Skip to main content
Erschienen in: Experimental Brain Research 3/2008

01.09.2008 | Research Article

Degree of handedness affects intermanual transfer of skill learning

verfasst von: Cori Chase, Rachael Seidler

Erschienen in: Experimental Brain Research | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Intermanual transfer of skill learning has often been used as a paradigm to study functional specialization and hemispheric interactions in relation to handedness. This literature has not evaluated whether degree of handedness impacts learning and intermanual transfer. Because handedness scores are related to factors that might influence intermanual transfer, such as engagement of the ipsilateral hemisphere during movement (Dassonville et al. in Proc Natl Acad Sci USA 94:14015–14018, 1997) and corpus callosum volume (Witelson in Science 229:665–668, 1985; Brain 112:799–835, 1989), we tested whether degree of handedness is correlated with transfer magnitude. We had groups of left and right handed participants perform a sensorimotor adaptation task and a sequence learning task. Following learning with either the dominant or nondominant hand, participants transferred to task performance with the other hand. We evaluated whether the magnitude of learning and intermanual transfer were influenced by either direction and/or degree of handedness. Participants exhibited faster sensorimotor adaptation with the right hand, regardless of whether they were right or left handed. In addition, less strongly left handed individuals exhibited better intermanual transfer of sensorimotor adaptation, while less strongly right handed individuals exhibited better intermanual transfer of sequence learning. The findings suggest that involvement of the ipsilateral hemisphere during learning may influence intermanual transfer magnitude.
Literatur
Zurück zum Zitat Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421PubMedCrossRef Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421PubMedCrossRef
Zurück zum Zitat Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965PubMed Baizer JS, Kralj-Hans I, Glickstein M (1999) Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol 81:1960–1965PubMed
Zurück zum Zitat Cherbuin N, Brinkman C (2006a) Efficiency of callosal transfer and hemispheric interaction. Neuropsychology 20:178–184PubMedCrossRef Cherbuin N, Brinkman C (2006a) Efficiency of callosal transfer and hemispheric interaction. Neuropsychology 20:178–184PubMedCrossRef
Zurück zum Zitat Cherbuin N, Brinkman C (2006b) Hemispheric interactions are different in left-handed individuals. Neuropsychology 20:700–707PubMedCrossRef Cherbuin N, Brinkman C (2006b) Hemispheric interactions are different in left-handed individuals. Neuropsychology 20:700–707PubMedCrossRef
Zurück zum Zitat Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:18–621CrossRef Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:18–621CrossRef
Zurück zum Zitat Criscimagner-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–173CrossRef Criscimagner-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–173CrossRef
Zurück zum Zitat Cunningham HA, Welch RB (1994) Multiple concurrent visual-motor mappings: implications for models of adaptation. J Exp Psychol Hum Percept Perform 20:987–999PubMedCrossRef Cunningham HA, Welch RB (1994) Multiple concurrent visual-motor mappings: implications for models of adaptation. J Exp Psychol Hum Percept Perform 20:987–999PubMedCrossRef
Zurück zum Zitat Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018PubMedCrossRef Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018PubMedCrossRef
Zurück zum Zitat de Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M (1999) Callosal and cortical contribution to procedural learning. Brain 122:1049–1062PubMedCrossRef de Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M (1999) Callosal and cortical contribution to procedural learning. Brain 122:1049–1062PubMedCrossRef
Zurück zum Zitat Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167PubMedCrossRef Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167PubMedCrossRef
Zurück zum Zitat Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145PubMedCrossRef Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145PubMedCrossRef
Zurück zum Zitat Goble DJ, Brown SH (2008a) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610PubMedCrossRef Goble DJ, Brown SH (2008a) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610PubMedCrossRef
Zurück zum Zitat Goble DJ, Brown SH (2008b) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99(6):3063–3074PubMedCrossRef Goble DJ, Brown SH (2008b) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99(6):3063–3074PubMedCrossRef
Zurück zum Zitat Gordon AM, Forssberg H, Iwasaki N (1994) Formation and lateralization of internal representations underlying motor commands during precision grip. Neuropsychologia 32:555–568PubMedCrossRef Gordon AM, Forssberg H, Iwasaki N (1994) Formation and lateralization of internal representations underlying motor commands during precision grip. Neuropsychologia 32:555–568PubMedCrossRef
Zurück zum Zitat Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3:397–400PubMedCrossRef Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3:397–400PubMedCrossRef
Zurück zum Zitat Hicks RE (1974) Asymmetry of bilateral transfer. Am J Psychol 87:667–674CrossRef Hicks RE (1974) Asymmetry of bilateral transfer. Am J Psychol 87:667–674CrossRef
Zurück zum Zitat Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471PubMedCrossRef Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471PubMedCrossRef
Zurück zum Zitat Hutchinson S, Lee LH, Gaab N, Schlaug G (2003) Cerebellar volume of musicians. Cereb Cortex 13:943–949PubMedCrossRef Hutchinson S, Lee LH, Gaab N, Schlaug G (2003) Cerebellar volume of musicians. Cereb Cortex 13:943–949PubMedCrossRef
Zurück zum Zitat Huynh H, Feldt LS (1970) Conditions under which the mean square ratios in repeated measures designs have exact F-distributions. J Am Stat Assoc 65:1582–1589CrossRef Huynh H, Feldt LS (1970) Conditions under which the mean square ratios in repeated measures designs have exact F-distributions. J Am Stat Assoc 65:1582–1589CrossRef
Zurück zum Zitat Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195PubMedCrossRef Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195PubMedCrossRef
Zurück zum Zitat Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M, Ito M, Fukuda H (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 18:3979–3983CrossRef Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M, Ito M, Fukuda H (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 18:3979–3983CrossRef
Zurück zum Zitat Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516PubMedCrossRef Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516PubMedCrossRef
Zurück zum Zitat Inui N (2005) Coupling of force variability in bimanual tapping with asymmetrical force. Motor Control 9:164–179PubMed Inui N (2005) Coupling of force variability in bimanual tapping with asymmetrical force. Motor Control 9:164–179PubMed
Zurück zum Zitat Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997a) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337PubMed Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997a) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337PubMed
Zurück zum Zitat Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997b) Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324PubMed Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997b) Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77:1313–1324PubMed
Zurück zum Zitat Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158PubMedCrossRef Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158PubMedCrossRef
Zurück zum Zitat Kitazawa S, Kimura T, Uka T (1997) Prism adaptation of reaching movements: specificity for the velocity of reaching. J Neurosci 17:1481–1492PubMed Kitazawa S, Kimura T, Uka T (1997) Prism adaptation of reaching movements: specificity for the velocity of reaching. J Neurosci 17:1481–1492PubMed
Zurück zum Zitat Lassonde M, Sauerwein HC, Lepore F (1995) Extent and limits of callosal plasticity: presence of disconnection symptoms in callosal agenesis. Neuropsychologia 33:989–1007PubMedCrossRef Lassonde M, Sauerwein HC, Lepore F (1995) Extent and limits of callosal plasticity: presence of disconnection symptoms in callosal agenesis. Neuropsychologia 33:989–1007PubMedCrossRef
Zurück zum Zitat Laszlo JI, Baguley RA, Bairstow PJ (1970) Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav 2:261–271 Laszlo JI, Baguley RA, Bairstow PJ (1970) Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav 2:261–271
Zurück zum Zitat Lu X, Ashe J (2005) Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45:967–973PubMedCrossRef Lu X, Ashe J (2005) Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45:967–973PubMedCrossRef
Zurück zum Zitat Mayr U (1996) Spatial attention and implicit sequence learning: evidence for independent learning of spatial and nonspatial sequences. J Exp Psychol Learn Mem Cogn 22:350–364PubMedCrossRef Mayr U (1996) Spatial attention and implicit sequence learning: evidence for independent learning of spatial and nonspatial sequences. J Exp Psychol Learn Mem Cogn 22:350–364PubMedCrossRef
Zurück zum Zitat Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370PubMedCrossRef Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370PubMedCrossRef
Zurück zum Zitat Morton SM, Lang CE, Bastian AJ (2001) Inter- and intra-limb generalization of adaptation during catching. Exp Brain Res 141:438–445PubMedCrossRef Morton SM, Lang CE, Bastian AJ (2001) Inter- and intra-limb generalization of adaptation during catching. Exp Brain Res 141:438–445PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
Zurück zum Zitat Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113PubMedCrossRef Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113PubMedCrossRef
Zurück zum Zitat Parlow SE, Kinsbourne M (1990) Asymmetrical transfer of braille acquisition between hands. Brain Lang 39:319–330PubMedCrossRef Parlow SE, Kinsbourne M (1990) Asymmetrical transfer of braille acquisition between hands. Brain Lang 39:319–330PubMedCrossRef
Zurück zum Zitat Paz R, Boraud T, Natan C, Bergman H, Vaadia E (2003) Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat Neurosci 6:882–890PubMedCrossRef Paz R, Boraud T, Natan C, Bergman H, Vaadia E (2003) Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat Neurosci 6:882–890PubMedCrossRef
Zurück zum Zitat Perez MA, Wise SP, Willingham DT, Cohen LG (2007) Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 27:1045–1053PubMedCrossRef Perez MA, Wise SP, Willingham DT, Cohen LG (2007) Neurophysiological mechanisms involved in transfer of procedural knowledge. J Neurosci 27:1045–1053PubMedCrossRef
Zurück zum Zitat Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361PubMedCrossRef Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361PubMedCrossRef
Zurück zum Zitat Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 23:1–73 Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 23:1–73
Zurück zum Zitat Remillard G (2003) Pure perceptual-based sequence learning. J Exp Psychol Learn Mem Cogn 29:581–597PubMedCrossRef Remillard G (2003) Pure perceptual-based sequence learning. J Exp Psychol Learn Mem Cogn 29:581–597PubMedCrossRef
Zurück zum Zitat Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258PubMedCrossRef Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258PubMedCrossRef
Zurück zum Zitat Sainburg RL (2005) Handedness, differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213PubMedCrossRef Sainburg RL (2005) Handedness, differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213PubMedCrossRef
Zurück zum Zitat Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447PubMedCrossRef Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447PubMedCrossRef
Zurück zum Zitat Schmidt SL, Oliveira RM, Rocha FR, Abreu-Villaca Y (2000) Influences of handedness and gender on the grooved pegboard test. Brain Cogn 44:445–454PubMedCrossRef Schmidt SL, Oliveira RM, Rocha FR, Abreu-Villaca Y (2000) Influences of handedness and gender on the grooved pegboard test. Brain Cogn 44:445–454PubMedCrossRef
Zurück zum Zitat Seidler RD, Bloomberg JJ, Stelmach GE (2001a) Patterns of transfer of adaptation among body segments. Behav Brain Res 122:145–157PubMedCrossRef Seidler RD, Bloomberg JJ, Stelmach GE (2001a) Patterns of transfer of adaptation among body segments. Behav Brain Res 122:145–157PubMedCrossRef
Zurück zum Zitat Seidler RD, Bloomberg JJ, Stelmach GE (2001b) Context-dependent arm pointing adaptation. Behav Brain Res 119:155–166PubMedCrossRef Seidler RD, Bloomberg JJ, Stelmach GE (2001b) Context-dependent arm pointing adaptation. Behav Brain Res 119:155–166PubMedCrossRef
Zurück zum Zitat Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296:2043–2046PubMedCrossRef Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296:2043–2046PubMedCrossRef
Zurück zum Zitat Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165:114–124PubMedCrossRef Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165:114–124PubMedCrossRef
Zurück zum Zitat Sohn YH, Jung HY, Kaelin-Lang A, Hallett M (2003) Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp Brain Res 148:176–185PubMed Sohn YH, Jung HY, Kaelin-Lang A, Hallett M (2003) Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp Brain Res 148:176–185PubMed
Zurück zum Zitat Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16:587–603PubMed Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16:587–603PubMed
Zurück zum Zitat Teasdale N, Bard C, Fleury M, Young D, Proteau L (1993) Determining movement onsets from temporal series. J Mot Behav 25:97–106PubMed Teasdale N, Bard C, Fleury M, Young D, Proteau L (1993) Determining movement onsets from temporal series. J Mot Behav 25:97–106PubMed
Zurück zum Zitat Teixeira LA (2000) Timing and force components in bilateral transfer of learning. Brain Cogn 44:455–469PubMedCrossRef Teixeira LA (2000) Timing and force components in bilateral transfer of learning. Brain Cogn 44:455–469PubMedCrossRef
Zurück zum Zitat Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327PubMedCrossRef Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327PubMedCrossRef
Zurück zum Zitat Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophys 79:2149–2154 Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophys 79:2149–2154
Zurück zum Zitat Wang J, Sainburg RL (2003) Mechanisms underlying interlimb transfer of visuomotor rotations. Exp Brain Res 149:520–526PubMed Wang J, Sainburg RL (2003) Mechanisms underlying interlimb transfer of visuomotor rotations. Exp Brain Res 149:520–526PubMed
Zurück zum Zitat Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360PubMedCrossRef Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360PubMedCrossRef
Zurück zum Zitat Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230PubMedCrossRef Wang J, Sainburg RL (2006) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230PubMedCrossRef
Zurück zum Zitat Wigmore V, Tong C, Flanagan JR (2002) Visuomotor rotations of varying size and direction compete for a single internal model in working memory. J Exp Psychol Hum Percept Perform 28:447–457PubMedCrossRef Wigmore V, Tong C, Flanagan JR (2002) Visuomotor rotations of varying size and direction compete for a single internal model in working memory. J Exp Psychol Hum Percept Perform 28:447–457PubMedCrossRef
Zurück zum Zitat Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105:558–584PubMedCrossRef Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105:558–584PubMedCrossRef
Zurück zum Zitat Willingham DB (1999) Implicit motor sequence learning is not purely perceptual. Mem Cognit 27:561–572PubMed Willingham DB (1999) Implicit motor sequence learning is not purely perceptual. Mem Cognit 27:561–572PubMed
Zurück zum Zitat Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, London Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, London
Zurück zum Zitat Witelson S (1985) The brain connection: the corpus callosum is larger in left-handers. Science 229:665–668PubMedCrossRef Witelson S (1985) The brain connection: the corpus callosum is larger in left-handers. Science 229:665–668PubMedCrossRef
Zurück zum Zitat Witelson S (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835PubMedCrossRef Witelson S (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835PubMedCrossRef
Metadaten
Titel
Degree of handedness affects intermanual transfer of skill learning
verfasst von
Cori Chase
Rachael Seidler
Publikationsdatum
01.09.2008
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2008
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-008-1472-z

Weitere Artikel der Ausgabe 3/2008

Experimental Brain Research 3/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.