Skip to main content
Erschienen in: Molecular Cancer 1/2018

Open Access 01.12.2018 | Review

Effect of exosomal miRNA on cancer biology and clinical applications

verfasst von: Zhenqiang Sun, Ke Shi, Shuaixi Yang, Jinbo Liu, Quanbo Zhou, Guixian Wang, Junmin Song, Zhen Li, Zhiyong Zhang, Weitang Yuan

Erschienen in: Molecular Cancer | Ausgabe 1/2018

Abstract

Exosomes, extracellular vesicles with diameters ranging from 30 to 150 nm, are widely present in various body fluids. Recently, microRNAs (miRNAs) have been identified in exosomes, the biogenesis, release, and uptake of which may involve the endosomal sorting complex required for transport (ESCRT complex) and relevant proteins. After release, exosomes are taken up by neighboring or distant cells, and the miRNAs contained within modulate such processes as interfering with tumor immunity and the microenvironment, possibly facilitating tumor growth, invasion, metastasis, angiogenesis and drug resistance. Therefore, exosomal miRNAs have a significant function in regulating cancer progression. Here, we briefly review recent findings regarding tumor-derived exosomes, including RNA sorting and delivering mechanism. We then describe the intercommunication occurring between different cells via exosomal miRNAs in tumor microenvironmnt, with impacts on tumor proliferation, vascularization, metastasis and other biological characteristics. Finally, we highlight the potential role of these molecules as biomarkers in cancer diagnosis and prognosis and tumor resistance to therapeutics.
Hinweise
Zhenqiang Sun and Ke Shi contributed equally to this work.
Abkürzungen
3′UTR
3′ untranslated region
AGO2
Argonaut
CAFs
Cancer-associated fibroblasts
CDs
Carbon dots
CRC
Colorectal cancer
CXC
Chemokine
CXCR4
Chemokinereceptor 4
DCs
Dendritic cells
DIAPH3
Diaphanous-related formin-3
DKD
Diabetic kidney disease
DNA-CDs
DNA-labeled carbon dots
DSA
5,7-dinitro-2-sulfo-acridone
EBV
Epstein–Barr virus
ECM
Extracellular matrix
ED
Editing
EGFR
Epidermal growth factor receptor
EMT
Epithelial-to-mesenchymal transition
ESCC
Esophageal cancer
ESCRT Complex
Endosomal sorting complex required for transport
FRET
Fluorescence resonance energy transfer
HBE
Bronchial epithelial
HCC
Hepatocellular carcinoma
LSPR
Localized surface plasmon resonance
MCC
Merkel cell carcinoma
MCC
Merkel cell carcinoma
MET
Mesenchymal-to-epithelial transition
miRNAs
MicroRNAs
mRNA
Messenger RNA
MVB
Multivesicular bodies
NFs
Fibroblasts
NK
Natural killer cells
NSCLC
Non-small cell lung cancer
nSMase2
Sphyngomyelinase 2
PC
Pancreatic cancer
pri-miRNAs
Primary miRNAs
PTX
Paclitaxel
qRT-PCR
Quantitative reverse transcription polymerase chain reaction
RFXAP
Regulatory factor X-associated protein
RISC
RNA induced silencing complex
RPM
Reads per million reads mapped to miRNAs
SERS
Surface-enhanced Raman scattering
TAK1
TGF-βactivated kinase-1
TDEs
Tumor-derived exosomes
TKIs
Tyrosine kinase inhibitors
TLRs
Toll-like receptors
VEGF
Vascular endothelial growth factor
WT
Wild-type

Background

In recent years, researchers and clinicians have mostly focused on the identification of cancer-specific targets and the development of targeted therapies that may efficiently kill cancer cells. Although considerable success has been achieved with regard to identifying effective small cancer-specific targets and a series of monoclonal antibodies [1]. However, obvious drawbacks exist. For example, cancers are characterized by extensive heterogeneity and a variety of subtypes, which complicates the identification of unique targets and the eradication of all tumor cells, due to clonal evolution of malignant cells. Another unresolved problem is how to increase the efficiency and accuracy of cancer-specific target molecules when delivered. In depth research of extracellular vesicles, especially exosome (30–100 nm), raised the intriguing possibility that exosomal cargo may be a good way to protect target molecules integrity and to enhance the accuracy of delivery [2, 3]. Cancer cells secrete at least 10-fold more exosomes than do normal cells, and tumor-derived exosomes (TDEs) can facilitate cell-cell communication through the transport of growth factors, chemokines, microRNAs, and other small molecules [4, 5]. Moreover, profiling studies have revealed that exosomes of different cellular origin contain a unique expression profile of mRNAs and miRNAs, which may also differ from the signatures of their parent cells [6]. What’s more, accumulating evidence suggests that tumor microenvironment highly contributes to metabolic rewiring of cancer cells via extracellular microvesicles, this fosters complete nutrient exploitation and favors OXPHOS of lipids and glutamine at the expense of glycolysis, thereby changing the microenvironment from a normal state to a tumor-favorable state that allows for tumor growth, invasion, and drug resistance [7]. miRNA-carrying exosomes released from immune cells, mesenchymal cells and cancer cells in the tumor environment can shuttle from donor cells to recipient cells [8, 9]. In addition, cancer-derived miRNA-exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment [10]. Therefore, exosomal miRNAs are likely to be applied as promising non-invasive biomarkers and potential targetable factors in cancer diagnosis and treatment.

The biogenesis, release, and uptake of exosomes and exosomal miRNAs

Exosomes are nano-vesicles present in the circulation that are involved in cell-to-cell communication and regulation of different biological processes. miRNAs are part of their cargo and are potential biomarkers [11]. As exosomes carry proteins, mRNAs and miRNAs that can be transferred from donor to recipient cells via target cell membrane fusion, these vesicles have recently been recognized as important mediators of interactions between different cells [2]. In tumor microenvironment, the process described above is indispensable for the transfer of cancer-promoting cellular contents to surrounding cells, thereby accelerating cancer progression [12]. During this process, the transfer of exosomal microRNAs to recipient cells to regulate target gene expression is particularly attractive, and knowledge of the biogenesis, release, and uptake of exosomes and exosomal miRNAs is helpful for both understanding the biological mechanism of cancer progression and further exploring therapeutic approaches [13].
Accumulating evidence supports that the biogenesis, uptake and material cargo sorting of exosomes involve the endosomal sorting complex required for transport (ESCRT complex) and relevant proteins [14]. The ESCRT complex can select the “cargo” protein labeled by ubiquitin, direct it to multivesicular bodies(MVBs), and then separate fromthe peripheral membrane in a highly conserved process that is homologous to the process of cytokinesis and virus budding [15]. Study of late endosome components, such as Alix, tumor susceptibility gene 101 (TSG101) and tetraspanins, promotesanunderstanding of exosomal origin [16].
Interestingly, it has recently been reported that miRNAs in a precursor state (pre-miRNA) associated with the processing complex (e.g., Dicer, Ago2 and TRBP) can be found inside breast cancer-derived exosomes, where they are processed into mature miRNAs, establishing a new method by which miRNAs are integrated into exosomes. In this scenario, the formation and activation of exosomal miRNAs needs to be stressed [17]. Canonically, the biogenesis of miRNAs begins in the nucleus where DNA containing miRNAs is transcribed by RNA polymerase II to generate primary miRNAs (pri-miRNAs) (Fig. 1).These pri-miRNAs are first transcribed as parts of longer molecules, up to several kilobases in length, which are processed in the nucleus into hairpin RNAs of 70–100 nt by the double-stranded RNA-specific ribonuclease, Drosha [18]. Hairpin pre-miRNAs are then transported by exportin 5 to the cytoplasm, where they undergo further processing by a double-stranded-specific ribonuclease, called Dicer. After maturation, double-stranded miRNAs converted into single-stranded miRNAs, and mature miRNAs are sorted into exosomes via different modes. In the miRISC-related pathway, a representative mode, single-stranded miRNAs are incorporated into RNA-induced silencing complex (RISC) along with argonaute (AGO2) and GW182, and primarily bind to specific messenger RNAs (mRNAs) at specific sequence motifs, predominantly within the 3′ untranslated region (3′UTR); these motifs are significantly, though not completely, complementary to the miRNA. The mRNA/miRNA duplex then inhibits translation by blocking initiation or enhancing degradation of the mRNA [19]. Finally, the MVBs fuse with the cell membrane and release the intraluminal endosomal vesicles into the extracellular space, which then become exosomes. There are some studies indicate that some molecules act as a regulatory network and is responsible for the formation and secretion of exosomes in parent cells. For instance, Rab27a and Rab27b were found to function in multivesicular endosomes (MVEs) docking at the plasma membrane. The size of MVEs was strongly influenced by Rab27a and Rab27b silencing. With knockdown of Rab27 or its effectors SYTL4 and EXPH5 inhibiting secretion of exosomes in HeLa cells [20, 21]. In addition, a set of proteins encoded by genes that are not transcriptional targets of p53 were found to exit the cell via exosomes and exosome production by cells was found to be regulated by the p53 response. Its downstream effector TSAP6 was shown to enhance exosome production in cells undergoing a p53 response to stress. Thus, the p53 pathway regulates the production of exosomes into the medium [22]. Moverover, syndecan-syntenin interact directly with the ALIX protein via Leu-Tyr-Pro-X(n)-Leu motif to support the intraluminal budding of endosomal membranes, which is an important step in exosome formation [23, 24].
Rab27a and Rab27b have been reported to be associated with exosome secretion, with knockdown of Rab27 or its effectors SYTL4 and EXPH5 inhibiting secretion of exosomes in HeLa cells. In addition, both the tumor repressor protein p53 and its downstream effector TSAP6 enhance exosome production. Moreover, syndecan-syntenin interact directly with the ALIX protein via Leu-Tyr-Pro-X(n)-Leu motif to support the intraluminal budding of endosomal membranes, which is an important step in exosome formation. All of these studies indicate that a set of molecules act as a regulatory network and is responsible for the formation and secretion of exosomes in parent cells.

Experimental methodology of isolating exosomal miRNAs

For implementation of the use of new biomarkers into clinical practice, the first step is to standardize exosomal measurement and to evaluate their stability. However, there is not a gold standard for exosome isolation. Thus far, ultracentrifugation was the popular methodology applied for their isolation because it was reproducible and could be provided optimal amounts of exosomes. The different centrifugal force and duration to isolate exosomes are easy to control, based on their density and size differences from other components in a sample, consisting of serum isolation with 100,000 g to 120,000 g, urine exosome isolation with 17,000 g, and milk exosome isolation with 12,000 g to 35,000 g. While the disadvantages prevent its effectiveness, including excessive pressure suffered by exosomes during this process, lack of specificity during the precipitation, excessive time, the equipment required for isolation, and difficulties in exactly reproducing the isolation in different places. Another isolation method commonly used is size exclusion chromatography. It allows a better degree of purity and is less harmful to exosomes. Nevertheless, the high final dilution of the exosome sample makes it difficult to use them in downstream applications that require a high exosome concentration, such as the evaluation of their miRNA profile. Finally, during recent years, there has been an increase in the number of commercial kits developed for exosome isolation. Most of them are based on precipitation. Although they are not completely specific and precipitate some impurities, their rapidity and reproducibility even in different labs make them useful for future diagnosis, primarily in miRNA-based tests. Other recent publishment pointed out the importance of freezing plasma before exosome isolation, RNA isolation and qPCR for miRNAs rather than freezing exosomes before miRNA analysis, by comparing the miRNA levels obtained from exosomes isolated from fresh plasma with that from frozen one. And it was necessary to determine the inter- and intra-individual variability of healthy subjects, which could help to optimize sample size in future studies with circulating exosomes. After isolating exosomes, some researchers have developed methods for exploiting differences between tumor-associated and non-tumor exosomes surface composition. For instance, detecting cancerous exosomes from SKOV-3 ovarian tumor cells in real time by the technique of multi-parametric surface plasmon resonance (MP-SPR) to measure LXY30 binding, without a priori labeling.
As for the experimental skill of exosomal miRNAs examination and protection, he current commonly avenue is quantitative reverse transcription polymerase chain reaction (qRT-PCR), however, this method requires highly trained experience and have the potential to generate false positive signals. Later, some groups developed PCR-free methods for exosomal miRNAs quantitation based on ratiometric electrochemistry, localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS), respectively, while the expensive instrument and complex operation have hampered their extensive application. At present, fluorescent methods have been given attention, because of their intrinsic advantages, including simple instrumentation, as well as high sensitivity and capacity to high-throughput screening.To date, several attempts have been reported using fluorescent methods to detect exosomal miRNAs with various degrees of success, as evidenced by the cationic lipoplex nanoparticles containing a molecular beacon assay, fluorescent dye-labeled molecular beacons strategies, fluorescence signal amplifiable biochip assay, and others. However, these methods employed solely responsive signal and were based on measuring the absolute change of the fluorescent intensity, which was readily perturbed by numerous experimental conditions, including thermodynamic fluctuations, nuclease degradation, and dye photobleaching. To utilize exosomal miRNAs as a diagnosis biomarker, a fluorescent system with antidisturbance should be developed, due to the complex biosystem. Surprisingly, because of the self-referencing capability, ratiometric fluorescent measurement is able to cancel out environmental fluctuations by calculating the emission intensity ratio at two different wavelengths. Recently, the practical applications of ratiometric fluorescent bioprobes has been improved. For instance, a ratiometric fluorescent bioprobe based on DNA-labeled carbon dots (DNA-CDs) and 5,7-dinitro-2-sulfo-acridone (DSA) coupling with the target-catalyzing signal amplification for the detection of exosomal miRNA-21. There was high fluorescence resonance energy transfer (FRET) efficiency between carbon dots (CDs) and DSA when the bioprobe was assembled.
After gain the exosomal miRNAs, some researches claim that a new concept for miRNA editing measurement would be necessary, which considered not only the absolute editing level of miRNA but the miRNAs modification assessed via reads per million reads mapped to miRNAs (RPM). For example, by analyzing small-RNA sequencing data from exosome samples of NSCLC patients at different stages, researchers found that editing(ED) miR-411–5p downregulated, while wild-type (WT) showed no significant difference in expression. Further study showed that miR-411–5p edited in position 5 was differentially expressed between NSCLC and normal tissue samples, indicating that the machinery that governs the export of miRNAs to extracellular space in tumor conditions may discriminate ED miRNAs differently. Thus, they thought post-transcriptional modifications in miRNAs within both tissues and circulation could both serve as potential novel biomarkers and provide additional insights into the pathogenesis of cancers.

Exosomal miRNA in Cancer

The malignant phenotypes of tumors are not only determined by cancer cells themselves but also depend on the surrounding tumor microenvironments [25]. Studies on the relationship between exosomal miRNAs and cancer begin to reveal a general picture of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. These molecules have an undeniable role in cancer both as tumor suppressors and promoters modulating cell proliferation and migration, the epithelial-mesenchymal transition (EMT), and tumor proliferation, angiogenesis and metastasis [5]. Moreover, exosomal microRNAs can even affect the environment surrounding the tumor, influencing the extracellular matrix (ECM) as well as immune system activation and recruitment. Clearly, the influence of exosomal miRNA on cancer is somewhat similar to that of miRNA [23] (Fig. 2).

miRNAs, ECM, and Cancer-associated fibroblasts (CAFs) miRNAs and ECM

The tumor microenvironment is defined as the variety of normal cells, blood vessels, signaling molecules, and ECM that surround tumor cells [19]. The cellular components of the tumor microenvironment include endothelial cells, pericytes, fibroblasts, and immune cells [26]. Both tumor environmental cues and cell-intrinsic alterations contribute to these epigenetic changes, inducing adaptations by cancer cells that allow successful invasion of the stroma, entry and survival in lymphatic or blood vessels, spread to and colonization of distant/different organs, as well as resistance to cytotoxic drugs [27]. Cancer-associated fibroblasts(CAFs) are vital constituents of the tumor microenvironment, and their interactions with cancer cells play a major role in mediating their formation and activation [28, 29].
CAFs isolated from cancer patients have a morphology and function that differs from that of normal fibroblasts (NFs). CAFs have been shown to promote the invasion and growth of tumor cells [30]. CAFs produce growth factors (e.g., vascular endothelial growth factor (VEGF)) and cytokines (e.g., TGFβ, IL-6, IL-10) that activate the adjacent ECM, contributing to cancer cell growth. Additionally, CAFs are the primary source of an altered ECM, containing fibronectin and collagen, and also promote tumor growth [31]. CAF-secreted factors include proinflammatory cytokines, typically IL-1β and IL-8 typically, which are associated with pro-tumorigenic effects. SDF-1α, a prominent chemokinesecreted by CAFs, promotes proliferation, by signaling through chemokine (CXC) receptor 4 (CXCR4) [32]. NFs have been shown to inhibit tumor growth, unlike CAFs, and it has recently been reported that exosomal miRNAs might convert NFs into CAFs for tumor survival. Nonetheless, how this communication promotes activation of NFs into CAFs remains poorly understood.
Recent studies have demonstrated that pancreatic cancer cells secrete exosomal miR-155 to activate NFs. This phenomenon might be related to miR-155-mediated downregulation of its target TP53INP1 [33]. Moreover, previous studies have shown that highly metastatic hepatocellular carcinoma (HCC) cells secrete exosomal miR-1247-3p targeting B4GALT3, leading to activation of β1-integrin-NF-kB signaling in fibroblasts. Activated CAFs further promote cancer progression by secreting proinflammatory cytokines, including IL-6 and IL-8 [34]. In addition, the relationship between exosomal miRNAs and CAFs activation is unlikely to be unidirectional. A CAF-like phenotype inducible by tumor cells through exosome-mediated delivery of miR-9 was reported in triple-negative breast cancer. Interestingly, miR-9 is also released by NFs and transferred to tumor cells [30]. All of these studies indicate that exosomal miRNA and their targets act as a regulatory network responsible for transformation of the tumor microenvironment.

Exosomal miRNAs and tumor immunity

Emerging evidences suggests that tumor-derived exosomes participate in tumor immune escape by delivering immunosuppressive molecules and factors [35]. Exosomal miRNAs are carriers of information that is able to reprogram functions of immunologically active factor and immune target cells, such as dendritic cells (DCs), natural killer (NK) cells, and T lymphocytes et al. [36].
It has been shown that proinflammatory conditions might promote tumorigenesis [37]. DCs are crucial regulators of the immune system that initiate immunity or immunological tolerance depending on their state of activation [38].When activatedupon exposure to danger signals from pathogens or damaged tissue, DCs trigger the activity of pattern recognition receptors, such as Toll-like receptors (TLRs) [39]. Upon TLR stimulation, DCs upregulate costimulatory molecules and proinflammatory cytokines to stimulate T lymphocytes and initiate immune responses [40]. Non-small cell lung cancer (NSCLC) secretes an abundance of exosomes containing miR-21 and miR-29a, which can bind to TLRs to induce protumoral inflammation, leading to tumor growth and metastasis [41]. Overexpression of miR-203 in pancreatic adenocarcinoma has a similar effect on TLR4 as miR-21 and miR-29a [42]. Moreover, pancreatic cancer-derived exosomes transfer miRNAs toDCs and inhibit Regulatory factor X-associated protein(RFXAP) expression via miR-212-3p, inducing MHC II downregulation and immune tolerance of DCs [36].
Exosomal miRNAs also play a role in the biology of NK cells and T lymphocytes. NKs are a sub-population of T cells with a role as tumor cell killer, which can produce a series of antitumor cytokines, including IL-4, IFN-γ, FasL, IL-13, and perforin [43]. Importantly, their efficiency is abrogated by exposure to TGF-β. Meanwhile, TGF-β-inducible miR-183 silences tumor-associated natural killer cells by targeting and repressing DNAX activating protein [44]. Moreover, hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism, involving TGF-β and miR-23a transfer [45].
Besides, the process, exosomic miRNAs acting on NKs immune activity and then inducing tumor resistance to immunology, involves in many-sided, many-targeted, many-factored effect. Here we focus on some emblematical miRNAs from TDE shown in Table 1.
Table 1
miRNAs involved in the line of communication cancer-immune
Immuno
Exosomal miRNA
Involved molecule
Involved other molecules
Function
Ref.
DCs
miR-203
TLR4
TNF-α, IL-12 pathway
DCs dysfunction in pancreatic cancer
[42]
miR-212-3p
RFXAP
/
Immune tolerance of DCs in pancreatic cancer
[36]
Lymphocytes
miR-183
DAP12
TGFβ
NK
[94]
miR-210
NKG2D
TGFβ1
NK
[45]
miR-23
CD107a
/
NK
[95]
miR-20a
MICA/MICB
NKG2D
NK
[96]
miR-10b
MICB
/
NK
[97]
miR-92a
/
FasL, INF-ϒ
NKT
[98]
miR-214
PTEN
IL-10
T cell
[99]

Exosomal miRNA and tumor proliferation

Malignant cells have the ability to transfer genetic information to other cells in the tumor microenvironment through exosomes. Some of the exosomic miRNAs transported between donors and recipients are shown in Table 2, indicating that exosomal miRNAs contribute to cancer cell proliferation, angiogenesis, metastasis, drug resistance and tumor inhibition.
Table 2
Exosomal miRNAs as prognostic and predictive biomarkers
Systematic
Cancer type
Exosomal miRNAs
Donor
Recipient
Target(s)
Function
Type of biomaker
Ref.
Respiratory system
Lung cancer
miR-155/ -146a
Immune cells
Immune cells
HO1/ IRAK1 and TRAF6
TP532NP1
MiR-155 enhances while miR-146a reduces inflammatory gene expression. Promotes endotoxininduced inflammation.
Inflammation
[10]
/
Mast cell
KIT-SCF/ PI3K
/
Enhances proliferation in recipient tumor cells.
Proliferation
[100]
miR-210
Lung adenocarcinoma
Stromal cells
Ephrin A3
Promotes angiogenesis.
Angiogenesis
[52]
miR-21
Bronchial epithelial (HBE) cells
Normal HBE cells
STAT3
Increases VEGF levels in recipient cells, which is involved in angiogenesis and malignant transformation of HBE cells.
Angiogenesis
[53]
miR-192
A549
Endothelial cells
ICAM-1/ PTPRJ
Regulates non-cell-autonomous invasiveness, and tumor-induced osteoclastogenesis.
Bone metastasis
[100]
miR-494
Lung adenocarcinoma cells
Lymph nodes, lung cells
MAL,cdh17
/
Pre-metastasis
[101]
miR-542-3p
cdn17, TRAF4
miR-23b-3p, miR-10b-5p and miR-21-5p
Plasmatic exosomes
Non-small cell lung cancer cells(NSCLC)
/
/
Progression, angiogenesis and metastasis
[102, 103]
Digestive system
Digestive tract
Esophageal cancer(ESCC)
miR-30a
ESCC cells
/
WNT2/FZD2
Down-regulation of miR-30a-3p/5p expression is correlated with the activation of Wnt signaling in ESCC, which enhances cell proliferation.
Proliferation
[104]
Gastric cancer
miR-21
Macrophage
BGC-823
PDCD4
MiR-21 inhibitor-loaded exosomes promote migration and reduce apoptosis.
Metastasis
[57]
miR-221
Mesenchymal stem cells
HGC-27
/
Promotes HGC-27 growth and migration.
Metastasis
[105]
Colorectal cancer(CRC)
miR-21, −192 and − 221
HCT-15, SW480 and WiDr
HepG2 and A549
/
Regulate the expression of target genes in HepG2 and A549 cells. May promote various functions.
/
[73]
Let-7a
CRC cells
T cells
/
Let-7a expression is positively associated with cancer-specific mortality, and T cells low expresion.
Inmmue inhibitor
[106]
miR-19a
CRC cells
/
PTEN
Over-expression was significantly associated with poorer survival.
Metastasis
[76]
miR-23b-3p
Blood plasma isolated from CRC patients
Colon cancer cells
/
/
Inhibitor
[103]
Digestive gland
Liver cancer
miR-142 and − 223
Macrophages
Hepatocellular carcinoma cells (HuH7 and HepG2)
Stathmin-1/ IGF1R
Inhibits proliferation of cancer cells.
Inhibitor
[77]
miR-122
Huh7 cells
HepG2 cells
IGF1R mRNA
Reduced growth and proliferation of recipient HepG2 cells.
Inhibitor
[107]
miR-584
Hep3B, HepG2, and PLC/PRF/5
Hep3B, HepG2 and PLC/PRF/5
TGF-β activated kinase-1 (TAK1)
HCC cell-derived exosomes modulate TAK1 expression and associated signaling. They also enhance the growth of transformed recipient cells.
Proliferation
[47]
Pancreatic cancer (PC)
miR-122-5p and miR-193b-3p
Plasma samples
Pancreatic cancer cells
/
Act on several molecular pathways closely related with PC such as p53 signaling pathway, TGF-beta signaling pathway and so on.
Proliferation
[108]
miR-221-3p
Inhibitor
miR-23b-3p
PANC-1 cells
PANC-1 cells
CA-19-9
miR-23b-3p expression in sera or that in the exosomes isolated from sera showed a close relationship with CA-19-9 expression.
Proliferation and metastasis
[103, 109]
miR-141, miR-375
PCa cells
Serum
/
miR-141 and miR-375 were associated with recurrent (metastatic) PCa following radical prostatectomy
metastasis
[110]
miR-1290, miR-375
PCa cells
Plasma
/
Various RNA species and changes in exosomal RNA contents are robust candidates as clinical biomarkers for advanced PCa
Survival prognosis
[111]
miR-19b
PCa cells
Urine
/
Active secretion of miR-19b containing vesicles by tumor cells
Diagnosis
[112]
Isomirs of miR-21, miR-375 and miR-204
PCa cells
Urine
MARCKS, BTG2, PTEN, RECK
The miRNA-read-length of miR-204, miR-21 and miR-375 showed clear differences when comparing controls with PCa patient samples.
Progression
[113, 114]
miR-141
PCa cells
Serum
/
Exosomal miR-141 is upregulated in the serum from patients with PCa compared with patients with benign prostate hyperplasia or the healthy volunteers
Metastasis
[115]
miR-200c-3p
Urine
PCa cells
ZEB1, ZEB2, SNAIL2
miRNA re-expression inhibits prostasphere formation, decreases clonogenic survival, and reduces NOTCH1 and LIN28B gene expression, the drivers of self-renewal.
Suppressor
[114, 116]
miR-21-5p
Urine
PCa cells
MARCKS, BTG2, PTEN, RECK
Blocking miRNA with antisense oligonucleotides has no effect on cell proliferation, but it leads to increased sensitivity to apoptosis and the inhibition of cell motility and invasion
Progression
Let-7c
Urine
PCa cells
E2F2 and CCND2, LIN28, MYC, EZH2
miRNA family are down-regulated in PCa.
Suppressor
miR-196a-5p
Urine
PCa cells
ETS-related gene (ERG)
The high levels of miR-196a-5p in normal prostate cells help to maintain the levels of ERG low.
Metastasis
[117]
miR-501-3p
Urine
PCa cells
E-cadherin
miR-501-3p promoted the invasiveness of pancreatic ductal adenocarcinoma cells possibly by suppressing E-cadherin
miR-2909
Urine
PCa cells
/
miR-2909 levels were only increased in urinary exosome from PCa patients
Metastasis
[118]
miR-145
Urine
PCa cells
KRAS, ERK5, KLKs, FSCN1, SWAP70, MMP-13, GOLM1, FNDC3B, CD133, CD44, OCT4, MYC, KLF4
Urinary levels of exosomal miR-145 were increased in PCa patients vs BPH patients
Suppressor
[114, 119]
miR-1246
Serum
PCa cells
/
Serum levels of exosomal miR-1246 were increased in PCa patients vs BPH patients
Metastasis
[120]
Cholangiocarcinoma
/
KMBC and HuCCT1
Mesenchymal stem cells
/
Enhance MSC migratory capability and expression of alpha-smooth muscle actin mRNA. Promote the release of CXCL-1, CCL2, and IL-6.
Metastasis
[121]
Urinary system
Bladder cancer
Exosome-derived miR- 29c
miR-29c
BIU-87 cells
BCL-2 and MCL-1
Exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.
Apoptosis
[78]
Reproductive system
Female
Breast cancer
miR-105
MDA-MB-231
Endothelial cells
Protein ZO-1
Destroys tight junctions and the integrity of natural barriers to metastasis.
Metastasis
[58]
miR-10b
MDA-MB-231
HMLE (MCF-7)
HOXD10/KLF4
Induces invasion of non-malignant HMLE cells.
Metastasis
[122]
miR-210
MDA-MB-231
4 T1
Endothelial cells
/
Suppresses expression of specific target genes resulting in enhanced angiogenesis.
Metastasis
[123]
miR-503
Endothelial cells
Breast cancer cells
CCND2/ CCND
Alters proliferation and invasion.
Metastasis
[124]
miR-16
EGCG-treated 4 T1 cells
Macrophages
/
Inhibits TAM infiltration and M2 polarization.
Metastasis
[125]
miR-16
Mesenchymal
stem cells
4 T1
VEGF mRNA
Down-regulates the expression of vascular endothelial growth factor (VEGF) in tumor cells.
Metastasis
[126]
miR-140
Pre-adipocyte
(3T3L1)
MCF10
SOX9
Regulates differentiation, stemness, and migration.
Metastasis
[127]
miR-122
Breast cancer patients/ MCF10A
Recipient pre-metastatic niche cells
PKM2 and GLUT1
Suppresses glucose uptake by niche cells by down-regulating pyruvate kinase
Metastasis
[128]
Hepatoma cells (Huh-7 and Hep3B cells)
MCF-7 cells
SDC1
The liver-derived exosomes increased the mobility of breast cancer MCF-7 cells though SDC1 downregulation mediated by exosomal miR-122-5p.
Metastasis
[60]
miR-23b
Bone marrow mesenchymal stem cells
Breast cancer cells
MARCKS
Decreases MARCKS expression and promotes breast cancer cell dormancy in the metastatic niche.
Dormancy
[129]
miR-127, −197, −222, and − 223
Bone marrow stroma
MDA-MB-231
CXCL12
Reduce CXCL12 levels and decreases proliferation. Elicit dormancy in bone marrow metastases in breast cancer.
Dormancy
[79]
miR-134
Hs578T and Hs578Ts(i)8
Breast cancer cells
STAT5B
Reduces STAT5B and Hsp90 expression. Decreases cell migration and invasion.
Drug resistance
[130]
miR-221/ -222
MCF-7 (Tamoxifen resistant)
MCF-7 (Tamoxifen-sensitive)
P27 and ERα
Enhances tamoxifen resistance in recipient cells.
Drug resistance
[68]
miR-223
IL-4-activated macrophages
MDA-MB-231
Mef2c- β-catenin
Promotes the invasion of breast cancer cells.
Metastasis
[131]
miR-124/ -145
Mesenchymal stem cells
Glioma cells and glioma stem cells
SCP-1/Sox2
Decrease the migration of glioma cells and the self-renewal of glioma stem cells.
Proliferation
[132]
miR-21/ -3a
Bone marrow-derived MSCs
Breast cancer cells
TPM1/PDCD4/ Bcl-2
Elicit pro-tumorigenic and anti-apoptotic effects.
Proliferation
[133]
miR-200
Metastatic breast cells
Non-metastatic breast cells
ZEB1/ZEB2
Suppress the EMT and enhance the reverse process, mesenchymal-to-epithelial transition (MET) by inhibiting the expression of Zeb1 and Zeb2.
Metastasis
[134]
MiR-373
breast cancer cells
/
/
downregulate the protein expression of ER and inhibit apoptosis induced by camptothecin.
Malignant prediction
[66]
Ovarian cancer
miR-200a/b/c/141
SKOV-3 and OVCAR-3
Ovarian cancer cells (OC)
ZEB1 (TCF8/ZFHX1A/δEF1) and ZEB2 (SIP1/ZFHX1B/SMAD1P1)
Down-regulation of miR-200 in mesothelial cells promotes cancer cell attachment and proliferation.
Proliferation
[55]
let-7 family
SKOV-3
OVCAR-3
/
Exosome release varies between ovarian cancer cell lines and is correlated with invasive potential.
Metastasis
[96]
miR-21-5p
CP70
A2780
NAV3
Increases platinum-resistance in A2780 cells.
Drug resistance
[135]
ATF2, MTA1, and ROCK1/2
High-grade ovarian cancer
Endothelial cells
/
Exosomes derived from high-grade ovarian cancer alter angiogenesis compared to non-high-grade ovarian cancer cells.
Metastasis
[136]
miR-24-3p, −891a, and -106a- 5p
The serum of patients with NPC or TW03 cells
T-cell
MARK1
Alter T-cell proliferation and differentiation.
Metastasis
[137]
miR-127-3p
/
OVCAR-3 and Caov-3 cells
Bcl-associated athanogene 5 (BAG5) gene
Inhibits the BAG5 gene, and subsequent BAG5 upregulation ameliorated the tumor-suppressive effects of miR-127-3p overexpression in OC.
Proliferation
[138]
OC ES-2 cells
Endothelial cells
PPP1CA
The upregulation of PPP1CA in OC is attributed to the downregulation of hsa-miR-127-3p.
Proliferation
[139, 140]
miR-339-5p
OC ES-2 cells
Endothelial cells
WNT (CHD8)
CHD8 inhibits the transcription of β-catenin target genes through chromatin compaction and it may be a tumor suppressor gene. Overexpression of exosomal miR-339-3p could influence WNT3A/CHD8 pathway.
Proliferation and metastasis
[140, 141]
miR-409-3p
OC ES-2 cells
Endothelial cells
WNT (CTBP1)
CTBP1 was demonstrated to activate the expression of Wnt genes and downregulate their downstream E-cadherin in a TCF-independent manner. Overexpression of exosomal miR-409-3p could influence WNT7A/CTBP1 pathway.
Proliferation and metastasis
[140, 142]
Male
Prostate cancer (PC)
MiR-141
Bone metastatic PCa cells
Bone cells
NF-κB signaling
Serum exosomal expression of miR-141 were associated with T-classification and metastasis.
Metastasis
[143]
miR-375
Serum
PC cells
/
miR-375 is associated with recurrent (metastatic) PCa following radical prostatectomy
Metastasis
[111]
miR-34a
Docetaxel-resistant PC cells
Docetaxel-resistant
B-cell Lymphoma 2
Influences cell response to docetaxel in prostate cancer cells through regulation of anti-apoptotic BCL-2.
Drug resistance
[74]
miR-125a
DIAPH3-silenced cells
macrophages
AKT1
Suppresses AKT1 expression and proliferation of cancer.
Proliferation
[48]
miR-290,-378
PC cells
/
/
Overexpression shorten prostate cancer overall survival.
Prognosis
[67]
miR-1290
Plasma
/
/
Correlation with overall survival
Prognosis
[111]
miR-19b
Urine
/
/
Correlation with overall survival
Prognosis
Neural system
Neuroblastoma
miR-21
NBL cells
Human monocytes
TLR8-NF-кB
/
Drug resistance
[143]
miR-155
Monocytes
NBL cells
TERF1
Hematological system
Hematological malignancies
miR-210
K562 under hypoxic conditions
Umbilical vein endothelial cells
EFNA3
Exosomal miRNAs derived from cancer cells under hypoxic conditions may affect angiogenic activity in endothelial cells.
Metastasis
[90]
miR-126
LAMA84
Endothelial cells
CXCL12 and VCAM1
HUVECs with a miR-126 inhibitor reversed the decrease in CXCL12, restores motility and adhesion in LAMA84 cells.
Metastasis
[144]
miR-202-3p
Chronic lymphocytic leukemia (MEC1)
Human stromal cells
c-Fos and ATM
Enhances proliferation of recipient cells.
Proliferation
[145]
miR-92a
K562 cells
Umbilical vein endothelial cells
Integrin α5
Enhances endothelial cell migration and tube formation.
Metastasis
[146]
miR-21
CLL cells
MSCs and endothelial cells
/
Induce differentiation of stromal cells into cancer-associated fibroblasts.
Metastasis
[147]
miR-135b
Multiple myeloma cells
endothelial cells
FIH-1
Exosomal miR-135b from HR-MM cells enhances endothelial tube formation under hypoxic conditions via the HIF-FIH signaling pathway.
Metastasis, angiogenesis
[148]
Others
Melanoma
miR-125b
PLX4032-resistant melanoma cell line
Primary melanoma cell lines
apoptotic pathways
miRNA inhibitors increased the fraction of apoptotic cells in LM16-R cells
Metastasis
[149]
miR-31, − 185, and -34b
A375 and SK-MEL-28
Normal melanocytes
HAPLN1, GRP78
/
Metastasis
[150]
miR-222
Metastatic melanoma cell lines
Primary melanoma cell lines
p27Kip1
Activates the PI3K/AKT pathway.
Metastasis
[151]
 
Merkel Cell Carcinoma (MCC)
miR-30a, miR-34, miR-142-3p, miR-1539
MCV-positive or -negative tumors
/
/
Upregulation when discriminating between MCPyV-negative and MCPyV-positive MCCs
MCPyV infection
[63, 152]
miR-181d
Downregulation when discriminating between MCPyV-negative and MCPyV-positive MCCs
Proliferation is an important aspect of cancer development and progression that is manifested by altered expression and/or activity of cell cycle-related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth [46]. miR-584-derived exosomes from HCC cells target TGF-β-activated kinase-1 (TAK1) and associated signaling, leading to TAK1 downregulation. TAK1 is an essential inhibitor of hepatocarcinogenesis and has a direct effect on cancer progression through repression of the telomerase reverse transcriptase gene. That is, miR-584 has an indirect promoting effect on tumor proliferation [47]. Some other findings suggest that miR-125a from TDEs as a result of diaphanous-related formin-3 (DIAPH3) loss or growth factor stimulation may condition the tumor microenvironment through multiple mechanisms, including the proliferation of cancer cells and suppression of tumor-infiltrating immune cells [48]. Still another research showed that miR-1246 packaged in exosomes from 2 Gy-irradiated BEP2D cells could act as a transfer messenger and contribute to DNA damage by directly repressing the DNA ligase 4 (LIG4) gene, which inhibited the proliferation of nonirradiated cells [49].
The stages of tumor proliferation do not have obvious boundaries, and each stage of development does not exist independently. Tumor proliferation is often a contributing factor to the further development of tumor angiogenesis and metastasis.

Exosomal miRNA and tumor angiogenesis

Tumor angiogenesis comprises several steps: enzymatic degradation of the vessel’s basement membrane, endothelial cells proliferation, migration, sprouting, branching, and tube formation. In tumor microenvironment, exosomes released by different cell types have been shown to function as positive mediators during this process [50], including mesenchymal stem cells, stromal cell, endothelial cells [51].Considerable attention is now focused on the role of miRNAs secreted by TDE acting on the process of vascularization.
Hypoxia is one of the main factors involved in tumor angiogenesis and can affect the activity of various substances and promote expression of exosomal miRNAs. Previous studies have demonstrated that increases in tissue inhibitor of metalloproteinases-1 (TIMP-1) upregulates miR-210 by inducing pro-tumorigenic PI3K/AKT/HIF-1 signaling. Subsequent downregulation of miR-210-targeted proteins results in increased pro-angiogenic properties of exosomes released by TIMP-1-overexpressing cells and thus contributes to a new mode of action by which TIMP-1 can support lung cancer progression [52]. In addition to miR-210, researchers have found that miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells and leads to angiogenesis and malignant transformation of human bronchial epithelial (HBE) cells [53].

Exosomal miRNA and tumor metastasis

The metastatic process involves manipulation of the cellular microenvironment to optimize conditions for deposition and growth both locally and at a distance [54]. Intercellular communication can occur through various signaling molecules. Many groups have confirmed that tumor-derived exosomes are involved in the different steps of the metastatic cascade. For example, EMT is a complex molecular and cellular process involved in tissue remodeling that has been extensively studied as a facilitator of tumor progression. The miR-200 family inhibits EMT and cancer cell migration by directly targeting the E-cadherin transcriptional repressors ZEB1 and ZEB2 [55].Based on the researches, the mechanism by which miRNAs packaged by TDEs influence tumor metastasis needs to be further explored [56].
Studies have reported four general mechanisms of exosomal miRNA delivery during tumor development in the microenvironment [57]. First, less invasive tumor cells can take up miRNAs delivered from invasive tumor cells via TDEs, which may prompt worsening of a primary tumor. For example, metastatic breast cancer likely promoted cell invasion via release of exosomal miR-10b by the primary tumor into the culture environment of surrounding normal cells. This role of miRNAs packaged by TDEs acting on neighboring cells to transmit a message (produced by a donor cell and taken up by a recipient cell) resembles a paracrine mechanism of intercellular communication [56] (Fig. 2-a).With respect to the second mechanism, primary tumor cells can communicate with other cells via exosomal miRNAs in the tumor microenvironment. For example, by downregulating tight junctions and destroys the barrier function of endothelial monolayers, cancer-secreted miR-105expressed and secreted by metastatic breast cancer cells induces vascular permeability and promotes metastasis [58]. miRNAs have been reported to enter the circulatory system and travel to distant organs to deliver their message by targeting their recipient cells, emphasizing the potential of miRNAs to act as signals involved in preparing a distant site for tumor proliferation [59] (Fig. 2-b). A third mode of communication involves exosomes derived from normal cells or routine biological process that can alter the behavior of tumor cells. For example, after metastasis to the brain, but not to other organs, human and mouse tumor cells regulated by microRNAs from brain astrocytes both lost PTEN expression [50]. Another example is the exosomal level of miR-122-5p was increased upon hepatoma cell damage treated by apoptotic agent and then increased cell mobility by SDC1 downregulation [60].The last mode focus on some tumor caused by viral infections. The cells infected by virus released aberrant quality and quantity of exosomal miRNA, leading more health cells and themselves to precancerous conditions. For example, in the Burkitt Lymphoma Mutu Cell Lines, Epstein-Barr virus (EBV) infection in type III latency modulates the biogenesis of exosomes and expression profile of exosomal miRNAs, such as miR-877 [61], which may contribute to the induction of EBV-associated tumors by modulating cell and virus functions [62].Some other studies showed that Merkel cell polyoma virus seems to be the major causal factor for Merkel cell carcinoma (MCC). By comparing MCPyV positive cells with negative ones, miR-181d as a tumor suppressor was downexpressed in MCPyV-positive cells [63]. (Fig. 2-c).
Organ-specific metastasis is a multi-step and complicated process that includes tumor-host crosstalk among cells as well as communication between cells. Moreover, the crucial role of the tumor environment, including signaling and key molecules required for tumor metastasis, cannot be ignored.

Exosomal miRNA and clinical implications

Exosomal miRNA as a predictor of tumor response to treatment

Primary acquired resistance to chemotherapy, radiotherapy and targeted therapies remains a major stumbling block in cancer treatment [64, 65]. The key signaling pathway components in drug response, involving drug targets, transporters, and cell cycle- and apoptosis-related components, include several functional proteins that can be affected by miRNA expression [66]. Exosomes can be regarded as vehicles for loading miRNAs, targeting and combining fundamental genetic molecules in the pathways mediating chemotherapy, radiotherapy and targeted therapies.
Recent studies have reported that treatment of prostate cancer with paclitaxel (PTX) often fails due to the development of chemo-resistance caused by downregulation of the tumor suppressor gene miR-34a. This miRNA has been suggested to be an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression by regulating the anti-apoptotic gene BCL-2 [67]. Other researchers have reported that tamoxifen-sensitive breast cancer cells can acquire drug resistance after internalizing exosomes derived from tamoxifen-resistant breast cancer cells. The underlying mechanism involves inhibition of P27 and ERα expression in tamoxifen-sensitive cells by miR-221/222 carried within the transferred exosomes [68]. Furthermore, the research on exosomal miR-21 as biomarker of treatment outcome in non-small cell lung cancer (NSCLC) has also been developed. It was revealed that the high level of miR-21 related to the acquired resistance to the treatment consisting of epidermal growth factor receptor (EGFR) and tyrosine kinase inhibitors (TKIs) [69]. The radio sensitivity mediated by PI3K/Akt pathway represents also an aspect controlled by miR-21, and the inhibition of miR-21 improved the sensitivity to radiotherapy [70], which would be advantages of miR-21 as a useful predictor of the therapeutic response, and constructive, worse outcome [71].
Therefore, some exosomal miRNAs can provide information about the identity of the cell type from which they are derived, the target, and the cellular state, including therapy resistance. Accordingly, it is possible to monitor and regulate tumor resistance, and achieve personalized therapy.

Exosomal miRNAs as fascinating possibility for tumor biomarker

The cargo of exosomes is specific for the parental cells and the conditions in which they produce them, which implied that circulating miRNAs in exosomes had the potential toserve as prognostic and predictive biomarkers [72]. This review focuses on the biological characteristics of exosomal miRNAs as cancer surrogate biomarkers. Different miRNAs from tumor-related (TR) exosomes have been detected as biomarkers in the plasma of tumor patients.
As the potential role of tumor diagnosis, the results of a meta-analysis suggested that miR-21-containing circulating exosomes, which can also be detected in feces, in plasma may be a reliable and non-invasive biomarker for colorectal cancer diagnosis [73]. Moreover, recent studies have claimed that circulating exosomal miRNA-373 is upregulated in receptor-negative breast cancer patients [74]. Additionally, miR-1290 and miR-375 upregulation might indicate poor overall survival in castration-resistant prostate cancer [75], and exosomal miR-19a cluster expression level in serumarecorrelated with recurrence in colorectal cancer [76].
In addition to tumor markers, exosomal miRNAs can also act as tumor development inhibitors, with a fascinating possibility for tumor therapy. The correlation between miRNAs from TDEs and immunology is ubiquitous, further demonstrating differences between tumor phenotypes. Thus, secreted miRNAs may be considered a type of immune cell effector. For example, transfer of miR-142 and miR-223 influences post-transcriptional regulation of proteins in HCC, including decreased expression of reporter proteins and endogenously expressed stathmin-1 and insulin-like growth factor-1 receptor. This ultimately inhibits proliferation of these cancerous cells, suggesting that miR-142 and miR-223 may act as inhibitors of tumor treatment [77]. Furthermore, exosome-derived miR-29c induces apoptosis in bladder cancer cells by downregulating BCL-2 and MCL-1 [78], and some exosomal miRNAs, such as miR-127 and miR-197, can elicit dormancy in tumor metastasis and proliferation, decreasing proliferation and eliciting dormancy in bone marrow metastasis of breast cancer. All of these molecules may inhibit tumor treatment [79]. To utilize exosomal miRNAs as a diagnosis biomarker, a fluorescent system with antidisturbance should be developed, due to the complex biosystem. Surprisingly, because of the self-referencing capability, ratiometric fluorescent measurement is able to cancel out environmental fluctuations by calculating the emission intensity ratio at two different wavelengths [80]. Recently, the practical applications of ratiometric fluorescent bioprobes has been improved. For instance, a ratiometric fluorescent bioprobe based on DNA-labeled carbon dots (DNA-CDs) and 5,7-dinitro-2-sulfo-acridone (DSA) coupling with the target-catalyzing signal amplification for the detection of exosomal miRNA-21. There was high fluorescence resonance energy transfer (FRET) efficiency between carbon dots (CDs) and DSA when the bioprobe was assembled [81].
To date,there is increasing evidence for the roles of TDEs. Considering that compared with total circulating RNAs, exosomes typically target specific cells, detection of exosomal miRNAs in clinical examination appears reasonable, which might assist physicians with predicting cancer prognosis [82].

Exosomal miRNA delivery system: Opportunities and challenges

In previous researches, miRNAs encased in TDEs are more likely to escape attack by immune systemand able to cross the blood-brain barrier. Moreover, exosomes are likely to protect their cargo from clearance or damage by the complement fixation or macrophages due to their double-layered membrane and nanoscale size, thus prolong their circulation half-life and enhancing their biological activity [83]. Exosomes can deliver miRNAs to target recipient cells with a distinctcomposition of proteins and lipids on their surface. In addition, exosome membrane is rich in sphingomyelin, ceramide, and cholesterol, which help to distinguish exosomes from the cell membrane and facilitates their uptake by recipient cells. As a consequence, exosomes always succeed, even though they sometimestake a longer path to reach their target [84].
Differential experimental skills have been employed in an attempt to purify reticulocyte exosomes from tissue culture medium, and new methods for exosome purification were developed to reduce the cell media required,thus enhancing maneuverability and improving efficiency [85]. In addition, the abovementioned studies have found that Dicer and Ago2, the key components of miRNA processing, are functionally present in exosomes, suggesting that miRNA might not be the only cargo carried by EVs [18]. Another challenge is how to load the desired cargo. For example, miRNA can be efficiently encapsulated into exosomes by manipulating exosome-producing cells to overexpress cargo miRNA. By usinga cell-specific protein present in the membrane of the exosomes,these encapsulated miRNAs were delivered to EGFR-expressing breast cancer cells. However, researchers were unable to encapsulate miRNA into HEK-293-derived exosomes using electroporation [86]. In addition to technological issues, exosomes have the potential to spread numerous pathogens. Many pathogenic factors, including viral proteins and fragments of viral genomes, can be incorporated into exosomes derived from virus-infected cells, and exosome-mediated delivery of these factors has been shown to affect the immune responses to infection and to modulate recipient cells responses. For example, HIV-1 achieves cell entry via exosome-mediated transfer of chemokine receptor 5 to recipient cells [87]. There are still some limitationsregarding encapsulated miRNAs in the exosomal miRNA delivery system. As cell-based delivery vehicles, exosomes sufficiently deliver their functional message to recipient cells without negative side effects; thus, exosomes are attracting attention in molecular medicine as potential modulators of disease-mediated processes. Nevertheless, we cannot ignore the problems of miRNA in itself, some have shown that imported miRNA results in little cellular toxicity and has substantial effects on miRNA regulation in recipient cells, for example, exosomal transfer of miR-155 inhibitors and mimics to macrophages [88].
Currently, a growing number of evidence reveals that exosomal miRNAs were highly disease-related not only with tumor but other diseases, and both sides will improve prominently by interoperability of knowledge. For example, miR-21-5p, miR-29a-3p and miR-126-3p are involved in pathways related to diabetic kidney disease (DKD) pathogenesis, such as apoptosis, fibrosis, and extracellular matrix accumulation. They seem to be dysregulated in patients with different stages of DKD, constituting potential biomarkers of this disease [89]. At the same time, miR-21 and miR-29a act in NSCLC tumor growth and metastasis [41], and miR-126 promotes the Hematological malignancies metastasis [90]. Some other studys showed that high-glucose(HG) exosomes contained high levels of miR-28, miR-31a, and miR-130acompared to exosomes derived from non-HG-stimulated Schwann cells, which might promote development of diabetic peripheral neuropathy. Schwann cells are the most abundant myelinated cells [91]. Herein, a potential point on whether the high release of these exosomal miRNA would influence tumor development need to be explored. Some other study held that the transport of miRNAs, within or in association with exosomes, may provide a distant and potentially more bioactive pool of circulating miRNAs compared to those that are riboprotein bound. Currently, however, there is no evidence to suggest functional differences between exosomal miRNAs and free ones, nor is it known whether exosomal and free miRNAs are differentially regulated in response to stimulation. Future studies need to classify whether miRNA packaging into exosomes and exosomal uptake is a selective/stimulus dependent process [92].
Thus, applying exosomal miRNAs to clinical treatment is a challenging but intriguing endeavor that requires further exploration by researchers and clinicians.

Conclusion

To successfully develop advanced therapeutic options for the treatment of cancer, exosomal miRNAs should not be disregarded. Based on the specific function of miRNA delivered by TDE, we will be able to counteract pro-tumorigenic and pro-metastatic signals that contribute to the growth, spread, and drug resistance of tumor cells by potentially engineering the miRNA and protein cargo of exosomes or by interfering with their trafficking.However, further study is required to cause tumor cells to forsake “heresy” and return to the “truth”.Therefore, future efforts should focus on identifying the right correct of TDE-mediated immune escape and TDE-mediated tumor resistance to avoid the disadvantages of exosomal miRNAs [93]. Moreover, an effective selective mechanism for exosomal miRNA delivery system and technologies for miRNA mimic-importing TDEs can also be expected.

Funding

This study was supported by the National Natural Science Foundation of China (81560385), the Medical Scientific and Technological Research Project of Henan Province (201702027), Youth Innovation Fund Project of The First Affiliated Hospital of Zhengzhou University (YNQN2017035), and the China Postdoctoral Science Foundation (2017 M610462).
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
2.
Zurück zum Zitat Behera J, Tyagi N. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience. 2018;5:181–95.PubMedPubMedCentral Behera J, Tyagi N. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience. 2018;5:181–95.PubMedPubMedCentral
3.
Zurück zum Zitat Carney R, Hazari S, Rojalin T, Knudson A, Gao T, Tang Y, Liu R, Viitala T, Yliperttula M, Lam K. Targeting Tumor-Associated Exosomes with Integrin-Binding Peptides. Adv Biosyst. 2017;1:1600038. Carney R, Hazari S, Rojalin T, Knudson A, Gao T, Tang Y, Liu R, Viitala T, Yliperttula M, Lam K. Targeting Tumor-Associated Exosomes with Integrin-Binding Peptides. Adv Biosyst. 2017;1:1600038.
4.
Zurück zum Zitat Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol. 2013;113:1–11.CrossRef Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol. 2013;113:1–11.CrossRef
6.
Zurück zum Zitat Chaput N, Thery C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33:419–40.PubMedCrossRef Chaput N, Thery C. Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33:419–40.PubMedCrossRef
7.
Zurück zum Zitat Chiarugi P, Cirri P. Metabolic exchanges within tumor microenvironment. Cancer Lett. 2016;380:272–80.PubMedCrossRef Chiarugi P, Cirri P. Metabolic exchanges within tumor microenvironment. Cancer Lett. 2016;380:272–80.PubMedCrossRef
8.
Zurück zum Zitat Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine-Jmm. 2013;91:431–7.CrossRef Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine-Jmm. 2013;91:431–7.CrossRef
9.
Zurück zum Zitat Benmoussa A, Ly S, Shan S, Laugier J, Boilard E, Gilbert C, Provost P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk. J Extracell Vesicles. 2017;6:1401897.PubMedPubMedCentralCrossRef Benmoussa A, Ly S, Shan S, Laugier J, Boilard E, Gilbert C, Provost P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk. J Extracell Vesicles. 2017;6:1401897.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.PubMedCrossRef Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.PubMedCrossRef
11.
Zurück zum Zitat Sanz-Rubio D, Martin-Burriel I, Gil A, Cubero P, Forner M, Khalyfa A, Marin JM. Stability of circulating Exosomal miRNAs in healthy subjects. Sci Rep. 2018;8:10.CrossRef Sanz-Rubio D, Martin-Burriel I, Gil A, Cubero P, Forner M, Khalyfa A, Marin JM. Stability of circulating Exosomal miRNAs in healthy subjects. Sci Rep. 2018;8:10.CrossRef
13.
Zurück zum Zitat Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews-Rna. 2012;3:286–93.PubMedCrossRef Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews-Rna. 2012;3:286–93.PubMedCrossRef
14.
Zurück zum Zitat Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–34.PubMedCrossRef Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–34.PubMedCrossRef
15.
Zurück zum Zitat Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima K, Hoshino T, Sano K, et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun. 2010;399:384–90.PubMedCrossRef Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, Shiina M, Fukushima K, Hoshino T, Sano K, et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun. 2010;399:384–90.PubMedCrossRef
18.
Zurück zum Zitat Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al. Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29:653–68.PubMedCrossRef Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al. Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29:653–68.PubMedCrossRef
19.
Zurück zum Zitat Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27:5959–74.CrossRefPubMed Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27:5959–74.CrossRefPubMed
20.
Zurück zum Zitat Zhang J, Li S, Li L, Li M, Guo CY, Yao J, Mi SL. Exosome and Exosomal MicroRNA: trafficking, sorting, and function. Genomics Proteomics & Bioinformatics. 2015;13:17–24.CrossRef Zhang J, Li S, Li L, Li M, Guo CY, Yao J, Mi SL. Exosome and Exosomal MicroRNA: trafficking, sorting, and function. Genomics Proteomics & Bioinformatics. 2015;13:17–24.CrossRef
21.
Zurück zum Zitat Ostrowski M, Carmo N, Krumeich S, Fanget I, Raposo G, Savina A, Moita C, Schauer K, Hume A, Freitas R, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30 sup pp 11-13.PubMedCrossRef Ostrowski M, Carmo N, Krumeich S, Fanget I, Raposo G, Savina A, Moita C, Schauer K, Hume A, Freitas R, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30 sup pp 11-13.PubMedCrossRef
22.
Zurück zum Zitat Yu X, Harris S, Levine A. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66:4795–801.PubMedCrossRef Yu X, Harris S, Levine A. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66:4795–801.PubMedCrossRef
23.
Zurück zum Zitat Wang YM, Xu XY, Yu SX, Jeong KJ, Zhou ZC, Han L, Tsang YH, Li J, Chen H, Mangala LS, et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 2017;27:1112–25.PubMedPubMedCentralCrossRef Wang YM, Xu XY, Yu SX, Jeong KJ, Zhou ZC, Han L, Tsang YH, Li J, Chen H, Mangala LS, et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 2017;27:1112–25.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Baietti M, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.PubMedCrossRef Baietti M, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.PubMedCrossRef
25.
Zurück zum Zitat Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25:198–213.PubMedCrossRef Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25:198–213.PubMedCrossRef
26.
Zurück zum Zitat Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn. 2014;14:565–74.PubMedCrossRef Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn. 2014;14:565–74.PubMedCrossRef
28.
29.
Zurück zum Zitat Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 2013;341:80–96.PubMedCrossRef Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 2013;341:80–96.PubMedCrossRef
30.
Zurück zum Zitat Zhang ZC, Li X, Sun W, Yue SQ, Yang JY, Li JJ, Ma B, Wang JL, Yang XS, Pu M, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett. 2017;397:33–42.PubMedCrossRef Zhang ZC, Li X, Sun W, Yue SQ, Yang JY, Li JJ, Ma B, Wang JL, Yang XS, Pu M, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett. 2017;397:33–42.PubMedCrossRef
31.
Zurück zum Zitat Du YE, Tu G, Yang GL, Li GY, Yang D, Lang L, Xi L, Sun KX, Chen YL, Shu KX, et al. MiR-205/YAP1 in activated fibroblasts of breast tumor promotes VEGF-independent angiogenesis through STAT3 signaling. Theranostics. 2017;7:3972–88.PubMedPubMedCentralCrossRef Du YE, Tu G, Yang GL, Li GY, Yang D, Lang L, Xi L, Sun KX, Chen YL, Shu KX, et al. MiR-205/YAP1 in activated fibroblasts of breast tumor promotes VEGF-independent angiogenesis through STAT3 signaling. Theranostics. 2017;7:3972–88.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34:5857–68.PubMedPubMedCentralCrossRef Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34:5857–68.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Pang WJ, Su JJ, Wang YL, Feng H, Dai X, Yuan YZ, Chen X, Yao WY. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 2015;106:1362–9.PubMedPubMedCentralCrossRef Pang WJ, Su JJ, Wang YL, Feng H, Dai X, Yuan YZ, Chen X, Yao WY. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 2015;106:1362–9.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.PubMedPubMedCentralCrossRef Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Greening DW, Gopal SK, Xu R, Simpson RJ, Chen WS. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81.PubMedCrossRef Greening DW, Gopal SK, Xu R, Simpson RJ, Chen WS. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81.PubMedCrossRef
36.
Zurück zum Zitat Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. Journal of Zhejiang University-Science B. 2016;17:352–60.PubMedPubMedCentralCrossRef Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. Journal of Zhejiang University-Science B. 2016;17:352–60.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Venereau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6. Venereau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6.
39.
Zurück zum Zitat Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of dendritic cell immune function. Cancer Lett. 2018;412:236–42.PubMedCrossRef Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of dendritic cell immune function. Cancer Lett. 2018;412:236–42.PubMedCrossRef
40.
Zurück zum Zitat Hammer GE, Ma A: Molecular control of steady-state dendritic cell maturation and immune homeostasis. IN Annual Review of Immunology, Vol 31. Volume 31. Edited by Littman DR, Yokoyama WM 2013: 743–791: Annual Review of Immunology]. Hammer GE, Ma A: Molecular control of steady-state dendritic cell maturation and immune homeostasis. IN Annual Review of Immunology, Vol 31. Volume 31. Edited by Littman DR, Yokoyama WM 2013: 743–791: Annual Review of Immunology].
41.
Zurück zum Zitat Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109:E2110–6.PubMedPubMedCentralCrossRef Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109:E2110–6.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer. 2010;126:73–80.PubMedCrossRef Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer. 2010;126:73–80.PubMedCrossRef
43.
Zurück zum Zitat Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol. 2014;14:640–6.PubMedCrossRef Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol. 2014;14:640–6.PubMedCrossRef
44.
Zurück zum Zitat Donatelli SS, Zhou JM, Gilvary DL, Eksioglu EA, Chen XH, Cress WD, Haura EB, Schabath MB, Coppola D, Wei S, Djeu JY. TGF-beta-inducible microRNA-183 silences tumor-associated natural killer cells. Proc Natl Acad Sci U S A. 2014;111:4203–8.PubMedPubMedCentralCrossRef Donatelli SS, Zhou JM, Gilvary DL, Eksioglu EA, Chen XH, Cress WD, Haura EB, Schabath MB, Coppola D, Wei S, Djeu JY. TGF-beta-inducible microRNA-183 silences tumor-associated natural killer cells. Proc Natl Acad Sci U S A. 2014;111:4203–8.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res. 2012;72:4629–41.PubMedCrossRef Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res. 2012;72:4629–41.PubMedCrossRef
46.
Zurück zum Zitat Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–54.PubMedPubMedCentralCrossRef Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–54.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Kogure T, Lin W-L, Yan IK, Braconi C, Patel T. Inter-cellular nanovesicle mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology (Baltimore, Md). 2011;54:1237–48.CrossRef Kogure T, Lin W-L, Yan IK, Braconi C, Patel T. Inter-cellular nanovesicle mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology (Baltimore, Md). 2011;54:1237–48.CrossRef
48.
Zurück zum Zitat Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, Freeman MR. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells potential effects on the tumor microenvironment. Cancer Biology & Therapy. 2014;15:409–18.CrossRef Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, Freeman MR. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells potential effects on the tumor microenvironment. Cancer Biology & Therapy. 2014;15:409–18.CrossRef
49.
Zurück zum Zitat Mo L, Song M, Huang Q, Guan H, Liu X, Xie D, Huang B, Huang R, Zhou P. Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer. 2018;119:492-502.PubMedCrossRefPubMedCentral Mo L, Song M, Huang Q, Guan H, Liu X, Xie D, Huang B, Huang R, Zhou P. Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer. 2018;119:492-502.PubMedCrossRefPubMedCentral
50.
Zurück zum Zitat Zhang L, Zhan SY, Yao J, Lowery FJ, Zhang QL, Huang WC, Li P, Li M, Wang X, Zhang CY, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.PubMedPubMedCentralCrossRef Zhang L, Zhan SY, Yao J, Lowery FJ, Zhang QL, Huang WC, Li P, Li M, Wang X, Zhang CY, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Liang XL, Zhang LN, Wang SH, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.PubMedCrossRef Liang XL, Zhang LN, Wang SH, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.PubMedCrossRef
52.
Zurück zum Zitat Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Kruger A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene. 2015;34:3640–50.PubMedCrossRef Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Kruger A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene. 2015;34:3640–50.PubMedCrossRef
53.
Zurück zum Zitat Liu Y, Luo F, Wang BR, Li HQ, Xu Y, Liu XL, Shi L, Lu XL, Xu WC, Lu L, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 2016;370:125–35.PubMedCrossRef Liu Y, Luo F, Wang BR, Li HQ, Xu Y, Liu XL, Shi L, Lu XL, Xu WC, Lu L, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 2016;370:125–35.PubMedCrossRef
54.
Zurück zum Zitat Hood JL, Roman SS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.PubMedCrossRef Hood JL, Roman SS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.PubMedCrossRef
55.
Zurück zum Zitat Gomes FG, Nedel F, Alves AM, Nor JE, Tarquinio SBC. Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci. 2013;92:101–7.PubMedCrossRef Gomes FG, Nedel F, Alves AM, Nor JE, Tarquinio SBC. Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci. 2013;92:101–7.PubMedCrossRef
56.
Zurück zum Zitat Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Oncotargets and Therapy. 2014;7:1327–38.PubMedPubMedCentral Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Oncotargets and Therapy. 2014;7:1327–38.PubMedPubMedCentral
57.
Zurück zum Zitat Yu SR, Cao HX, Shen B, Feng JF. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget. 2015;6:37151–68.PubMedPubMedCentral Yu SR, Cao HX, Shen B, Feng JF. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget. 2015;6:37151–68.PubMedPubMedCentral
58.
Zurück zum Zitat Zhou WY, Fong MY, Min YF, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O'Connor STF, Chin AR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.PubMedPubMedCentralCrossRef Zhou WY, Fong MY, Min YF, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O'Connor STF, Chin AR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Uen Y, Wang J, Wang C, Jhang Y, Chung J, Tseng T, Sheu M, Lee S. Mining of potential microRNAs with clinical correlation - regulation of syndecan-1 expression by miR-122-5p altered mobility of breast cancer cells and possible correlation with liver injury. Oncotarget. 2018;9:28165–75.PubMedPubMedCentralCrossRef Uen Y, Wang J, Wang C, Jhang Y, Chung J, Tseng T, Sheu M, Lee S. Mining of potential microRNAs with clinical correlation - regulation of syndecan-1 expression by miR-122-5p altered mobility of breast cancer cells and possible correlation with liver injury. Oncotarget. 2018;9:28165–75.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Wang C, Gu S, Cao H, Li Z, Xiang Z, Hu K, Han X. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Sci Rep. 2016;6:30122.PubMedPubMedCentralCrossRef Wang C, Gu S, Cao H, Li Z, Xiang Z, Hu K, Han X. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Sci Rep. 2016;6:30122.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Nanbo A, Katano H, Kataoka M, Hoshina S, Sekizuka T, Kuroda M, Ohba Y. Infection of Epstein–Barr virus in type III latency modulates biogenesis of exosomes and the expression profile of Exosomal miRNAs in the Burkitt lymphoma Mutu cell lines. Cancers. 2018;10:237.PubMedCentralCrossRef Nanbo A, Katano H, Kataoka M, Hoshina S, Sekizuka T, Kuroda M, Ohba Y. Infection of Epstein–Barr virus in type III latency modulates biogenesis of exosomes and the expression profile of Exosomal miRNAs in the Burkitt lymphoma Mutu cell lines. Cancers. 2018;10:237.PubMedCentralCrossRef
63.
Zurück zum Zitat Konstatinell A, Coucheron D, Sveinbjørnsson B, Moens U. MicroRNAs as Potential Biomarkers in Merkel Cell Carcinoma. Int J Mol Sci. 2018;19:3119-31. Konstatinell A, Coucheron D, Sveinbjørnsson B, Moens U. MicroRNAs as Potential Biomarkers in Merkel Cell Carcinoma. Int J Mol Sci. 2018;19:3119-31.
64.
Zurück zum Zitat Zhao L, Liu WT, Xiao J, Cao BW. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett. 2015;356:339–46.PubMedCrossRef Zhao L, Liu WT, Xiao J, Cao BW. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett. 2015;356:339–46.PubMedCrossRef
65.
Zurück zum Zitat Takahashi R, Prieto-Vila M, Kohama I, Ochiya T. MicroRNA in body fluids - development of the novel plat form for Cancer therapeutics and diagnosis. Gan To Kagaku Ryoho. 2018;45:899–905.PubMed Takahashi R, Prieto-Vila M, Kohama I, Ochiya T. MicroRNA in body fluids - development of the novel plat form for Cancer therapeutics and diagnosis. Gan To Kagaku Ryoho. 2018;45:899–905.PubMed
66.
Zurück zum Zitat Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, O'Driscoll L. Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes. Plos One. 2012;7:e50999.PubMedPubMedCentralCrossRef Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, O'Driscoll L. Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes. Plos One. 2012;7:e50999.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Corcoran C, Rani S, O'Driscoll L. miR-34a is an intracellular and Exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate Cancer progression. Prostate. 2014;74:1320–34.CrossRefPubMed Corcoran C, Rani S, O'Driscoll L. miR-34a is an intracellular and Exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate Cancer progression. Prostate. 2014;74:1320–34.CrossRefPubMed
68.
Zurück zum Zitat Wei YF, Lai XF, Yu ST, Chen SN, Ma YZ, Zhang Y, Li HC, Zhu XM, Yao LB, Zhang J. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147:423–31.PubMedCrossRef Wei YF, Lai XF, Yu ST, Chen SN, Ma YZ, Zhang Y, Li HC, Zhu XM, Yao LB, Zhang J. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147:423–31.PubMedCrossRef
69.
Zurück zum Zitat Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83:146–53.PubMedCrossRef Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83:146–53.PubMedCrossRef
70.
Zurück zum Zitat Ma Y, Xia H, Liu Y, Li M. Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int. 2014;2014:617868.PubMedPubMedCentral Ma Y, Xia H, Liu Y, Li M. Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int. 2014;2014:617868.PubMedPubMedCentral
71.
Zurück zum Zitat Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cellular and Molecular Life Sciences. 2018;75:3539-51.PubMedCrossRef Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cellular and Molecular Life Sciences. 2018;75:3539-51.PubMedCrossRef
72.
Zurück zum Zitat Schwarzenbach H. Clinical relevance of circulating, cell-free and Exosomal microRNAs in plasma and serum of breast Cancer patients. Oncology Research and Treatment. 2017;40:423–9.PubMedCrossRef Schwarzenbach H. Clinical relevance of circulating, cell-free and Exosomal microRNAs in plasma and serum of breast Cancer patients. Oncology Research and Treatment. 2017;40:423–9.PubMedCrossRef
73.
Zurück zum Zitat Rotelli MT, Di Lena M, Cavallini A, Lippolis C, Bonfrate L, Chetta N, Portincasa P, Altomare DF. Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. Int J Color Dis. 2015;30:891–8.CrossRef Rotelli MT, Di Lena M, Cavallini A, Lippolis C, Bonfrate L, Chetta N, Portincasa P, Altomare DF. Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. Int J Color Dis. 2015;30:891–8.CrossRef
74.
Zurück zum Zitat Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, Pantel K, Schwarzenbach H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5:9650–63.PubMedPubMedCentralCrossRef Eichelser C, Stückrath I, Müller V, Milde-Langosch K, Wikman H, Pantel K, Schwarzenbach H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5:9650–63.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Huang XY, Yuan TZ, Liang MH, Du MJ, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate Cancer. Eur Urol. 2015;67:33–41.PubMedCrossRef Huang XY, Yuan TZ, Liang MH, Du MJ, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate Cancer. Eur Urol. 2015;67:33–41.PubMedCrossRef
76.
Zurück zum Zitat Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113:275–81.PubMedPubMedCentralCrossRef Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113:275–81.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human macrophages to Hepato-carcinoma cells and inhibit proliferation. J Immunol. 2013;191:6250–60.PubMedCrossRef Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human macrophages to Hepato-carcinoma cells and inhibit proliferation. J Immunol. 2013;191:6250–60.PubMedCrossRef
78.
Zurück zum Zitat Xu XD, Wu XH, Fan YR, Tan B, Quan Z, Luo CL. Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Asian Pac J Cancer Prev. 2014;15:3471–6.PubMedCrossRef Xu XD, Wu XH, Fan YR, Tan B, Quan Z, Luo CL. Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Asian Pac J Cancer Prev. 2014;15:3471–6.PubMedCrossRef
79.
Zurück zum Zitat Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P. Gap junction-mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast Cancer cells. Cancer Res. 2011;71:1550–60.PubMedCrossRef Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P. Gap junction-mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast Cancer cells. Cancer Res. 2011;71:1550–60.PubMedCrossRef
80.
Zurück zum Zitat Ge L, Sun X, Hong Q, Li F. Ratiometric NanoCluster Beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl Mater Interfaces. 2017;9:13102–10.PubMedCrossRef Ge L, Sun X, Hong Q, Li F. Ratiometric NanoCluster Beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl Mater Interfaces. 2017;9:13102–10.PubMedCrossRef
81.
Zurück zum Zitat Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J. A Ratiometric fluorescent bioprobe based on carbon dots and Acridone derivate for signal amplification detection Exosomal microRNA. Anal Chem. 2018;90:8969–76.PubMedCrossRef Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J. A Ratiometric fluorescent bioprobe based on carbon dots and Acridone derivate for signal amplification detection Exosomal microRNA. Anal Chem. 2018;90:8969–76.PubMedCrossRef
82.
Zurück zum Zitat Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–A674.PubMedCrossRef Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–A674.PubMedCrossRef
83.
Zurück zum Zitat Syn NL, Wang LZ, Chow EKH, Lim CT, Goh BC. Exosomes in Cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35:665–76.PubMedCrossRef Syn NL, Wang LZ, Chow EKH, Lim CT, Goh BC. Exosomes in Cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35:665–76.PubMedCrossRef
84.
Zurück zum Zitat Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.PubMedCrossRef Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.PubMedCrossRef
85.
Zurück zum Zitat Shao YK, Shen YW, Chen T, Xu F, Chen XW, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget. 2016;7:60736–51.PubMedPubMedCentral Shao YK, Shen YW, Chen T, Xu F, Chen XW, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget. 2016;7:60736–51.PubMedPubMedCentral
86.
Zurück zum Zitat Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH, Zhao JH. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015;106:959–64.PubMedPubMedCentralCrossRef Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH, Zhao JH. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015;106:959–64.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, Ochi M. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445:381–7.PubMedCrossRef Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, Ochi M. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445:381–7.PubMedCrossRef
89.
Zurück zum Zitat Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. Mol Cell Endocrinol. 2018;477:90-102. Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. Mol Cell Endocrinol. 2018;477:90-102.
90.
Zurück zum Zitat Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111:14888–93.PubMedPubMedCentralCrossRef Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111:14888–93.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Moghani-Ghoroghi F, Moshkdanian G, Sehat M, Nematollahi-Mahani SN, Ragerdi-Kashani I, Pasbakhsh P. Melatonin pretreated blastocysts along with calcitonin administration improved implantation by upregulation of heparin binding-epidermal growth factor expression in murine endometrium. Cell J. 2018;19:599–606.PubMed Moghani-Ghoroghi F, Moshkdanian G, Sehat M, Nematollahi-Mahani SN, Ragerdi-Kashani I, Pasbakhsh P. Melatonin pretreated blastocysts along with calcitonin administration improved implantation by upregulation of heparin binding-epidermal growth factor expression in murine endometrium. Cell J. 2018;19:599–606.PubMed
94.
Zurück zum Zitat Moustakas A, Heldin P. TGF beta and matrix-regulated epithelial to mesenchymal transition. Biochimica Et Biophysica Acta-General Subjects. 2014;1840:2621–34.CrossRef Moustakas A, Heldin P. TGF beta and matrix-regulated epithelial to mesenchymal transition. Biochimica Et Biophysica Acta-General Subjects. 2014;1840:2621–34.CrossRef
95.
Zurück zum Zitat Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E, Mami-Chouaib F, Janji B, Chouaib S. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology. 2016;5:e1062968.PubMedCrossRef Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E, Mami-Chouaib F, Janji B, Chouaib S. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology. 2016;5:e1062968.PubMedCrossRef
96.
Zurück zum Zitat Kobayashi M, Salomon C, Tapia J, Illanes S, Mitchell M, Rice G. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 2014;12:4. PubMedPubMedCentralCrossRef Kobayashi M, Salomon C, Tapia J, Illanes S, Mitchell M, Rice G. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 2014;12:4. PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky N, Bar-Mag T, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for Cancer cell recognition by natural killer cells. Cancer Res. 2012;72:5463–72.PubMedCrossRef Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky N, Bar-Mag T, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for Cancer cell recognition by natural killer cells. Cancer Res. 2012;72:5463–72.PubMedCrossRef
98.
99.
Zurück zum Zitat Yin Y, Cai X, Chen X, Liang HW, Zhang YJ, Li J, Wang ZY, Chen XL, Zhang W, Yokoyama S, et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res. 2014;24:1164–80.PubMedPubMedCentralCrossRef Yin Y, Cai X, Chen X, Liang HW, Zhang YJ, Li J, Wang ZY, Chen XL, Zhang W, Yokoyama S, et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res. 2014;24:1164–80.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V, et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014;8:689–703.PubMedPubMedCentralCrossRef Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V, et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014;8:689–703.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, Xiang Y, Wu N, Wu L, Bai L, Li Y. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. 2017;8:13048–58.PubMed Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, Xiang Y, Wu N, Wu L, Bai L, Li Y. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. 2017;8:13048–58.PubMed
103.
Zurück zum Zitat Grossi I, Salvi A, Baiocchi G, Portolani N, De Petro G. Functional role of microRNA-23b-3p in cancer biology. Microrna. 2018;7:156–166.PubMedCrossRef Grossi I, Salvi A, Baiocchi G, Portolani N, De Petro G. Functional role of microRNA-23b-3p in cancer biology. Microrna. 2018;7:156–166.PubMedCrossRef
104.
Zurück zum Zitat Chiam K, Wang TT, Watson DI, Mayne GC, Irvine TS, Bright T, Smith L, White IA, Bowen JM, Keefe D, et al. Circulating serum Exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19:1208–15.PubMedCrossRef Chiam K, Wang TT, Watson DI, Mayne GC, Irvine TS, Bright T, Smith L, White IA, Bowen JM, Keefe D, et al. Circulating serum Exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19:1208–15.PubMedCrossRef
105.
Zurück zum Zitat Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X, Wang S, Wu X, Yang T, Huang F, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer. 2014;110:1199–210.PubMedPubMedCentralCrossRef Wang M, Zhao C, Shi H, Zhang B, Zhang L, Zhang X, Wang S, Wu X, Yang T, Huang F, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer. 2014;110:1199–210.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Dou RX, Nishihara R, Cao Y, Mima THK, Masuda A, Masugi Y, Shi Y, Gu MC, Li WW, da Silva A, et al: MicroRNA let-7, T cells, and patient survival in colorectal Cancer. Cancer Immunology Research 2016, 4:927–935.PubMedPubMedCentralCrossRef Dou RX, Nishihara R, Cao Y, Mima THK, Masuda A, Masugi Y, Shi Y, Gu MC, Li WW, da Silva A, et al: MicroRNA let-7, T cells, and patient survival in colorectal Cancer. Cancer Immunology Research 2016, 4:927–935.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan YF, Zheng LM, Zhuang SM. Hepatocellular carcinoma cell-secreted Exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo. Molecular Therapy-Nucleic Acids. 2018;11:243–52.PubMedPubMedCentralCrossRef Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan YF, Zheng LM, Zhuang SM. Hepatocellular carcinoma cell-secreted Exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo. Molecular Therapy-Nucleic Acids. 2018;11:243–52.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a miRNA expression analysis. Gene. 2018;673:181–93.PubMedCrossRef Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a miRNA expression analysis. Gene. 2018;673:181–93.PubMedCrossRef
109.
Zurück zum Zitat Chen D, Wu X, Xia M, Wu F, Ding J, Jiao Y, Zhan Q, An F. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol Rep. 2017;38:2182–8.PubMedPubMedCentralCrossRef Chen D, Wu X, Xia M, Wu F, Ding J, Jiao Y, Zhan Q, An F. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol Rep. 2017;38:2182–8.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Bryant R, Pawlowski T, Catto J, Marsden G, Vessella R, Rhees B, Kuslich C, Visakorpi T, Hamdy F. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.PubMedPubMedCentralCrossRef Bryant R, Pawlowski T, Catto J, Marsden G, Vessella R, Rhees B, Kuslich C, Visakorpi T, Hamdy F. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Vlaeminck-Guillem V. Extracellular vesicles in prostate Cancer carcinogenesis, diagnosis, and management. Front Oncol. 2018;8:222. Vlaeminck-Guillem V. Extracellular vesicles in prostate Cancer carcinogenesis, diagnosis, and management. Front Oncol. 2018;8:222.
112.
Zurück zum Zitat Bryzgunova O, Zaripov M, Skvortsova T, Lekchnov E, Grigor'eva A, Zaporozhchenko I, Morozkin E, Ryabchikova E, Yurchenko Y, Voitsitskiy V, Laktionov P. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate Cancer patients. PLoS One. 2016;11:e0157566.PubMedPubMedCentralCrossRef Bryzgunova O, Zaripov M, Skvortsova T, Lekchnov E, Grigor'eva A, Zaporozhchenko I, Morozkin E, Ryabchikova E, Yurchenko Y, Voitsitskiy V, Laktionov P. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate Cancer patients. PLoS One. 2016;11:e0157566.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Koppers-Lalic D, Hackenberg M, de Menezes R, Misovic B, Wachalska M, Geldof A, Zini N, de Reijke T, Wurdinger T, Vis A, et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566–78.PubMedPubMedCentralCrossRef Koppers-Lalic D, Hackenberg M, de Menezes R, Misovic B, Wachalska M, Geldof A, Zini N, de Reijke T, Wurdinger T, Vis A, et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566–78.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Ayub S, Kaul D, Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet. 2015;208:289–302.PubMedCrossRef Ayub S, Kaul D, Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet. 2015;208:289–302.PubMedCrossRef
115.
Zurück zum Zitat Li Z, Ma Y, Wang J, Zeng X, Li R, Kang W, Hao X. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016;9:139–48.PubMed Li Z, Ma Y, Wang J, Zeng X, Li R, Kang W, Hao X. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016;9:139–48.PubMed
116.
Zurück zum Zitat Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77:1167–75.PubMedCrossRef Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77:1167–75.PubMedCrossRef
117.
Zurück zum Zitat Rodríguez M, Bajo-Santos C, Hessvik N, Lorenz S, Fromm B, Berge V, Sandvig K, Linē A, Llorente A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16:156.PubMedPubMedCentralCrossRef Rodríguez M, Bajo-Santos C, Hessvik N, Lorenz S, Fromm B, Berge V, Sandvig K, Linē A, Llorente A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16:156.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Wani S, Kaul D, Mavuduru R, Kakkar N, Bhatia A. Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity. J Biotechnol. 2017;259:135–9.PubMedCrossRef Wani S, Kaul D, Mavuduru R, Kakkar N, Bhatia A. Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity. J Biotechnol. 2017;259:135–9.PubMedCrossRef
119.
Zurück zum Zitat Endzeliņš E, Berger A, Melne V, Bajo-Santos C, Soboļevska K, Ābols A, Rodriguez M, Šantare D, Rudņickiha A, Lietuvietis V, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17:730.PubMedPubMedCentralCrossRef Endzeliņš E, Berger A, Melne V, Bajo-Santos C, Soboļevska K, Ābols A, Rodriguez M, Šantare D, Rudņickiha A, Lietuvietis V, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17:730.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Bhagirath D, Yang T, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y, Saini S. microRNA-1246 is an Exosomal biomarker for aggressive prostate Cancer. Cancer Res. 2018;78:1833–44.PubMedCrossRefPubMedCentral Bhagirath D, Yang T, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y, Saini S. microRNA-1246 is an Exosomal biomarker for aggressive prostate Cancer. Cancer Res. 2018;78:1833–44.PubMedCrossRefPubMedCentral
121.
Zurück zum Zitat Wang WW, Zhong W, Yuan JH, Yan CC, Hu SP, Tong YP, Mao YB, Hu TH, Zhang B, Song G. Involvement of Wnt/beta-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget. 2015;6:42276–89.PubMedPubMedCentral Wang WW, Zhong W, Yuan JH, Yan CC, Hu SP, Tong YP, Mao YB, Hu TH, Zhang B, Song G. Involvement of Wnt/beta-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget. 2015;6:42276–89.PubMedPubMedCentral
122.
Zurück zum Zitat Singh R, Pochampally R, Watabe K, Lu Z, Mo Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 2014;13:256.PubMedPubMedCentralCrossRef Singh R, Pochampally R, Watabe K, Lu Z, Mo Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 2014;13:256.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent Exosomal transfer of Angiogenic MicroRNAs regulate Cancer cell metastasis. J Biol Chem. 2013;288:10849–59.PubMedPubMedCentralCrossRef Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent Exosomal transfer of Angiogenic MicroRNAs regulate Cancer cell metastasis. J Biol Chem. 2013;288:10849–59.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Wen Y, Chen R, Zhu CH, Qiao HM, Liu Y, Ji H, Miao JY, Chen LY, Liu XX, Yang Y. MiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting Apelin. Peptides. 2018;105:58–65.PubMedCrossRef Wen Y, Chen R, Zhu CH, Qiao HM, Liu Y, Ji H, Miao JY, Chen LY, Liu XX, Yang Y. MiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting Apelin. Peptides. 2018;105:58–65.PubMedCrossRef
126.
Zurück zum Zitat Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 2013;288:34343–51.PubMedPubMedCentralCrossRef Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 2013;288:34343–51.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Gernapudi R, Yao Y, Zhang YS, Wolfson B, Roy S, Duru N, Eades G, Yang PX, Zhou Q. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat. 2015;150:685–95.PubMedPubMedCentralCrossRef Gernapudi R, Yao Y, Zhang YS, Wolfson B, Roy S, Duru N, Eades G, Yang PX, Zhou Q. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat. 2015;150:685–95.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Fong MY, Zhou WY, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor STF, Li SS, Chin AR, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-+.PubMedPubMedCentralCrossRef Fong MY, Zhou WY, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor STF, Li SS, Chin AR, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183-+.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Ung T, Madsen H, Hellwinkel J, Lencioni A, Graner M. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014;105:1384-1392.PubMedPubMedCentralCrossRef Ung T, Madsen H, Hellwinkel J, Lencioni A, Graner M. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014;105:1384-1392.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Chen KK, Chen Y, Chen Z, Shi YY, He ZM, Ding BH, Wang CL, Yu L. miR-134 increases the antitumor effects of cytarabine by targeting Mnks in acute myeloid leukemia cells. Oncotargets and Therapy. 2018;11:3141–7.PubMedPubMedCentralCrossRef Chen KK, Chen Y, Chen Z, Shi YY, He ZM, Ding BH, Wang CL, Yu L. miR-134 increases the antitumor effects of cytarabine by targeting Mnks in acute myeloid leukemia cells. Oncotargets and Therapy. 2018;11:3141–7.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J, Song E. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.PubMedPubMedCentralCrossRef Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J, Song E. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang CL, Bobbitt K, Rempel SA, Hasselbach L, Mikkelsen T, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget. 2013;4:346–61.PubMedPubMedCentral Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang CL, Bobbitt K, Rempel SA, Hasselbach L, Mikkelsen T, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget. 2013;4:346–61.PubMedPubMedCentral
133.
Zurück zum Zitat Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Lanzon MP, Zini N, Naaijkens B, Perut F, Niessen HWM, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Lanzon MP, Zini N, Naaijkens B, Perut F, Niessen HWM, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6.
134.
Zurück zum Zitat Le M, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014;124:5109-128.CrossRef Le M, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014;124:5109-128.CrossRef
135.
Zurück zum Zitat Cheng L, Wu S, Zhang K, Qing Y, Xu T. A comprehensive overview of exosomes in ovarian cancer: emerging biomarkers and therapeutic strategies. J Ovarian Res. 2017;10:73. Cheng L, Wu S, Zhang K, Qing Y, Xu T. A comprehensive overview of exosomes in ovarian cancer: emerging biomarkers and therapeutic strategies. J Ovarian Res. 2017;10:73.
136.
Zurück zum Zitat Yi H, Ye J, Yang XM, Zhang LW, Zhang ZG, Chen YP. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int J Clin Exp Pathol. 2015;8:5062–70.PubMedPubMedCentral Yi H, Ye J, Yang XM, Zhang LW, Zhang ZG, Chen YP. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int J Clin Exp Pathol. 2015;8:5062–70.PubMedPubMedCentral
137.
Zurück zum Zitat Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439–52.PubMedPubMedCentralCrossRef Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439–52.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Bi L, Yang Q, Yuan J, Miao Q, Duan L, Li F, Wang S. MicroRNA-127-3p acts as a tumor suppressor in epithelial ovarian cancer by regulating the BAG5 gene. Oncol Rep. 2016;36:2563–70.PubMedCrossRef Bi L, Yang Q, Yuan J, Miao Q, Duan L, Li F, Wang S. MicroRNA-127-3p acts as a tumor suppressor in epithelial ovarian cancer by regulating the BAG5 gene. Oncol Rep. 2016;36:2563–70.PubMedCrossRef
139.
Zurück zum Zitat Dessauge F, Cayla X, Albar J, Fleischer A, Ghadiri A, Duhamel M, Rebollo A. Identification of PP1alpha as a caspase-9 regulator in IL-2 deprivation-induced apoptosis. J Immunol. 2006;177:2441–51.PubMedCrossRef Dessauge F, Cayla X, Albar J, Fleischer A, Ghadiri A, Duhamel M, Rebollo A. Identification of PP1alpha as a caspase-9 regulator in IL-2 deprivation-induced apoptosis. J Immunol. 2006;177:2441–51.PubMedCrossRef
140.
Zurück zum Zitat Zhang S, Zhang X, Fu X, Li W, Xing S, Yang Y. Identification of common differentially-expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett. 2018;16:2391–401.PubMedPubMedCentral Zhang S, Zhang X, Fu X, Li W, Xing S, Yang Y. Identification of common differentially-expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett. 2018;16:2391–401.PubMedPubMedCentral
141.
Zurück zum Zitat Nishiyama M, Skoultchi A, Nakayama K. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol Cell Biol. 2012;32:501–12.PubMedPubMedCentralCrossRef Nishiyama M, Skoultchi A, Nakayama K. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol Cell Biol. 2012;32:501–12.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang X, Zhang Q. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol Carcinog. 2012;51:500–7.PubMedCrossRef Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang X, Zhang Q. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol Carcinog. 2012;51:500–7.PubMedCrossRef
143.
Zurück zum Zitat Challagundla K, Wise P, Neviani P, Chava H, Murtadha M, Xu T, Kennedy R, Ivan C, Zhang X, Vannini I, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107:djv135. Challagundla K, Wise P, Neviani P, Chava H, Murtadha M, Xu T, Kennedy R, Ivan C, Zhang X, Vannini I, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107:djv135.
144.
Zurück zum Zitat Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA. MiR-126 and miR-126*regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep. 2017;7:45284 Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA. MiR-126 and miR-126*regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep. 2017;7:45284
145.
Zurück zum Zitat Farahani M, Rubbi C, Liu L, Slupsky JR, Kalakonda N. CLL Exosomes Modulate the Transcriptome and Behaviour of Recipient Stromal Cells and Are Selectively Enriched in miR-202-3p. Plos One. 2015;10:e0141429.PubMedPubMedCentralCrossRef Farahani M, Rubbi C, Liu L, Slupsky JR, Kalakonda N. CLL Exosomes Modulate the Transcriptome and Behaviour of Recipient Stromal Cells and Are Selectively Enriched in miR-202-3p. Plos One. 2015;10:e0141429.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–55.PubMedCrossRef Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–55.PubMedCrossRef
147.
Zurück zum Zitat Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17.PubMedPubMedCentralCrossRef Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124:3748–57.PubMedPubMedCentralCrossRef Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124:3748–57.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Isola AL, Eddy K, Chen S. Biology, Therapy and Implications of Tumor Exosomes in the Progression of Melanoma. Cancers. 2016;8:110.PubMedCentralCrossRef Isola AL, Eddy K, Chen S. Biology, Therapy and Implications of Tumor Exosomes in the Progression of Melanoma. Cancers. 2016;8:110.PubMedCentralCrossRef
150.
Zurück zum Zitat Eisenstein A, Gonzalez EC, Raghunathan R, Xu XX, Wu MZ, McLean EO, McGee J, Ryu B, Alani RM. Emerging biomarkers in cutaneous melanoma. Molecular Diagnosis & Therapy. 2018;22:203–18.CrossRef Eisenstein A, Gonzalez EC, Raghunathan R, Xu XX, Wu MZ, McLean EO, McGee J, Ryu B, Alani RM. Emerging biomarkers in cutaneous melanoma. Molecular Diagnosis & Therapy. 2018;22:203–18.CrossRef
151.
Zurück zum Zitat Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E, Care A. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med. 2016;14:56. Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E, Care A. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med. 2016;14:56.
152.
Zurück zum Zitat Veija T, Sahi H, Koljonen V, Bohling T, Knuutila S, Mosakhani N. miRNA-34a underexpressed in Merkel cell polyomavirus-negative Merkel cell carcinoma. Virchows Arch. 2015;466:289–95.PubMedCrossRef Veija T, Sahi H, Koljonen V, Bohling T, Knuutila S, Mosakhani N. miRNA-34a underexpressed in Merkel cell polyomavirus-negative Merkel cell carcinoma. Virchows Arch. 2015;466:289–95.PubMedCrossRef
Metadaten
Titel
Effect of exosomal miRNA on cancer biology and clinical applications
verfasst von
Zhenqiang Sun
Ke Shi
Shuaixi Yang
Jinbo Liu
Quanbo Zhou
Guixian Wang
Junmin Song
Zhen Li
Zhiyong Zhang
Weitang Yuan
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2018
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0897-7

Weitere Artikel der Ausgabe 1/2018

Molecular Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.