Skip to main content
Erschienen in: NeuroMolecular Medicine 1/2018

15.02.2018 | Original Paper

Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples

verfasst von: Elizabeth S. Chan, Christopher Chen, Tuck Wah Soong, Boon-Seng Wong

Erschienen in: NeuroMolecular Medicine | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer’s disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease. In this study, we investigated the effect of ApoE genotype on the insulin signaling pathway in control and AD human brain samples. We found that targets of the insulin signaling pathway were attenuated in AD cases, regardless of ApoE isoform. We also found a decrease in GluR1 subunit expression, and an increase NR2B subunit expression in AD cases, regardless of ApoE isoform. Lastly, we observed that more insulin receptor (IR) was immunoprecipitated in control cases, and more Aβ was immunoprecipitated with AD cases. But, when comparing among AD cases, we found that more IR was immunoprecipitated with ApoE3 than ApoE4, and more Aβ was immunoprecipitated with ApoE4 than ApoE3. Our results suggest that the difference in IR binding and effect on protein expression downstream of the IR may affect onset and progression of AD.
Literatur
Zurück zum Zitat Bales, K. R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., et al. (2009). Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. Journal of Neuroscience, 29, 6771–6779.CrossRefPubMed Bales, K. R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., et al. (2009). Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. Journal of Neuroscience, 29, 6771–6779.CrossRefPubMed
Zurück zum Zitat Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., et al. (1999). Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences USA, 96, 15233–15238.CrossRef Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., et al. (1999). Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences USA, 96, 15233–15238.CrossRef
Zurück zum Zitat Beffert, U., & Poirier, J. (1998). ApoE associated with lipid has a reduced capacity to inhibit beta-amyloid fibril formation. NeuroReport, 9, 3321–3323.CrossRefPubMed Beffert, U., & Poirier, J. (1998). ApoE associated with lipid has a reduced capacity to inhibit beta-amyloid fibril formation. NeuroReport, 9, 3321–3323.CrossRefPubMed
Zurück zum Zitat Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Wang, C., & Huang, Y. (2011). C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proceedings of the National Academy of Sciences USA, 108, 4236–4241.CrossRef Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Wang, C., & Huang, Y. (2011). C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proceedings of the National Academy of Sciences USA, 108, 4236–4241.CrossRef
Zurück zum Zitat Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y., & Huang, Y. (2012). Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. Journal of Neuroscience, 32, 4803–4811.CrossRefPubMedPubMedCentral Bien-Ly, N., Gillespie, A. K., Walker, D., Yoon, S. Y., & Huang, Y. (2012). Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. Journal of Neuroscience, 32, 4803–4811.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease—associated Abeta oligomers. The Journal of Clinical Investigation, 122, 1339–1353.CrossRefPubMedPubMedCentral Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J. C., Decker, H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease—associated Abeta oligomers. The Journal of Clinical Investigation, 122, 1339–1353.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chan, E. S., Chan, C., Cole, G. M., & Wong, B. S. (2015). Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Scientific Reports, 5, 13842.CrossRefPubMedPubMedCentral Chan, E. S., Chan, C., Cole, G. M., & Wong, B. S. (2015). Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Scientific Reports, 5, 13842.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chan, E. S., Shetty, M. S., Sajikumar, S., Chen, C., Soong, T. W., & Wong, B.-S. (2016). ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model. Scientific Reports, 6, 26119.CrossRefPubMedPubMedCentral Chan, E. S., Shetty, M. S., Sajikumar, S., Chen, C., Soong, T. W., & Wong, B.-S. (2016). ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer’s disease mouse model. Scientific Reports, 6, 26119.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chua, L. M., Lim, M. L., Chong, P. R., Hu, Z. P., Cheung, N. S., & Wong, B. S. (2012). Impaired neuronal insulin signaling precedes A beta(42) accumulation in female A beta PPsw/PS1 Delta E9 Mice. Journal of Alzheimer’s Disease, 29, 783–791.PubMed Chua, L. M., Lim, M. L., Chong, P. R., Hu, Z. P., Cheung, N. S., & Wong, B. S. (2012). Impaired neuronal insulin signaling precedes A beta(42) accumulation in female A beta PPsw/PS1 Delta E9 Mice. Journal of Alzheimer’s Disease, 29, 783–791.PubMed
Zurück zum Zitat Cole, G. M., & Frautschy, S. A. (2007). The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Experimental Gerontology, 42, 10–21.CrossRefPubMed Cole, G. M., & Frautschy, S. A. (2007). The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Experimental Gerontology, 42, 10–21.CrossRefPubMed
Zurück zum Zitat Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.CrossRefPubMed Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.CrossRefPubMed
Zurück zum Zitat Correia, S. C., Santos, R. X., Perry, G., Zhu, X., Moreira, P. I., & Smith, M. A. (2011). Insulin-resistant brain state: The culprit in sporadic Alzheimer’s disease? Ageing Research Reviews, 10, 264–273.CrossRefPubMedPubMedCentral Correia, S. C., Santos, R. X., Perry, G., Zhu, X., Moreira, P. I., & Smith, M. A. (2011). Insulin-resistant brain state: The culprit in sporadic Alzheimer’s disease? Ageing Research Reviews, 10, 264–273.CrossRefPubMedPubMedCentral
Zurück zum Zitat Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.CrossRefPubMed Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.CrossRefPubMed
Zurück zum Zitat Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69, 29–38.CrossRefPubMed Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69, 29–38.CrossRefPubMed
Zurück zum Zitat Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurology, 3, 169–178.CrossRefPubMed Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurology, 3, 169–178.CrossRefPubMed
Zurück zum Zitat Cramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y., Karlo, J. C., Zinn, A. E., et al. (2012). ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science, 335, 1503–1506.CrossRefPubMedPubMedCentral Cramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y., Karlo, J. C., Zinn, A. E., et al. (2012). ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science, 335, 1503–1506.CrossRefPubMedPubMedCentral
Zurück zum Zitat De Felice, F. G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., et al. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences USA, 106, 1971–1976.CrossRef De Felice, F. G., Vieira, M. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., et al. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences USA, 106, 1971–1976.CrossRef
Zurück zum Zitat Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T., & Silverman, M. A. (2010). Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. Journal of Neuroscience, 30, 9166–9171.CrossRefPubMed Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T., & Silverman, M. A. (2010). Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. Journal of Neuroscience, 30, 9166–9171.CrossRefPubMed
Zurück zum Zitat Frolich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. Journal of Neural Transmission, 105, 423–438.CrossRefPubMed Frolich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., et al. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. Journal of Neural Transmission, 105, 423–438.CrossRefPubMed
Zurück zum Zitat Garai, K., Verghese, P. B., Baban, B., Holtzman, D. M., & Frieden, C. (2014). The binding of apolipoprotein E to oligomers and fibrils of amyloid-beta alters the kinetics of amyloid aggregation. Biochemistry, 53, 6323–6331.CrossRefPubMedPubMedCentral Garai, K., Verghese, P. B., Baban, B., Holtzman, D. M., & Frieden, C. (2014). The binding of apolipoprotein E to oligomers and fibrils of amyloid-beta alters the kinetics of amyloid aggregation. Biochemistry, 53, 6323–6331.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gual, P., Le Marchand-Brustel, Y., & Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87, 99–109.CrossRefPubMed Gual, P., Le Marchand-Brustel, Y., & Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87, 99–109.CrossRefPubMed
Zurück zum Zitat Hardingham, G. E., & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neurosciences, 26, 81–89.CrossRefPubMed Hardingham, G. E., & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neurosciences, 26, 81–89.CrossRefPubMed
Zurück zum Zitat Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., & Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science, 287, 2262–2267.CrossRefPubMed Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., & Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction. Science, 287, 2262–2267.CrossRefPubMed
Zurück zum Zitat Holscher, C. (2014). First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, S33–S37.CrossRef Holscher, C. (2014). First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, S33–S37.CrossRef
Zurück zum Zitat Hoyer, S. (2002). The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. Journal Of Neural Transmission, 109, 991–1002.CrossRefPubMed Hoyer, S. (2002). The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. Journal Of Neural Transmission, 109, 991–1002.CrossRefPubMed
Zurück zum Zitat Huynh, T.-P. V., Liao, F., Francis, C. M., Robinson, G. O., Serrano, J. R., Jiang, H., et al. (2017). Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron, 96(1013–1023), e1014. Huynh, T.-P. V., Liao, F., Francis, C. M., Robinson, G. O., Serrano, J. R., Jiang, H., et al. (2017). Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron, 96(1013–1023), e1014.
Zurück zum Zitat Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.CrossRefPubMed Lacor, P. N., Buniel, M. C., Furlow, P. W., Clemente, A. S., Velasco, P. T., Wood, M., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.CrossRefPubMed
Zurück zum Zitat LaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., & Frail, D. E. (1994). Isoform-specific binding of apolipoprotein E to beta-amyloid. Journal of Biological Chemistry, 269, 23403–23406.PubMed LaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., & Frail, D. E. (1994). Isoform-specific binding of apolipoprotein E to beta-amyloid. Journal of Biological Chemistry, 269, 23403–23406.PubMed
Zurück zum Zitat Lee, C. C., Kuo, Y. M., Huang, C. C., & Hsu, K. S. (2009). Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiology of Aging, 30, 377–387.CrossRefPubMed Lee, C. C., Kuo, Y. M., Huang, C. C., & Hsu, K. S. (2009). Insulin rescues amyloid beta-induced impairment of hippocampal long-term potentiation. Neurobiology of Aging, 30, 377–387.CrossRefPubMed
Zurück zum Zitat Li, M., Zhang, D. Q., Wang, X. Z., & Xu, T. J. (2011). NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway. Biochemical and Biophysical Research Communications, 411, 667–672.CrossRefPubMed Li, M., Zhang, D. Q., Wang, X. Z., & Xu, T. J. (2011). NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway. Biochemical and Biophysical Research Communications, 411, 667–672.CrossRefPubMed
Zurück zum Zitat Liu, C.-C., Zhao, N., Fu, Y., Wang, N., Linares, C., Tsai, C.-W., et al. (2017). ApoE4 accelerates early seeding of amyloid pathology. Neuron, 96(1024–1032), e1023. Liu, C.-C., Zhao, N., Fu, Y., Wang, N., Linares, C., Tsai, C.-W., et al. (2017). ApoE4 accelerates early seeding of amyloid pathology. Neuron, 96(1024–1032), e1023.
Zurück zum Zitat Liu, Z., Zhao, W., Xu, T., Pei, D., & Peng, Y. (2010). Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Research, 1361, 133–139.CrossRefPubMed Liu, Z., Zhao, W., Xu, T., Pei, D., & Peng, Y. (2010). Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Research, 1361, 133–139.CrossRefPubMed
Zurück zum Zitat Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.CrossRefPubMed Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.CrossRefPubMed
Zurück zum Zitat Myers, M. G., Jr., Grammer, T. C., Wang, L. M., Sun, X. J., Pierce, J. H., Blenis, J., et al. (1994). Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. Journal of Biological Chemistry, 269, 28783–28789.PubMed Myers, M. G., Jr., Grammer, T. C., Wang, L. M., Sun, X. J., Pierce, J. H., Blenis, J., et al. (1994). Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation. Journal of Biological Chemistry, 269, 28783–28789.PubMed
Zurück zum Zitat Nistico, R., Cavallucci, V., Piccinin, S., Macri, S., Pignatelli, M., Mehdawy, B., et al. (2012). Insulin receptor beta-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Medicine, 14, 262–269.CrossRefPubMed Nistico, R., Cavallucci, V., Piccinin, S., Macri, S., Pignatelli, M., Mehdawy, B., et al. (2012). Insulin receptor beta-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Medicine, 14, 262–269.CrossRefPubMed
Zurück zum Zitat Ong, Q. R., Chan, E. S., Lim, M. L., Cole, G. M., & Wong, B. S. (2014). Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep, 4, 3754.CrossRefPubMedPubMedCentral Ong, Q. R., Chan, E. S., Lim, M. L., Cole, G. M., & Wong, B. S. (2014). Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice. Sci Rep, 4, 3754.CrossRefPubMedPubMedCentral
Zurück zum Zitat Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience, 13, 812–818.CrossRefPubMedPubMedCentral Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nature Neuroscience, 13, 812–818.CrossRefPubMedPubMedCentral
Zurück zum Zitat Roselli, F., Tirard, M., Lu, J., Hutzler, P., Lamberti, P., Livrea, P., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.CrossRefPubMed Roselli, F., Tirard, M., Lu, J., Hutzler, P., Lamberti, P., Livrea, P., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.CrossRefPubMed
Zurück zum Zitat Sanan, D. A., Weisgraber, K. H., Russell, S. J., Mahley, R. W., Huang, D., Saunders, A., et al. (1994). Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. The Journal of Clinical Investigation, 94, 860–869.CrossRefPubMedPubMedCentral Sanan, D. A., Weisgraber, K. H., Russell, S. J., Mahley, R. W., Huang, D., Saunders, A., et al. (1994). Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. The Journal of Clinical Investigation, 94, 860–869.CrossRefPubMedPubMedCentral
Zurück zum Zitat Selkoe, D. J. (2011). Alzheimer’s disease. Cold Spring Harbor Perspectives in Biology, 3, 7.CrossRef Selkoe, D. J. (2011). Alzheimer’s disease. Cold Spring Harbor Perspectives in Biology, 3, 7.CrossRef
Zurück zum Zitat Tai, L. M., Bilousova, T., Jungbauer, L., Roeske, S. K., Youmans, K. L., Yu, C., et al. (2013). Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. Journal of Biological Chemistry, 288, 5914–5926.CrossRefPubMedPubMedCentral Tai, L. M., Bilousova, T., Jungbauer, L., Roeske, S. K., Youmans, K. L., Yu, C., et al. (2013). Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. Journal of Biological Chemistry, 288, 5914–5926.CrossRefPubMedPubMedCentral
Zurück zum Zitat Tai, L. M., Koster, K. P., Luo, J., Lee, S. H., Wang, Y. T., Collins, N. C., et al. (2014). Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. Journal of Biological Chemistry, 289, 30538–30555.CrossRefPubMedPubMedCentral Tai, L. M., Koster, K. P., Luo, J., Lee, S. H., Wang, Y. T., Collins, N. C., et al. (2014). Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. Journal of Biological Chemistry, 289, 30538–30555.CrossRefPubMedPubMedCentral
Zurück zum Zitat Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation, 122, 1316–1338.CrossRefPubMedPubMedCentral Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. Journal of Clinical Investigation, 122, 1316–1338.CrossRefPubMedPubMedCentral
Zurück zum Zitat Townsend, M., Mehta, T., & Selkoe, D. J. (2007). Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. Journal of Biological Chemistry, 282, 33305–33312.CrossRefPubMed Townsend, M., Mehta, T., & Selkoe, D. J. (2007). Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. Journal of Biological Chemistry, 282, 33305–33312.CrossRefPubMed
Zurück zum Zitat Verdier, Y., Zarandi, M., & Penke, B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. Journal of Peptide Science, 10, 229–248.CrossRefPubMed Verdier, Y., Zarandi, M., & Penke, B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. Journal of Peptide Science, 10, 229–248.CrossRefPubMed
Zurück zum Zitat Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2011). Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurology, 10, 241–252.CrossRefPubMedPubMedCentral Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2011). Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurology, 10, 241–252.CrossRefPubMedPubMedCentral
Zurück zum Zitat Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W., & Martins, R. (2002). Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. The Journal of Neuroscience, 22, RC221.PubMed Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W., & Martins, R. (2002). Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. The Journal of Neuroscience, 22, RC221.PubMed
Zurück zum Zitat Zhao, W. Q., & Alkon, D. L. (2001). Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology, 177, 125–134.CrossRefPubMed Zhao, W. Q., & Alkon, D. L. (2001). Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology, 177, 125–134.CrossRefPubMed
Zurück zum Zitat Zhao, W. Q., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., et al. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal, 22, 246–260.CrossRefPubMed Zhao, W. Q., De Felice, F. G., Fernandez, S., Chen, H., Lambert, M. P., Quon, M. J., et al. (2008). Amyloid beta oligomers induce impairment of neuronal insulin receptors. The FASEB Journal, 22, 246–260.CrossRefPubMed
Zurück zum Zitat Zhao, N., Liu, C.-C., Van Ingelgom, A. J., Martens, Y. A., Linares, C., Knight, J. A., et al. (2017). Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron, 96(115–129), e115.CrossRef Zhao, N., Liu, C.-C., Van Ingelgom, A. J., Martens, Y. A., Linares, C., Knight, J. A., et al. (2017). Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron, 96(115–129), e115.CrossRef
Zurück zum Zitat Zhao, L., Teter, B., Morihara, T., Lim, G. P., Ambegaokar, S. S., Ubeda, O. J., et al. (2004). Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: Implications for Alzheimer’s disease intervention. Journal of Neuroscience, 24, 11120–11126.CrossRefPubMed Zhao, L., Teter, B., Morihara, T., Lim, G. P., Ambegaokar, S. S., Ubeda, O. J., et al. (2004). Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: Implications for Alzheimer’s disease intervention. Journal of Neuroscience, 24, 11120–11126.CrossRefPubMed
Metadaten
Titel
Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples
verfasst von
Elizabeth S. Chan
Christopher Chen
Tuck Wah Soong
Boon-Seng Wong
Publikationsdatum
15.02.2018
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 1/2018
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8480-3

Weitere Artikel der Ausgabe 1/2018

NeuroMolecular Medicine 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.