Skip to main content
Erschienen in: NeuroMolecular Medicine 1/2018

08.02.2018 | Review Paper

Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases

verfasst von: Shobi Veleri, Pradeep Punnakkal, Gary L. Dunbar, Panchanan Maiti

Erschienen in: NeuroMolecular Medicine | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Literatur
Zurück zum Zitat Ali, B. R., et al. (2004). Multiple regions contribute to membrane targeting of Rab GTPases. Journal of Cell Science, 117(Pt 26), 6401–6412.PubMedCrossRef Ali, B. R., et al. (2004). Multiple regions contribute to membrane targeting of Rab GTPases. Journal of Cell Science, 117(Pt 26), 6401–6412.PubMedCrossRef
Zurück zum Zitat Aligianis, I. A., et al. (2005). Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genetics, 37(3), 221–223.PubMedCrossRef Aligianis, I. A., et al. (2005). Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genetics, 37(3), 221–223.PubMedCrossRef
Zurück zum Zitat Aloisi, A. L., & Bucci, C. (2013). Rab GTPases-cargo direct interactions: Fine modulators of intracellular trafficking. Histology and Histopathology, 28(7), 839–849.PubMed Aloisi, A. L., & Bucci, C. (2013). Rab GTPases-cargo direct interactions: Fine modulators of intracellular trafficking. Histology and Histopathology, 28(7), 839–849.PubMed
Zurück zum Zitat Ang, A. L., et al. (2003). The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. Journal of Cell Biology, 163(2), 339–350.PubMedPubMedCentralCrossRef Ang, A. L., et al. (2003). The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. Journal of Cell Biology, 163(2), 339–350.PubMedPubMedCentralCrossRef
Zurück zum Zitat Arimura, N., et al. (2009). Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Developmental Cell, 16(5), 675–686.PubMedCrossRef Arimura, N., et al. (2009). Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Developmental Cell, 16(5), 675–686.PubMedCrossRef
Zurück zum Zitat Armstrong, A., et al. (2014). Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer’s disease. NeuroMolecular Medicine, 16(1), 150–160.PubMedCrossRef Armstrong, A., et al. (2014). Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer’s disease. NeuroMolecular Medicine, 16(1), 150–160.PubMedCrossRef
Zurück zum Zitat Arriagada, C., et al. (2007). Endosomal abnormalities related to amyloid precursor protein in cholesterol treated cerebral cortex neuronal cells derived from trisomy 16 mice, an animal model of Down syndrome. Neuroscience Letters, 423(2), 172–177.PubMedCrossRef Arriagada, C., et al. (2007). Endosomal abnormalities related to amyloid precursor protein in cholesterol treated cerebral cortex neuronal cells derived from trisomy 16 mice, an animal model of Down syndrome. Neuroscience Letters, 423(2), 172–177.PubMedCrossRef
Zurück zum Zitat Arriagada, C., et al. (2010). Apoptosis is directly related to intracellular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neuroscience Letters, 470(1), 81–85.PubMedCrossRef Arriagada, C., et al. (2010). Apoptosis is directly related to intracellular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neuroscience Letters, 470(1), 81–85.PubMedCrossRef
Zurück zum Zitat Babbey, C. M., Bacallao, R. L., & Dunn, K. W. (2010). Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. American Journal of Physiology-Renal Physiology, 299(3), F495–F506.PubMedPubMedCentralCrossRef Babbey, C. M., Bacallao, R. L., & Dunn, K. W. (2010). Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. American Journal of Physiology-Renal Physiology, 299(3), F495–F506.PubMedPubMedCentralCrossRef
Zurück zum Zitat Baldini, G., et al. (1992). Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proceedings of the National Academy of Sciences, 89(11), 5049–5052.CrossRef Baldini, G., et al. (1992). Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proceedings of the National Academy of Sciences, 89(11), 5049–5052.CrossRef
Zurück zum Zitat Barr, F. A. (2013). Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biology, 202(2), 191–199.CrossRef Barr, F. A. (2013). Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biology, 202(2), 191–199.CrossRef
Zurück zum Zitat Blumer, J., et al. (2013). RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biology., 200(3), 287–300.CrossRef Blumer, J., et al. (2013). RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biology., 200(3), 287–300.CrossRef
Zurück zum Zitat Bonifacino, J. S., & Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2), 153–166.PubMedCrossRef Bonifacino, J. S., & Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2), 153–166.PubMedCrossRef
Zurück zum Zitat Brown, T. C., et al. (2005). NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron, 45(1), 81–94.PubMedCrossRef Brown, T. C., et al. (2005). NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron, 45(1), 81–94.PubMedCrossRef
Zurück zum Zitat Brown, T. C., et al. (2007). Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. Journal of Neuroscience, 27(48), 13311–13315.PubMedCrossRef Brown, T. C., et al. (2007). Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. Journal of Neuroscience, 27(48), 13311–13315.PubMedCrossRef
Zurück zum Zitat Bucci, C., Alifano, P., & Cogli, L. (2014). The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes (Basel)., 4(4), 642–677.PubMedPubMedCentralCrossRef Bucci, C., Alifano, P., & Cogli, L. (2014). The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes (Basel)., 4(4), 642–677.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bucci, C., & Chiariello, M. (2006). Signal transduction gRABs attention. Cellular Signalling, 18(1), 1–8.PubMedCrossRef Bucci, C., & Chiariello, M. (2006). Signal transduction gRABs attention. Cellular Signalling, 18(1), 1–8.PubMedCrossRef
Zurück zum Zitat Bui, M., et al. (2010). Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. Journal of Biological Chemistry, 285(41), 31590–31602.PubMedPubMedCentralCrossRef Bui, M., et al. (2010). Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. Journal of Biological Chemistry, 285(41), 31590–31602.PubMedPubMedCentralCrossRef
Zurück zum Zitat Carpenter, G. (1909). Acrocephaly, with other congenital malformations. Proc R Soc Med, 2(Sect Study Dis Child), 45–53.PubMedPubMedCentral Carpenter, G. (1909). Acrocephaly, with other congenital malformations. Proc R Soc Med, 2(Sect Study Dis Child), 45–53.PubMedPubMedCentral
Zurück zum Zitat Casey, P. J., & Seabra, M. C. (1996). Protein prenyltransferases. Journal of Biological Chemistry, 271(10), 5289–5292.PubMedCrossRef Casey, P. J., & Seabra, M. C. (1996). Protein prenyltransferases. Journal of Biological Chemistry, 271(10), 5289–5292.PubMedCrossRef
Zurück zum Zitat Castillo, P. E., et al. (1997). Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature, 388(6642), 590–593.PubMedCrossRef Castillo, P. E., et al. (1997). Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature, 388(6642), 590–593.PubMedCrossRef
Zurück zum Zitat Chavrier, P., et al. (1990). Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 62(2), 317–329.PubMedCrossRef Chavrier, P., et al. (1990). Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 62(2), 317–329.PubMedCrossRef
Zurück zum Zitat Chavrier, P., et al. (1991). Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature, 353(6346), 769–772.PubMedCrossRef Chavrier, P., et al. (1991). Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature, 353(6346), 769–772.PubMedCrossRef
Zurück zum Zitat Chen, W., et al. (1998). Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Molecular Biology of the Cell, 9(11), 3241–3257.PubMedPubMedCentralCrossRef Chen, W., et al. (1998). Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Molecular Biology of the Cell, 9(11), 3241–3257.PubMedPubMedCentralCrossRef
Zurück zum Zitat Coleman, W. L., Bill, C. A., & Bykhovskaia, M. (2007). Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Neuroscience, 148(1), 1–6.PubMedCrossRef Coleman, W. L., Bill, C. A., & Bykhovskaia, M. (2007). Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Neuroscience, 148(1), 1–6.PubMedCrossRef
Zurück zum Zitat Coppola, T., et al. (2001). Direct interaction of the Rab3 effector RIM with Ca2 + channels, SNAP-25, and synaptotagmin. Journal of Biological Chemistry, 276(35), 32756–32762.PubMedCrossRef Coppola, T., et al. (2001). Direct interaction of the Rab3 effector RIM with Ca2 + channels, SNAP-25, and synaptotagmin. Journal of Biological Chemistry, 276(35), 32756–32762.PubMedCrossRef
Zurück zum Zitat Dalfo, E., et al. (2004). Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiology of Diseases, 16(1), 92–97.CrossRef Dalfo, E., et al. (2004). Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiology of Diseases, 16(1), 92–97.CrossRef
Zurück zum Zitat de Renzis, S., Sonnichsen, B., & Zerial, M. (2002). Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biology, 4(2), 124–133.PubMedCrossRef de Renzis, S., Sonnichsen, B., & Zerial, M. (2002). Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biology, 4(2), 124–133.PubMedCrossRef
Zurück zum Zitat Deretic, D., & Papermaster, D. S. (1993). Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. Journal of Cell Science, 106(Pt 3), 803–813.PubMed Deretic, D., & Papermaster, D. S. (1993). Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. Journal of Cell Science, 106(Pt 3), 803–813.PubMed
Zurück zum Zitat Deretic, D., et al. (1995). rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. Journal of Cell Science, 108(Pt 1), 215–224.PubMed Deretic, D., et al. (1995). rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. Journal of Cell Science, 108(Pt 1), 215–224.PubMed
Zurück zum Zitat Di Giovanni, S., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO Journal, 25(17), 4084–4096.PubMedPubMedCentralCrossRef Di Giovanni, S., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO Journal, 25(17), 4084–4096.PubMedPubMedCentralCrossRef
Zurück zum Zitat Di Paolo, G., & De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651–657.PubMedCrossRef Di Paolo, G., & De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651–657.PubMedCrossRef
Zurück zum Zitat Echard, A., et al. (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science, 279(5350), 580–585.PubMedCrossRef Echard, A., et al. (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science, 279(5350), 580–585.PubMedCrossRef
Zurück zum Zitat Eggenschwiler, J. T., et al. (2006). Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Development Biology, 290(1), 1–12.CrossRef Eggenschwiler, J. T., et al. (2006). Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Development Biology, 290(1), 1–12.CrossRef
Zurück zum Zitat Elias, M., et al. (2012). Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. Journal of Cell Science, 125(Pt 10), 2500–2508.PubMedPubMedCentralCrossRef Elias, M., et al. (2012). Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. Journal of Cell Science, 125(Pt 10), 2500–2508.PubMedPubMedCentralCrossRef
Zurück zum Zitat Fortin, D. L., et al. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. Journal of Neuroscience, 24(30), 6715–6723.PubMedCrossRef Fortin, D. L., et al. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. Journal of Neuroscience, 24(30), 6715–6723.PubMedCrossRef
Zurück zum Zitat Fukuda, M. (2003). Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. Journal of Biological Chemistry, 278(17), 15373–15380.PubMedCrossRef Fukuda, M. (2003). Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. Journal of Biological Chemistry, 278(17), 15373–15380.PubMedCrossRef
Zurück zum Zitat Furusawa, K., et al. (2017). Cdk5 Regulation of the GRAB-Mediated Rab8–Rab11 Cascade in Axon Outgrowth. Journal of Neuroscience, 37(4), 790–806.PubMedCrossRef Furusawa, K., et al. (2017). Cdk5 Regulation of the GRAB-Mediated Rab8–Rab11 Cascade in Axon Outgrowth. Journal of Neuroscience, 37(4), 790–806.PubMedCrossRef
Zurück zum Zitat Gallwitz, D., Donath, C., & Sander, C. (1983). A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature, 306(5944), 704–707.PubMedCrossRef Gallwitz, D., Donath, C., & Sander, C. (1983). A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature, 306(5944), 704–707.PubMedCrossRef
Zurück zum Zitat Gerges, N. Z., Backos, D. S., & Esteban, J. A. (2004). Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. Journal of Biological Chemistry, 279(42), 43870–43878.PubMedCrossRef Gerges, N. Z., Backos, D. S., & Esteban, J. A. (2004). Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. Journal of Biological Chemistry, 279(42), 43870–43878.PubMedCrossRef
Zurück zum Zitat Gerondopoulos, A., et al. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Current Biology, 22(22), 2135–2139.PubMedPubMedCentralCrossRef Gerondopoulos, A., et al. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Current Biology, 22(22), 2135–2139.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ghavami, S., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24–49.PubMedCrossRef Ghavami, S., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24–49.PubMedCrossRef
Zurück zum Zitat Giannandrea, M., et al. (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. The American Journal of Human Genetics, 86(2), 185–195.PubMedCrossRef Giannandrea, M., et al. (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. The American Journal of Human Genetics, 86(2), 185–195.PubMedCrossRef
Zurück zum Zitat Goldenring, J. R., et al. (1996). Rab11 is an apically located small GTP-binding protein in epithelial tissues. American Journal of Physiology, 270(3 Pt 1), G515–G525.PubMed Goldenring, J. R., et al. (1996). Rab11 is an apically located small GTP-binding protein in epithelial tissues. American Journal of Physiology, 270(3 Pt 1), G515–G525.PubMed
Zurück zum Zitat Goody, R. S., Rak, A., & Alexandrov, K. (2005). The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cellular and Molecular Life Sciences, 62(15), 1657–1670.PubMedCrossRef Goody, R. S., Rak, A., & Alexandrov, K. (2005). The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cellular and Molecular Life Sciences, 62(15), 1657–1670.PubMedCrossRef
Zurück zum Zitat Griscelli, C., & Prunieras, M. (1978). Pigment dilution and immunodeficiency: A new syndrome. International Journal of Dermatology, 17(10), 788–791.PubMedCrossRef Griscelli, C., & Prunieras, M. (1978). Pigment dilution and immunodeficiency: A new syndrome. International Journal of Dermatology, 17(10), 788–791.PubMedCrossRef
Zurück zum Zitat Gurkan, C., et al. (2005). Large-scale profiling of Rab GTPase trafficking networks: The membrome. Molecular Biology of the Cell, 16(8), 3847–3864.PubMedPubMedCentralCrossRef Gurkan, C., et al. (2005). Large-scale profiling of Rab GTPase trafficking networks: The membrome. Molecular Biology of the Cell, 16(8), 3847–3864.PubMedPubMedCentralCrossRef
Zurück zum Zitat Han, C., et al. (2016). Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. The American Journal of Human Genetics, 99(6), 1359–1367.PubMedCrossRef Han, C., et al. (2016). Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. The American Journal of Human Genetics, 99(6), 1359–1367.PubMedCrossRef
Zurück zum Zitat Handley, M. T., et al. (2013). Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Human Mutation, 34(5), 686–696.PubMedCrossRef Handley, M. T., et al. (2013). Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Human Mutation, 34(5), 686–696.PubMedCrossRef
Zurück zum Zitat Huber, L. A., et al. (1993). Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. Journal of Cell Biology, 123(1), 47–55.PubMedCrossRef Huber, L. A., et al. (1993). Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. Journal of Cell Biology, 123(1), 47–55.PubMedCrossRef
Zurück zum Zitat Hutagalung, A. H., & Novick, P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiology Review, 91(1), 119–149.CrossRef Hutagalung, A. H., & Novick, P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiology Review, 91(1), 119–149.CrossRef
Zurück zum Zitat Imarisio, S., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.PubMedCrossRef Imarisio, S., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.PubMedCrossRef
Zurück zum Zitat Jahn, R., & Scheller, R. H. (2006). SNAREs–engines for membrane fusion. Nature Reviews Molecular Cell Biology, 7(9), 631–643.PubMedCrossRef Jahn, R., & Scheller, R. H. (2006). SNAREs–engines for membrane fusion. Nature Reviews Molecular Cell Biology, 7(9), 631–643.PubMedCrossRef
Zurück zum Zitat Jenkins, D., et al. (2007). RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. American Journal of Human Genetics, 80(6), 1162–1170.PubMedPubMedCentralCrossRef Jenkins, D., et al. (2007). RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. American Journal of Human Genetics, 80(6), 1162–1170.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jensen, V. L., et al. (2016). Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genetics, 12(12), e1006469.PubMedPubMedCentralCrossRef Jensen, V. L., et al. (2016). Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genetics, 12(12), e1006469.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jeong, K., et al. (2012). Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin. Traffic., 13(9), 1218–1233.PubMedCrossRef Jeong, K., et al. (2012). Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin. Traffic., 13(9), 1218–1233.PubMedCrossRef
Zurück zum Zitat Jordens, I., et al. (2001). The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Current Biology, 11(21), 1680–1685.PubMedCrossRef Jordens, I., et al. (2001). The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Current Biology, 11(21), 1680–1685.PubMedCrossRef
Zurück zum Zitat Kawauchi, T., et al. (2010). Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron, 67(4), 588–602.PubMedCrossRef Kawauchi, T., et al. (2010). Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron, 67(4), 588–602.PubMedCrossRef
Zurück zum Zitat Klein, C., et al. (1994). Partial albinism with immunodeficiency (Griscelli syndrome). Journal of Pediatrics, 125(6 Pt 1), 886–895.PubMedCrossRef Klein, C., et al. (1994). Partial albinism with immunodeficiency (Griscelli syndrome). Journal of Pediatrics, 125(6 Pt 1), 886–895.PubMedCrossRef
Zurück zum Zitat Knodler, A., et al. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. Proceedings of the National Academy of Sciences, 107(14), 6346–6351.CrossRef Knodler, A., et al. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. Proceedings of the National Academy of Sciences, 107(14), 6346–6351.CrossRef
Zurück zum Zitat Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023.PubMedCrossRef Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023.PubMedCrossRef
Zurück zum Zitat Kubo, S., et al. (2005). A combinatorial code for the interaction of alpha-synuclein with membranes. Journal of Biological Chemistry, 280(36), 31664–31672.PubMedCrossRef Kubo, S., et al. (2005). A combinatorial code for the interaction of alpha-synuclein with membranes. Journal of Biological Chemistry, 280(36), 31664–31672.PubMedCrossRef
Zurück zum Zitat Lane, K. T., & Beese, L. S. (2006). Thematic review series: Lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of Lipid Research, 47(4), 681–699.PubMedCrossRef Lane, K. T., & Beese, L. S. (2006). Thematic review series: Lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of Lipid Research, 47(4), 681–699.PubMedCrossRef
Zurück zum Zitat Lanzetti, L., et al. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 408(6810), 374–377.PubMedCrossRef Lanzetti, L., et al. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 408(6810), 374–377.PubMedCrossRef
Zurück zum Zitat Larijani, B., et al. (2003). Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. Journal of Biological Chemistry, 278(47), 46798–46804.PubMedCrossRef Larijani, B., et al. (2003). Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. Journal of Biological Chemistry, 278(47), 46798–46804.PubMedCrossRef
Zurück zum Zitat Lee, H. J., Patel, S., & Lee, S. J. (2005). Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. Journal of Neuroscience, 25(25), 6016–6024.PubMedCrossRef Lee, H. J., Patel, S., & Lee, S. J. (2005). Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. Journal of Neuroscience, 25(25), 6016–6024.PubMedCrossRef
Zurück zum Zitat Lee, G. I., et al. (2017). A novel likely pathogenic variant in the RAB28 gene in a Korean patient with cone-rod dystrophy. Ophthalmic Genetics, 38(6), 587–589.PubMedCrossRef Lee, G. I., et al. (2017). A novel likely pathogenic variant in the RAB28 gene in a Korean patient with cone-rod dystrophy. Ophthalmic Genetics, 38(6), 587–589.PubMedCrossRef
Zurück zum Zitat Leung, K. F., Baron, R., & Seabra, M. C. (2006). Thematic review series: Lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. Journal of Lipid Research, 47(3), 467–475.PubMedCrossRef Leung, K. F., Baron, R., & Seabra, M. C. (2006). Thematic review series: Lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. Journal of Lipid Research, 47(3), 467–475.PubMedCrossRef
Zurück zum Zitat Li, X., & DiFiglia, M. (2012). The recycling endosome and its role in neurological disorders. Progress in Neurobiology, 97(2), 127–141.PubMedCrossRef Li, X., & DiFiglia, M. (2012). The recycling endosome and its role in neurological disorders. Progress in Neurobiology, 97(2), 127–141.PubMedCrossRef
Zurück zum Zitat Li, G., & Stahl, P. D. (1993). Structure-function relationship of the small GTPase rab5. Journal of Biological Chemistry, 268(32), 24475–24480.PubMed Li, G., & Stahl, P. D. (1993). Structure-function relationship of the small GTPase rab5. Journal of Biological Chemistry, 268(32), 24475–24480.PubMed
Zurück zum Zitat Li, X., et al. (2008). A function of huntingtin in guanine nucleotide exchange on Rab11. NeuroReport, 19(16), 1643–1647.PubMedCrossRef Li, X., et al. (2008). A function of huntingtin in guanine nucleotide exchange on Rab11. NeuroReport, 19(16), 1643–1647.PubMedCrossRef
Zurück zum Zitat Li, X., et al. (2009). Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiology of Diseases, 36(2), 374–383.CrossRef Li, X., et al. (2009). Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiology of Diseases, 36(2), 374–383.CrossRef
Zurück zum Zitat Lim, Y. S., Chua, C. E., & Tang, B. L. (2011). Rabs and other small GTPases in ciliary transport. Biol ogy of the Cell, 103(5), 209–221.CrossRef Lim, Y. S., Chua, C. E., & Tang, B. L. (2011). Rabs and other small GTPases in ciliary transport. Biol ogy of the Cell, 103(5), 209–221.CrossRef
Zurück zum Zitat Lim, Y. S., & Tang, B. L. (2015). A role for Rab23 in the trafficking of Kif17 to the primary cilium. Journal of Cell Science, 128(16), 2996–3008.PubMedCrossRef Lim, Y. S., & Tang, B. L. (2015). A role for Rab23 in the trafficking of Kif17 to the primary cilium. Journal of Cell Science, 128(16), 2996–3008.PubMedCrossRef
Zurück zum Zitat Maiti, P., et al., Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int. 2014: p. 495091. Maiti, P., et al., Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int. 2014: p. 495091.
Zurück zum Zitat Mallard, F., et al. (2002). Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. Journal of Cell Biology, 156(4), 653–664.PubMedPubMedCentralCrossRef Mallard, F., et al. (2002). Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. Journal of Cell Biology, 156(4), 653–664.PubMedPubMedCentralCrossRef
Zurück zum Zitat Maltese, W. A. (1990). Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J, 4(15), 3319–3328.PubMedCrossRef Maltese, W. A. (1990). Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J, 4(15), 3319–3328.PubMedCrossRef
Zurück zum Zitat Martinez, O., & Goud, B. (1998). Rab proteins. Biochimica et Biophysica Acta, 1404(1–2), 101–112.PubMedCrossRef Martinez, O., & Goud, B. (1998). Rab proteins. Biochimica et Biophysica Acta, 1404(1–2), 101–112.PubMedCrossRef
Zurück zum Zitat Martinez, O., et al. (1994). The small GTP-binding protein rab6 functions in intra-Golgi transport. Journal of Cell Biology, 127(6 Pt 1), 1575–1588.PubMedCrossRef Martinez, O., et al. (1994). The small GTP-binding protein rab6 functions in intra-Golgi transport. Journal of Cell Biology, 127(6 Pt 1), 1575–1588.PubMedCrossRef
Zurück zum Zitat Matsui, Y., et al. (1988). Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. Journal of Biological Chemistry, 263(23), 11071–11074.PubMed Matsui, Y., et al. (1988). Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. Journal of Biological Chemistry, 263(23), 11071–11074.PubMed
Zurück zum Zitat McCaffrey, M. W., et al. (2001). Rab4 affects both recycling and degradative endosomal trafficking. FEBS Letters, 495(1–2), 21–30.PubMedCrossRef McCaffrey, M. W., et al. (2001). Rab4 affects both recycling and degradative endosomal trafficking. FEBS Letters, 495(1–2), 21–30.PubMedCrossRef
Zurück zum Zitat Meggouh, F., et al. (2006). Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology, 67(8), 1476–1478.PubMedCrossRef Meggouh, F., et al. (2006). Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology, 67(8), 1476–1478.PubMedCrossRef
Zurück zum Zitat Menasche, G., et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 25(2), 173–176.PubMedCrossRef Menasche, G., et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 25(2), 173–176.PubMedCrossRef
Zurück zum Zitat Miaczynska, M., et al. (2004). APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 116(3), 445–456.PubMedCrossRef Miaczynska, M., et al. (2004). APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 116(3), 445–456.PubMedCrossRef
Zurück zum Zitat Mizoguchi, A., et al. (1990). Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. Journal of Biological Chemistry, 265(20), 11872–11879.PubMed Mizoguchi, A., et al. (1990). Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. Journal of Biological Chemistry, 265(20), 11872–11879.PubMed
Zurück zum Zitat Mori, Y., Fukuda, M., & Henley, J. M. (2014). Small GTPase Rab17 regulates the surface expression of kainate receptors but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. Journal of Biological Chemistry, 289(30), 20773–20787.PubMedPubMedCentralCrossRef Mori, Y., Fukuda, M., & Henley, J. M. (2014). Small GTPase Rab17 regulates the surface expression of kainate receptors but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. Journal of Biological Chemistry, 289(30), 20773–20787.PubMedPubMedCentralCrossRef
Zurück zum Zitat Moritz, O. L., et al. (2001). Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Molecular Biology of the Cell, 12(8), 2341–2351.PubMedPubMedCentralCrossRef Moritz, O. L., et al. (2001). Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Molecular Biology of the Cell, 12(8), 2341–2351.PubMedPubMedCentralCrossRef
Zurück zum Zitat Motoike, T., et al. (1990). Expression of smg p25A, a ras p21-like small GTP-binding protein, during postnatal development of rat cerebellum. Brain Research. Developmental Brain Research, 57(2), 279–289.PubMedCrossRef Motoike, T., et al. (1990). Expression of smg p25A, a ras p21-like small GTP-binding protein, during postnatal development of rat cerebellum. Brain Research. Developmental Brain Research, 57(2), 279–289.PubMedCrossRef
Zurück zum Zitat Munro, S. (2002). Organelle identity and the targeting of peripheral membrane proteins. Current Opinion in Cell Biology, 14(4), 506–514.PubMedCrossRef Munro, S. (2002). Organelle identity and the targeting of peripheral membrane proteins. Current Opinion in Cell Biology, 14(4), 506–514.PubMedCrossRef
Zurück zum Zitat Nachury, M. V., et al. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6), 1201–1213.PubMedCrossRef Nachury, M. V., et al. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6), 1201–1213.PubMedCrossRef
Zurück zum Zitat Nakazawa, H., et al. (2012). Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. Journal of Neuroscience, 32(37), 12712–12725.PubMedCrossRef Nakazawa, H., et al. (2012). Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. Journal of Neuroscience, 32(37), 12712–12725.PubMedCrossRef
Zurück zum Zitat Nixon, R. A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120(Pt 23), 4081–4091.PubMedCrossRef Nixon, R. A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120(Pt 23), 4081–4091.PubMedCrossRef
Zurück zum Zitat Novick, P., & Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Current Opinion in Cell Biology, 9(4), 496–504.PubMedCrossRef Novick, P., & Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Current Opinion in Cell Biology, 9(4), 496–504.PubMedCrossRef
Zurück zum Zitat Onnis, A., et al. (2015). The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death and Differentiation, 22(10), 1687–1699.PubMedPubMedCentralCrossRef Onnis, A., et al. (2015). The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death and Differentiation, 22(10), 1687–1699.PubMedPubMedCentralCrossRef
Zurück zum Zitat Opdam, F. J., et al. (2000). The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. Journal of Cell Science, 113(Pt 15), 2725–2735.PubMed Opdam, F. J., et al. (2000). The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. Journal of Cell Science, 113(Pt 15), 2725–2735.PubMed
Zurück zum Zitat Ostermeier, C., & Brunger, A. T. (1999). Structural basis of Rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell, 96(3), 363–374.PubMedCrossRef Ostermeier, C., & Brunger, A. T. (1999). Structural basis of Rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell, 96(3), 363–374.PubMedCrossRef
Zurück zum Zitat Park, M., et al. (2004). Recycling endosomes supply AMPA receptors for LTP. Science, 305(5692), 1972–1975.PubMedCrossRef Park, M., et al. (2004). Recycling endosomes supply AMPA receptors for LTP. Science, 305(5692), 1972–1975.PubMedCrossRef
Zurück zum Zitat Pereira-Leal, J. B., & Seabra, M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology, 313(4), 889–901.PubMedCrossRef Pereira-Leal, J. B., & Seabra, M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology, 313(4), 889–901.PubMedCrossRef
Zurück zum Zitat Perez, R. G., Squazzo, S. L., & Koo, E. H. (1996). Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. Journal of Biological Chemistry, 271(15), 9100–9107.PubMedCrossRef Perez, R. G., Squazzo, S. L., & Koo, E. H. (1996). Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. Journal of Biological Chemistry, 271(15), 9100–9107.PubMedCrossRef
Zurück zum Zitat Pfeffer, S. R. (2001). Rab GTPases: Specifying and deciphering organelle identity and function. Trends in Cell Biology, 11(12), 487–491.PubMedCrossRef Pfeffer, S. R. (2001). Rab GTPases: Specifying and deciphering organelle identity and function. Trends in Cell Biology, 11(12), 487–491.PubMedCrossRef
Zurück zum Zitat Plutner, H., et al. (1991). Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. Journal of Cell Biology, 115(1), 31–43.PubMedCrossRef Plutner, H., et al. (1991). Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. Journal of Cell Biology, 115(1), 31–43.PubMedCrossRef
Zurück zum Zitat Poirier, M. A., et al. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Natural Structural Biology, 5(9), 765–769.CrossRef Poirier, M. A., et al. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Natural Structural Biology, 5(9), 765–769.CrossRef
Zurück zum Zitat Ponomareva, O. Y., Eliceiri, K. W., & Halloran, M. C. (2016). Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Development, 11, 2.PubMedPubMedCentralCrossRef Ponomareva, O. Y., Eliceiri, K. W., & Halloran, M. C. (2016). Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Development, 11, 2.PubMedPubMedCentralCrossRef
Zurück zum Zitat Pylypenko, O., et al. (2006). Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO Journal, 25(1), 13–23.PubMedPubMedCentralCrossRef Pylypenko, O., et al. (2006). Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO Journal, 25(1), 13–23.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ravikumar, B., et al. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 121(Pt 10), 1649–1660.PubMedPubMedCentralCrossRef Ravikumar, B., et al. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 121(Pt 10), 1649–1660.PubMedPubMedCentralCrossRef
Zurück zum Zitat Reish, N. J., et al. (2014). Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin. Journal of Neuroscience, 34(45), 14854–14863.PubMedPubMedCentralCrossRef Reish, N. J., et al. (2014). Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin. Journal of Neuroscience, 34(45), 14854–14863.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ridge, P.G., M.T. Ebbert, and J.S. Kauwe, Genetics of Alzheimer’s disease. Biomed Res Int. 2013: p. 254954. Ridge, P.G., M.T. Ebbert, and J.S. Kauwe, Genetics of Alzheimer’s disease. Biomed Res Int. 2013: p. 254954.
Zurück zum Zitat Rink, J., et al. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell, 122(5), 735–749.PubMedCrossRef Rink, J., et al. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell, 122(5), 735–749.PubMedCrossRef
Zurück zum Zitat Roosing, S., et al. (2013). Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. American Journal of Human Genetics, 93(1), 110–117.PubMedPubMedCentralCrossRef Roosing, S., et al. (2013). Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. American Journal of Human Genetics, 93(1), 110–117.PubMedPubMedCentralCrossRef
Zurück zum Zitat Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.PubMedPubMedCentralCrossRef Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sahlender, D. A., et al. (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. Journal of Cell Biology, 169(2), 285–295.PubMedPubMedCentralCrossRef Sahlender, D. A., et al. (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. Journal of Cell Biology, 169(2), 285–295.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sakane, A., Honda, K., & Sasaki, T. (2010). Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Molecular and Cellular Biology, 30(4), 1077–1087.PubMedCrossRef Sakane, A., Honda, K., & Sasaki, T. (2010). Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Molecular and Cellular Biology, 30(4), 1077–1087.PubMedCrossRef
Zurück zum Zitat Sato, T., et al. (2014). Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Science, 127(Pt 2), 422–431.PubMedPubMedCentralCrossRef Sato, T., et al. (2014). Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Science, 127(Pt 2), 422–431.PubMedPubMedCentralCrossRef
Zurück zum Zitat Scheper, W., Zwart, R., & Baas, F. (2004). Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. Brain Research. Molecular Brain Research, 122(1), 17–23.PubMedCrossRef Scheper, W., Zwart, R., & Baas, F. (2004). Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. Brain Research. Molecular Brain Research, 122(1), 17–23.PubMedCrossRef
Zurück zum Zitat Selkoe, D. J. (2004). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology, 6(11), 1054–1061.PubMedCrossRef Selkoe, D. J. (2004). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology, 6(11), 1054–1061.PubMedCrossRef
Zurück zum Zitat Shetty, K. M., Kurada, P., & O’Tousa, J. E. (1998). Rab6 regulation of rhodopsin transport in Drosophila. Journal of Biological Chemistry, 273(32), 20425–20430.PubMedCrossRef Shetty, K. M., Kurada, P., & O’Tousa, J. E. (1998). Rab6 regulation of rhodopsin transport in Drosophila. Journal of Biological Chemistry, 273(32), 20425–20430.PubMedCrossRef
Zurück zum Zitat Shirane, M., & Nakayama, K. I. (2006). Protrudin induces neurite formation by directional membrane trafficking. Science, 314(5800), 818–821.PubMedCrossRef Shirane, M., & Nakayama, K. I. (2006). Protrudin induces neurite formation by directional membrane trafficking. Science, 314(5800), 818–821.PubMedCrossRef
Zurück zum Zitat Siniossoglou, S., & Pelham, H. R. (2001). An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO Journal, 20(21), 5991–5998.PubMedPubMedCentralCrossRef Siniossoglou, S., & Pelham, H. R. (2001). An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO Journal, 20(21), 5991–5998.PubMedPubMedCentralCrossRef
Zurück zum Zitat Spillantini, M. G., & Goedert, M. (2000). The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Annals of the New York Academy of Sciences, 920, 16–27.PubMedCrossRef Spillantini, M. G., & Goedert, M. (2000). The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Annals of the New York Academy of Sciences, 920, 16–27.PubMedCrossRef
Zurück zum Zitat Spillantini, M. G., et al. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.PubMedCrossRef Spillantini, M. G., et al. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.PubMedCrossRef
Zurück zum Zitat Spillantini, M. G., et al. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A, 95(11), 6469–6473.PubMedPubMedCentralCrossRef Spillantini, M. G., et al. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A, 95(11), 6469–6473.PubMedPubMedCentralCrossRef
Zurück zum Zitat Stafstrom, C. E., & Carmant, L. (2015). Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med., 5(6), a002426.CrossRef Stafstrom, C. E., & Carmant, L. (2015). Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med., 5(6), a002426.CrossRef
Zurück zum Zitat Star, E. N., Newton, A. J., & Murthy, V. N. (2005). Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. Journal of Physiology, 569(Pt 1), 103–117.PubMedPubMedCentralCrossRef Star, E. N., Newton, A. J., & Murthy, V. N. (2005). Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. Journal of Physiology, 569(Pt 1), 103–117.PubMedPubMedCentralCrossRef
Zurück zum Zitat Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10(8), 513–525.PubMedCrossRef Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10(8), 513–525.PubMedCrossRef
Zurück zum Zitat Stenmark, H., et al. (1994). Distinct structural elements of rab5 define its functional specificity. EMBO Journal, 13(3), 575–583.PubMedPubMedCentral Stenmark, H., et al. (1994). Distinct structural elements of rab5 define its functional specificity. EMBO Journal, 13(3), 575–583.PubMedPubMedCentral
Zurück zum Zitat Sumakovic, M., et al. (2009). UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans. Journal of Cell Biology, 186(6), 897–914.PubMedPubMedCentralCrossRef Sumakovic, M., et al. (2009). UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans. Journal of Cell Biology, 186(6), 897–914.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sutton, R. B., et al. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature, 395(6700), 347–353.PubMedCrossRef Sutton, R. B., et al. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature, 395(6700), 347–353.PubMedCrossRef
Zurück zum Zitat Syed, N., et al. (2001). Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. Ophthalmology, 108(4), 711–720.PubMedCrossRef Syed, N., et al. (2001). Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. Ophthalmology, 108(4), 711–720.PubMedCrossRef
Zurück zum Zitat Szatmari, Z., & Sass, M. (2014). The autophagic roles of Rab small GTPases and their upstream regulators: A review. Autophagy, 10(7), 1154–1166.PubMedPubMedCentralCrossRef Szatmari, Z., & Sass, M. (2014). The autophagic roles of Rab small GTPases and their upstream regulators: A review. Autophagy, 10(7), 1154–1166.PubMedPubMedCentralCrossRef
Zurück zum Zitat Szodorai, A., et al. (2009). APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. Journal of Neuroscience, 29(46), 14534–14544.PubMedPubMedCentralCrossRef Szodorai, A., et al. (2009). APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. Journal of Neuroscience, 29(46), 14534–14544.PubMedPubMedCentralCrossRef
Zurück zum Zitat Takahashi, S., et al. (2011). Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Science, 125(Pt 17), 4049–4057. Takahashi, S., et al. (2011). Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Science, 125(Pt 17), 4049–4057.
Zurück zum Zitat Takamori, S., et al. (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4), 831–846.PubMedCrossRef Takamori, S., et al. (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4), 831–846.PubMedCrossRef
Zurück zum Zitat Takano, T., et al. (2012). LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. Journal of Neuroscience, 32(19), 6587–6599.PubMedCrossRef Takano, T., et al. (2012). LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. Journal of Neuroscience, 32(19), 6587–6599.PubMedCrossRef
Zurück zum Zitat Tam, J. H., Seah, C., & Pasternak, S. H. (2014). The amyloid precursor protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Molecular Brain, 7, 54.PubMedPubMedCentralCrossRef Tam, J. H., Seah, C., & Pasternak, S. H. (2014). The amyloid precursor protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Molecular Brain, 7, 54.PubMedPubMedCentralCrossRef
Zurück zum Zitat Tan, M. G., et al. (2014). Decreased rabphilin 3A immunoreactivity in Alzheimer’s disease is associated with Abeta burden. Neurochemistry International, 64, 29–36.PubMedCrossRef Tan, M. G., et al. (2014). Decreased rabphilin 3A immunoreactivity in Alzheimer’s disease is associated with Abeta burden. Neurochemistry International, 64, 29–36.PubMedCrossRef
Zurück zum Zitat Temtamy, S. A. (1966). Carpenter’s syndrome: Acrocephalopolysyndactyly. An autosomal recessive syndrome. J Pediatr, 69(1), 111–120.PubMed Temtamy, S. A. (1966). Carpenter’s syndrome: Acrocephalopolysyndactyly. An autosomal recessive syndrome. J Pediatr, 69(1), 111–120.PubMed
Zurück zum Zitat Tisdale, E. J., et al. (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. Journal of Cell Biology, 119(4), 749–761.PubMedCrossRef Tisdale, E. J., et al. (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. Journal of Cell Biology, 119(4), 749–761.PubMedCrossRef
Zurück zum Zitat Tobin, J. L., & Beales, P. L. (2009). The nonmotile ciliopathies. Genetics in Medicine, 11(6), 386–402.PubMedCrossRef Tobin, J. L., & Beales, P. L. (2009). The nonmotile ciliopathies. Genetics in Medicine, 11(6), 386–402.PubMedCrossRef
Zurück zum Zitat Tolmachova, T., et al. (2006). Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. The Journal of Clinical Investigation, 116(2), 386–394.PubMedPubMedCentralCrossRef Tolmachova, T., et al. (2006). Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. The Journal of Clinical Investigation, 116(2), 386–394.PubMedPubMedCentralCrossRef
Zurück zum Zitat Touchot, N., Chardin, P., & Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT-related cDNAs from a rat brain library. Proceedings of the National Academy of Sciences, 84(23), 8210–8214.CrossRef Touchot, N., Chardin, P., & Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT-related cDNAs from a rat brain library. Proceedings of the National Academy of Sciences, 84(23), 8210–8214.CrossRef
Zurück zum Zitat Udayar, V., et al. (2013). A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Reports, 5(6), 1536–1551.PubMedPubMedCentralCrossRef Udayar, V., et al. (2013). A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Reports, 5(6), 1536–1551.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ullrich, O., et al. (1996). Rab11 regulates recycling through the pericentriolar recycling endosome. Journal of Cell Biology, 135(4), 913–924.PubMedCrossRef Ullrich, O., et al. (1996). Rab11 regulates recycling through the pericentriolar recycling endosome. Journal of Cell Biology, 135(4), 913–924.PubMedCrossRef
Zurück zum Zitat Urbe, S., et al. (1993). Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 334(2), 175–182.PubMedCrossRef Urbe, S., et al. (1993). Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 334(2), 175–182.PubMedCrossRef
Zurück zum Zitat van den Hurk, J. A., et al. (1997). Molecular basis of choroideremia (CHM): Mutations involving the Rab escort protein-1 (REP-1) gene. Human Mutation, 9(2), 110–117.PubMedCrossRef van den Hurk, J. A., et al. (1997). Molecular basis of choroideremia (CHM): Mutations involving the Rab escort protein-1 (REP-1) gene. Human Mutation, 9(2), 110–117.PubMedCrossRef
Zurück zum Zitat Vetter, I. R., & Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299–1304.PubMedCrossRef Vetter, I. R., & Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299–1304.PubMedCrossRef
Zurück zum Zitat Villarroel-Campos, D., et al. (2016). Rab35 functions in axon elongation are regulated by P53-related protein kinase in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. Journal of Neuroscience, 36(27), 7298–7313.PubMedCrossRef Villarroel-Campos, D., et al. (2016). Rab35 functions in axon elongation are regulated by P53-related protein kinase in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. Journal of Neuroscience, 36(27), 7298–7313.PubMedCrossRef
Zurück zum Zitat Vonderheit, A., & Helenius, A. (2005). Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biology, 3(7), e233.PubMedPubMedCentralCrossRef Vonderheit, A., & Helenius, A. (2005). Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biology, 3(7), e233.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wang, T., et al. (2011). Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Developmental Cell, 21(3), 431–444.PubMedCrossRef Wang, T., et al. (2011). Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Developmental Cell, 21(3), 431–444.PubMedCrossRef
Zurück zum Zitat Wang, J., et al. (2015). Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proceedings of the National Academy of Sciences, 112(1), 148–153.CrossRef Wang, J., et al. (2015). Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proceedings of the National Academy of Sciences, 112(1), 148–153.CrossRef
Zurück zum Zitat Wanschers, B. F., et al. (2007). A role for the Rab6B Bicaudal-D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 313(16), 3408–3420.PubMedCrossRef Wanschers, B. F., et al. (2007). A role for the Rab6B Bicaudal-D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 313(16), 3408–3420.PubMedCrossRef
Zurück zum Zitat Wilson, S. M., et al. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proceedings of the National Academy of Sciences, 97(14), 7933–7938.CrossRef Wilson, S. M., et al. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proceedings of the National Academy of Sciences, 97(14), 7933–7938.CrossRef
Zurück zum Zitat Wilson, G. R., et al. (2014). Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. The American Journal of Human Genetics, 95(6), 729–735.CrossRef Wilson, G. R., et al. (2014). Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. The American Journal of Human Genetics, 95(6), 729–735.CrossRef
Zurück zum Zitat Wu, F., & Yao, P. J. (2009). Clathrin-mediated endocytosis and Alzheimer’s disease: An update. Ageing Res Rev, 8(3), 147–149.PubMedCrossRef Wu, F., & Yao, P. J. (2009). Clathrin-mediated endocytosis and Alzheimer’s disease: An update. Ageing Res Rev, 8(3), 147–149.PubMedCrossRef
Zurück zum Zitat Wucherpfennig, T., Wilsch-Brauninger, M., & Gonzalez-Gaitan, M. (2003). Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. Journal of Cell Biology, 161(3), 609–624.PubMedPubMedCentralCrossRef Wucherpfennig, T., Wilsch-Brauninger, M., & Gonzalez-Gaitan, M. (2003). Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. Journal of Cell Biology, 161(3), 609–624.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yoshimura, S., et al. (2007). Functional dissection of Rab GTPases involved in primary cilium formation. Journal of Cell Biology, 178(3), 363–369.PubMedPubMedCentralCrossRef Yoshimura, S., et al. (2007). Functional dissection of Rab GTPases involved in primary cilium formation. Journal of Cell Biology, 178(3), 363–369.PubMedPubMedCentralCrossRef
Zurück zum Zitat Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2(2), 107–117.PubMedCrossRef Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2(2), 107–117.PubMedCrossRef
Metadaten
Titel
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases
verfasst von
Shobi Veleri
Pradeep Punnakkal
Gary L. Dunbar
Panchanan Maiti
Publikationsdatum
08.02.2018
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 1/2018
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8479-9

Weitere Artikel der Ausgabe 1/2018

NeuroMolecular Medicine 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.