Chem 273:22498–22505PubMedCrossRef Bisello A, Adams AE, Mierke DF et al (1998) Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J Biol Chem 273:22498–22505PubMedCrossRef
91.
Zurück zum Zitat Dong M, Li Z, Pinon DI, Lybrand TP, Miller LJ (2004) Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J Biol Chem 279:2894–2903PubMedCrossRef Dong M, Li Z, Pinon DI, Lybrand TP, Miller LJ (2004) Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J Biol Chem 279:2894–2903PubMedCrossRef
92.
Zurück zum Zitat Dong M, Pinon DI, Cox RF, Miller LJ (2004) Molecular approximation between a residue in the amino-terminal region of calcitonin and the third extracellular loop of the class B G protein-coupled calcitonin receptor. J Biol Chem 279:31177–31182PubMedCrossRef Dong M, Pinon DI, Cox RF, Miller LJ (2004) Molecular approximation between a residue in the amino-terminal region of calcitonin and the third extracellular loop of the class B G protein-coupled calcitonin receptor. J Biol Chem 279:31177–31182PubMedCrossRef
93.
Zurück zum Zitat Dong M, Xu X, Ball AM, Makhoul JA, Lam PC, Pinon DI, Orry A, Sexton PM, Abagyan R, Miller LJ (2012) Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB J 26:5092–5105PubMedPubMedCentralCrossRef Dong M, Xu X, Ball AM, Makhoul JA, Lam PC, Pinon DI, Orry A, Sexton PM, Abagyan R, Miller LJ (2012) Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB J 26:5092–5105PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Runge S, Gram C, Brauner-Osborne H, Madsen K, Knudsen LB, Wulff BS (2003) Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J Biol Chem 278:28005–28010PubMedCrossRef Runge S, Gram C, Brauner-Osborne H, Madsen K, Knudsen LB, Wulff BS (2003) Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J Biol Chem 278:28005–28010PubMedCrossRef
95.
Zurück zum Zitat Al-Sabah S, Donnelly D (2003) The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists. FEBS Lett 553:342–346PubMedCrossRef Al-Sabah S, Donnelly D (2003) The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists. FEBS Lett 553:342–346PubMedCrossRef
96.
Zurück zum Zitat Di Paolo E, De Neef P, Moguilevsky N et al (1998) Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 424:207–210PubMedCrossRef Di Paolo E, De Neef P, Moguilevsky N et al (1998) Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 424:207–210PubMedCrossRef
97.
Zurück zum Zitat Bergwitz C, Gardella TJ, Flannery MR et al (1996) Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand-receptor interaction. J Biol Chem 271:26469–26472PubMedCrossRef Bergwitz C, Gardella TJ, Flannery MR et al (1996) Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand-receptor interaction. J Biol Chem 271:26469–26472PubMedCrossRef
98.
Zurück zum Zitat Hoare SR, Fleck BA, Gross RS, Crowe PD, Williams JP, Grigoriadis DE (2008) Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol Pharmacol 73:1371–1380PubMedCrossRef Hoare SR, Fleck BA, Gross RS, Crowe PD, Williams JP, Grigoriadis DE (2008) Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol Pharmacol 73:1371–1380PubMedCrossRef
99.
Zurück zum Zitat Hoare SR, Sullivan SK, Schwarz DA et al (2004) Ligand affinity for amino-terminal and juxtamembrane domains of the corticotropin releasing factor type I receptor: regulation by G-protein and nonpeptide antagonists. Biochemistry 43:3996–4011PubMedCrossRef Hoare SR, Sullivan SK, Schwarz DA et al (2004) Ligand affinity for amino-terminal and juxtamembrane domains of the corticotropin releasing factor type I receptor: regulation by G-protein and nonpeptide antagonists. Biochemistry 43:3996–4011PubMedCrossRef
100.
Zurück zum Zitat Hoare SR, Gardella TJ, Usdin TB (2001) Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor. Effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. J Biol Chem 276:7741–7753PubMedCrossRef Hoare SR, Gardella TJ, Usdin TB (2001) Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor. Effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. J Biol Chem 276:7741–7753PubMedCrossRef
101.
Zurück zum Zitat Nielsen SM, Nielsen LZ, Hjorth SA, Perrin MH, Vale WW (2000) Constitutive activation of tethered-peptide/corticotropin-releasing factor receptor chimeras. Proc Natl Acad Sci U S A 97:10277–10281PubMedPubMedCentralCrossRef Nielsen SM, Nielsen LZ, Hjorth SA, Perrin MH, Vale WW (2000) Constitutive activation of tethered-peptide/corticotropin-releasing factor receptor chimeras. Proc Natl Acad Sci U S A 97:10277–10281PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Spyridaki K, Matsoukas MT, Cordomi A et al (2014) Structural-functional analysis of the third transmembrane domain of the corticotropin-releasing factor type 1 receptor: role in activation and allosteric antagonism. J Biol Chem 289:18966–18977PubMedPubMedCentralCrossRef Spyridaki K, Matsoukas MT, Cordomi A et al (2014) Structural-functional analysis of the third transmembrane domain of the corticotropin-releasing factor type 1 receptor: role in activation and allosteric antagonism. J Biol Chem 289:18966–18977PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP (2005) Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci U S A 102:16084–16089PubMedPubMedCentralCrossRef Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP (2005) Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci U S A 102:16084–16089PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Koth CM, Murray JM, Mukund S et al (2012) Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci U S A 109:14393–14398PubMedPubMedCentralCrossRef Koth CM, Murray JM, Mukund S et al (2012) Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci U S A 109:14393–14398PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Grace CR, Perrin MH, DiGruccio MR et al (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101:12836–12841PubMedPubMedCentralCrossRef Grace CR, Perrin MH, DiGruccio MR et al (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101:12836–12841PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Grace CR, Perrin MH, Gulyas J et al (2010) NMR structure of the first extracellular domain of corticotropin-releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist. J Biol Chem 285:38580–38589PubMedPubMedCentralCrossRef Grace CR, Perrin MH, Gulyas J et al (2010) NMR structure of the first extracellular domain of corticotropin-releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist. J Biol Chem 285:38580–38589PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Pioszak AA, Parker NR, Gardella TJ, Xu HE (2009) Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem 284:28382–28391PubMedPubMedCentralCrossRef Pioszak AA, Parker NR, Gardella TJ, Xu HE (2009) Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem 284:28382–28391PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Perrin MH, Grace CR, Digruccio MR et al (2007) Distinct structural and functional roles of conserved residues in the first extracellular domain of receptors for corticotropin releasing factor and related G-protein coupled receptors. J Biol Chem 282:37529–37536PubMedCrossRef Perrin MH, Grace CR, Digruccio MR et al (2007) Distinct structural and functional roles of conserved residues in the first extracellular domain of receptors for corticotropin releasing factor and related G-protein coupled receptors. J Biol Chem 282:37529–37536PubMedCrossRef
109.
Zurück zum Zitat ter Haar E, Koth CM, Abdul-Manan N et al (2010) Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18:1083–1109PubMedCrossRef ter Haar E, Koth CM, Abdul-Manan N et al (2010) Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18:1083–1109PubMedCrossRef
110.
Zurück zum Zitat Norman DG, Barlow PN, Baron M, Day AJ, Sim RB, Campbell ID (1991) Three-dimensional structure of a complement control protein module in solution. J Mol Biol 219:717–725PubMedCrossRef Norman DG, Barlow PN, Baron M, Day AJ, Sim RB, Campbell ID (1991) Three-dimensional structure of a complement control protein module in solution. J Mol Biol 219:717–725PubMedCrossRef
111.
Zurück zum Zitat Perrin MH, Grace CR, Riek R, Vale WW (2006) The three-dimensional structure of the N-terminal domain of corticotropin-releasing factor receptors: sushi domains and the B1 family of G protein-coupled receptors. Ann N Y Acad Sci 1070:105–119PubMedCrossRef Perrin MH, Grace CR, Riek R, Vale WW (2006) The three-dimensional structure of the N-terminal domain of corticotropin-releasing factor receptors: sushi domains and the B1 family of G protein-coupled receptors. Ann N Y Acad Sci 1070:105–119PubMedCrossRef
112.
Zurück zum Zitat Wilmen A, Goke B, Goke R (1996) The isolated N-terminal extracellular domain of the glucagon-like peptide-1 (GLP)-1 receptor has intrinsic binding activity. FEBS Lett 398:43–47PubMedCrossRef Wilmen A, Goke B, Goke R (1996) The isolated N-terminal extracellular domain of the glucagon-like peptide-1 (GLP)-1 receptor has intrinsic binding activity. FEBS Lett 398:43–47PubMedCrossRef
113.
Zurück zum Zitat Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M (1995) Mutational analysis of cysteine residues within the extracellular domains of the human vasoactive intestinal peptide (VIP) 1 receptor identifies seven mutants that are defective in VIP binding. Biochem Biophys Res Commun 211:901–908PubMedCrossRef Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M (1995) Mutational analysis of cysteine residues within the extracellular domains of the human vasoactive intestinal peptide (VIP) 1 receptor identifies seven mutants that are defective in VIP binding. Biochem Biophys Res Commun 211:901–908PubMedCrossRef
114.
Zurück zum Zitat Qi LJ, Leung AT, Xiong Y, Marx KA, Abou-Samra AB (1997) Extracellular cysteines of the corticotropin-releasing factor receptor are critical for ligand interaction. Biochemistry 36:12442–12448PubMedCrossRef Qi LJ, Leung AT, Xiong Y, Marx KA, Abou-Samra AB (1997) Extracellular cysteines of the corticotropin-releasing factor receptor are critical for ligand interaction. Biochemistry 36:12442–12448PubMedCrossRef
115.
Zurück zum Zitat Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG (1993) Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364:208–213PubMedCrossRef Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG (1993) Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364:208–213PubMedCrossRef
116.
Zurück zum Zitat Parameswaran N, Spielman WS (2006) RAMPs: the past, present and future. Trends Biochem Sci 31:631–638PubMedCrossRef Parameswaran N, Spielman WS (2006) RAMPs: the past, present and future. Trends Biochem Sci 31:631–638PubMedCrossRef
117.
Zurück zum Zitat Hay DL, Pioszak AA (2016) Receptor activity-modifying proteins (RAMPs): new insights and roles. Annu Rev Pharmacol Toxicol 56:469–487PubMedCrossRef Hay DL, Pioszak AA (2016) Receptor activity-modifying proteins (RAMPs): new insights and roles. Annu Rev Pharmacol Toxicol 56:469–487PubMedCrossRef
118.
Zurück zum Zitat Weston C, Winfield I, Harris M et al (2016) Receptor activity-modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors. J Biol Chem 291:21925–21944PubMedPubMedCentralCrossRef Weston C, Winfield I, Harris M et al (2016) Receptor activity-modifying protein-directed G protein signaling specificity for the calcitonin gene-related peptide family of receptors. J Biol Chem 291:21925–21944PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Archbold JK, Flanagan JU, Watkins HA, Gingell JJ, Hay DL (2011) Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol Sci 32:591–600PubMedCrossRef Archbold JK, Flanagan JU, Watkins HA, Gingell JJ, Hay DL (2011) Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol Sci 32:591–600PubMedCrossRef
120.
Zurück zum Zitat de Graaf C, Song G, Cao C et al (2017) Extending the structural view of class B GPCRs. Trends Biochem Sci 42:946–960PubMedCrossRef de Graaf C, Song G, Cao C et al (2017) Extending the structural view of class B GPCRs. Trends Biochem Sci 42:946–960PubMedCrossRef
121.
Zurück zum Zitat Siu FY, He M, de Graaf C et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449PubMedCrossRef Siu FY, He M, de Graaf C et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449PubMedCrossRef
122.
Zurück zum Zitat Jazayeri A, Dore AS, Lamb D et al (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–277PubMedCrossRef Jazayeri A, Dore AS, Lamb D et al (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–277PubMedCrossRef
123.
Zurück zum Zitat Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443PubMedCrossRef Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443PubMedCrossRef
124.
Zurück zum Zitat Song G, Yang D, Wang Y et al (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315PubMedCrossRef Song G, Yang D, Wang Y et al (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315PubMedCrossRef
125.
126.
127.
128.
Zurück zum Zitat Bortolato A, Dore AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH (2014) Structure of class B GPCRs: new horizons for drug discovery. Br J Pharmacol 171:3132–3145PubMedPubMedCentralCrossRef Bortolato A, Dore AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH (2014) Structure of class B GPCRs: new horizons for drug discovery. Br J Pharmacol 171:3132–3145PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models of structure-function relations in G protein-coupled receptors. Methods in. Neurosciences 25:366–428CrossRef Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models of structure-function relations in G protein-coupled receptors. Methods in. Neurosciences 25:366–428CrossRef
130.
Zurück zum Zitat Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A 110:5211–5216PubMedPubMedCentralCrossRef Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A 110:5211–5216PubMedPubMedCentralCrossRef
131.
132.
Zurück zum Zitat Rashid AJ, O'Dowd BF, George SR (2004) Minireview: diversity and complexity of signaling through peptidergic G protein-coupled receptors. Endocrinology 145:2645–2652PubMedCrossRef Rashid AJ, O'Dowd BF, George SR (2004) Minireview: diversity and complexity of signaling through peptidergic G protein-coupled receptors. Endocrinology 145:2645–2652PubMedCrossRef
133.
Zurück zum Zitat Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27:260–286PubMedCrossRef Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27:260–286PubMedCrossRef
134.
Zurück zum Zitat Culhane KJ, Liu Y, Cai Y, Yan EC (2015) Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 6:264PubMedPubMedCentralCrossRef Culhane KJ, Liu Y, Cai Y, Yan EC (2015) Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 6:264PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Punn A, Chen J, Delidaki M et al (2012) Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor. J Biol Chem 287:8974–8985PubMedPubMedCentralCrossRef Punn A, Chen J, Delidaki M et al (2012) Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor. J Biol Chem 287:8974–8985PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Conner AC, Simms J, Conner MT, Wootten DL, Wheatley M, Poyner DR (2006) Diverse functional motifs within the three intracellular loops of the CGRP1 receptor. Biochemistry 45:12976–12985PubMedCrossRef Conner AC, Simms J, Conner MT, Wootten DL, Wheatley M, Poyner DR (2006) Diverse functional motifs within the three intracellular loops of the CGRP1 receptor. Biochemistry 45:12976–12985PubMedCrossRef
137.
Zurück zum Zitat Huang Z, Chen Y, Pratt S et al (1996) The N-terminal region of the third intracellular loop of the parathyroid hormone (PTH)/PTH-related peptide receptor is critical for coupling to cAMP and inositol phosphate/Ca2+ signal transduction pathways. J Biol Chem 271:33382–33389PubMedCrossRef Huang Z, Chen Y, Pratt S et al (1996) The N-terminal region of the third intracellular loop of the parathyroid hormone (PTH)/PTH-related peptide receptor is critical for coupling to cAMP and inositol phosphate/Ca2+ signal transduction pathways. J Biol Chem 271:33382–33389PubMedCrossRef
138.
Zurück zum Zitat Hallbrink M, Holmqvist T, Olsson M, Ostenson CG, Efendic S, Langel U (2001) Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Galpha(s) and Galpha(i)/Galpha(o) activation. Biochim Biophys Acta 1546:79–86PubMedCrossRef Hallbrink M, Holmqvist T, Olsson M, Ostenson CG, Efendic S, Langel U (2001) Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Galpha(s) and Galpha(i)/Galpha(o) activation. Biochim Biophys Acta 1546:79–86PubMedCrossRef
139.
Zurück zum Zitat Chan KY, Pang RT, Chow BK (2001) Functional segregation of the highly conserved basic motifs within the third endoloop of the human secretin receptor. Endocrinology 142:3926–3934PubMedCrossRef Chan KY, Pang RT, Chow BK (2001) Functional segregation of the highly conserved basic motifs within the third endoloop of the human secretin receptor. Endocrinology 142:3926–3934PubMedCrossRef
140.
Zurück zum Zitat Mathi SK, Chan Y, Li X, Wheeler MB (1997) Scanning of the glucagon-like peptide-1 receptor localizes G protein-activating determinants primarily to the N terminus of the third intracellular loop. Mol Endocrinol 11:424–432PubMedCrossRef Mathi SK, Chan Y, Li X, Wheeler MB (1997) Scanning of the glucagon-like peptide-1 receptor localizes G protein-activating determinants primarily to the N terminus of the third intracellular loop. Mol Endocrinol 11:424–432PubMedCrossRef
141.
Zurück zum Zitat Couvineau A, Lacapere JJ, Tan YV, Rouyer-Fessard C, Nicole P, Laburthe M (2003) Identification of cytoplasmic domains of hVPAC1 receptor required for activation of adenylyl cyclase. Crucial role of two charged amino acids strictly conserved in class II G protein-coupled receptors. J Biol Chem 278:24759–24766PubMedCrossRef Couvineau A, Lacapere JJ, Tan YV, Rouyer-Fessard C, Nicole P, Laburthe M (2003) Identification of cytoplasmic domains of hVPAC1 receptor required for activation of adenylyl cyclase. Crucial role of two charged amino acids strictly conserved in class II G protein-coupled receptors. J Biol Chem 278:24759–24766PubMedCrossRef
142.
Zurück zum Zitat Garcia GL, Dong M, Miller LJ (2012) Differential determinants for coupling of distinct G proteins with the class B secretin receptor. Am J Physiol Cell Physiol 302:C1202–C1212PubMedPubMedCentralCrossRef Garcia GL, Dong M, Miller LJ (2012) Differential determinants for coupling of distinct G proteins with the class B secretin receptor. Am J Physiol Cell Physiol 302:C1202–C1212PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Bavec A, Hallbrink M, Langel U, Zorko M (2003) Different role of intracellular loops of glucagon-like peptide-1 receptor in G-protein coupling. Regul Pept 111:137–144PubMedCrossRef Bavec A, Hallbrink M, Langel U, Zorko M (2003) Different role of intracellular loops of glucagon-like peptide-1 receptor in G-protein coupling. Regul Pept 111:137–144PubMedCrossRef
144.
Zurück zum Zitat Cypess AM, Unson CG, Wu CR, Sakmar TP (1999) Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. J Biol Chem 274:19455–19464PubMedCrossRef Cypess AM, Unson CG, Wu CR, Sakmar TP (1999) Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. J Biol Chem 274:19455–19464PubMedCrossRef
145.
Zurück zum Zitat Takhar S, Gyomorey S, Su RC, Mathi SK, Li X, Wheeler MB (1996) The third cytoplasmic domain of the GLP-1[7-36 amide] receptor is required for coupling to the adenylyl cyclase system. Endocrinology 137:2175–2178PubMedCrossRef Takhar S, Gyomorey S, Su RC, Mathi SK, Li X, Wheeler MB (1996) The third cytoplasmic domain of the GLP-1[7-36 amide] receptor is required for coupling to the adenylyl cyclase system. Endocrinology 137:2175–2178PubMedCrossRef
146.
Zurück zum Zitat Iida-Klein A, Guo J, Takemura M et al (1997) Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH-stimulated phospholipase C activity. J Biol Chem 272:6882–6889PubMedCrossRef Iida-Klein A, Guo J, Takemura M et al (1997) Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH-stimulated phospholipase C activity. J Biol Chem 272:6882–6889PubMedCrossRef
147.
Zurück zum Zitat Ferrandon S, Feinstein TN, Castro M et al (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5:734–742PubMedPubMedCentralCrossRef Ferrandon S, Feinstein TN, Castro M et al (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5:734–742PubMedPubMedCentralCrossRef
148.
149.
Zurück zum Zitat Chen YL, Obach RS, Braselton J et al (2008) 2-aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists. J Med Chem 51:1385–1392PubMedCrossRef Chen YL, Obach RS, Braselton J et al (2008) 2-aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists. J Med Chem 51:1385–1392PubMedCrossRef
150.
Zurück zum Zitat Hoare SR, Brown BT, Santos MA, Malany S, Betz SF, Grigoriadis DE (2006) Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem Pharmacol 72:244–255PubMedCrossRef Hoare SR, Brown BT, Santos MA, Malany S, Betz SF, Grigoriadis DE (2006) Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem Pharmacol 72:244–255PubMedCrossRef
151.
Zurück zum Zitat Liaw CW, Grigoriadis DE, Lorang MT, De Souza EB, Maki RA (1997) Localization of agonist- and antagonist-binding domains of human corticotropin-releasing factor receptors. Mol Endocrinol 11:2048–2053PubMedCrossRef Liaw CW, Grigoriadis DE, Lorang MT, De Souza EB, Maki RA (1997) Localization of agonist- and antagonist-binding domains of human corticotropin-releasing factor receptors. Mol Endocrinol 11:2048–2053PubMedCrossRef
152.
Zurück zum Zitat Sun X, Cheng J, Wang X, Tang Y, Agren H, Tu Y (2015) Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1. Sci Rep 5:8066PubMedPubMedCentralCrossRef Sun X, Cheng J, Wang X, Tang Y, Agren H, Tu Y (2015) Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1. Sci Rep 5:8066PubMedPubMedCentralCrossRef
Metadaten
Titel
Current understanding of the structure and function of family B GPCRs to design novel drugs
verfasst von
Vlasios Karageorgos
Maria Venihaki
Stelios Sakellaris
Michail Pardalos
George Kontakis
Minos-Timotheos Matsoukas
Achille Gravanis
Andreas Margioris
George Liapakis
Publikationsdatum
01.03.2018
Verlag
Springer International Publishing
Erschienen in
Hormones / Ausgabe 1/2018
Print ISSN: 1109-3099
Elektronische ISSN: 2520-8721
DOI
https://doi.org/10.1007/s42000-018-0009-5

Weitere Artikel der Ausgabe 1/2018

Hormones 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.