Skip to main content
Erschienen in: Info Diabetologie 2/2015

29.04.2015 | fortbildung

Darmmikrobiota und Diabetes

Ein komplexes Zusammenspiel mit Zukunftspotenzial

verfasst von: Dr. Marie-Christine Simon, Prof. Dr. med. Nanette Schloot

Erschienen in: Info Diabetologie | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Weltweit steigt die Diabetesinzidenz. Die Pathogenese von Typ-1- wie Typ-2-Diabetes ist noch nicht eindeutig geklärt und sehr unterschiedlich. Neuere Erkenntnisse legen nahe, dass die Mikrobiota im Darm einen Einfluss darauf hat. Dies könnte die Tür aufstoßen zu neuen, personalisierten Therapiemöglichkeiten gegen Adipositas und Diabetes.
Literatur
1.
Zurück zum Zitat Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007; 104(3): 979–984.CrossRefPubMedCentralPubMed Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007; 104(3): 979–984.CrossRefPubMedCentralPubMed
2.
Zurück zum Zitat Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027–1031.CrossRefPubMed Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027–1031.CrossRefPubMed
3.
Zurück zum Zitat Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102(31): 11070–11075.CrossRefPubMedCentralPubMed Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102(31): 11070–11075.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–1023.CrossRefPubMed Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–1023.CrossRefPubMed
5.
6.
Zurück zum Zitat Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99–103.CrossRefPubMed Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498(7452): 99–103.CrossRefPubMed
7.
Zurück zum Zitat Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60.CrossRefPubMed Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60.CrossRefPubMed
8.
Zurück zum Zitat Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091–1103.CrossRefPubMedCentralPubMed Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091–1103.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 2005; 8(4): 445–449.CrossRefPubMed Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 2005; 8(4): 445–449.CrossRefPubMed
10.
Zurück zum Zitat Mithieux G, Misery P, Magnan C, Pillot B, Gautier-Stein A, Bernard C et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005; 2(5): 321–329.CrossRefPubMed Mithieux G, Misery P, Magnan C, Pillot B, Gautier-Stein A, Bernard C et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2005; 2(5): 321–329.CrossRefPubMed
11.
Zurück zum Zitat Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2012; 2(1): 47–53.CrossRefPubMedCentralPubMed Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab 2012; 2(1): 47–53.CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105(3): 295–301.CrossRefPubMed Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105(3): 295–301.CrossRefPubMed
13.
Zurück zum Zitat De VF, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156(1-2): 84–96.CrossRef De VF, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156(1-2): 84–96.CrossRef
14.
Zurück zum Zitat Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735–742.CrossRefPubMed Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735–742.CrossRefPubMed
15.
Zurück zum Zitat Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 2005; 13(6): 1000–1007.CrossRef Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 2005; 13(6): 1000–1007.CrossRef
16.
Zurück zum Zitat Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014; 36(10): 940–949.CrossRefPubMedCentralPubMed Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 2014; 36(10): 940–949.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Clarke SF, Murphy EF, O'sullivan O, Lucey AJ, Humphreys M, Hogan A et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63(12): 1913–1920.CrossRefPubMed Clarke SF, Murphy EF, O'sullivan O, Lucey AJ, Humphreys M, Hogan A et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63(12): 1913–1920.CrossRefPubMed
18.
Zurück zum Zitat Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5(2): 220–230.CrossRefPubMedCentralPubMed Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5(2): 220–230.CrossRefPubMedCentralPubMed
19.
Zurück zum Zitat Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105–108.CrossRefPubMedCentralPubMed Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105–108.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat De FC, Cavalieri D, Di PM, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107(33): 14691–14696.CrossRef De FC, Cavalieri D, Di PM, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107(33): 14691–14696.CrossRef
21.
Zurück zum Zitat David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563.CrossRefPubMedCentralPubMed David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le CE et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588.CrossRefPubMed Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le CE et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588.CrossRefPubMed
23.
Zurück zum Zitat Vrieze A, Van NE, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913–916.CrossRefPubMed Vrieze A, Van NE, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913–916.CrossRefPubMed
24.
Zurück zum Zitat Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312–11319.CrossRefPubMed Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312–11319.CrossRefPubMed
25.
Zurück zum Zitat Le PE, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481–25489.CrossRef Le PE, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481–25489.CrossRef
26.
Zurück zum Zitat Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61(2): 364–371.CrossRefPubMedCentralPubMed Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61(2): 364–371.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Napolitano A, Miller S, Nicholls AW, Baker D, Van HS, Thomas E et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014; 9(7): e100778.CrossRefPubMedCentralPubMed Napolitano A, Miller S, Nicholls AW, Baker D, Van HS, Thomas E et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014; 9(7): e100778.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727–735.CrossRefPubMed Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727–735.CrossRefPubMed
29.
Zurück zum Zitat Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54(Pt 5): 1469–1476.CrossRefPubMed Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54(Pt 5): 1469–1476.CrossRefPubMed
30.
Zurück zum Zitat Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 2012; 20(11): 2257–2261.CrossRef Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 2012; 20(11): 2257–2261.CrossRef
31.
Zurück zum Zitat Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010; 104(1): 83–92.CrossRefPubMed Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010; 104(1): 83–92.CrossRefPubMed
32.
Zurück zum Zitat Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110(22): 9066–9071.CrossRefPubMedCentralPubMed Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110(22): 9066–9071.CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Bischoff SC. Darmflora und Probiotika bei Adipositas und metabolischem Syndrom. In Bischoff S.C. ed. Probiotika, Präbiotika und Synbiotika. Stuttgart: Georg Thieme Verlag 2009: 9.1: 252–9. Bischoff SC. Darmflora und Probiotika bei Adipositas und metabolischem Syndrom. In Bischoff S.C. ed. Probiotika, Präbiotika und Synbiotika. Stuttgart: Georg Thieme Verlag 2009: 9.1: 252–9.
34.
Zurück zum Zitat Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374–2383.CrossRefPubMed Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374–2383.CrossRefPubMed
35.
Zurück zum Zitat Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007; 23(1): 62–68.CrossRefPubMed Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007; 23(1): 62–68.CrossRefPubMed
36.
Zurück zum Zitat Hlivak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy 2005; 106(2): 67–72.PubMed Hlivak P, Odraska J, Ferencik M, Ebringer L, Jahnova E, Mikes Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy 2005; 106(2): 67–72.PubMed
37.
Zurück zum Zitat Sipola M, Finckenberg P, Korpela R, Vapaatalo H, Nurminen ML. Effect of long-term intake of milk products on blood pressure in hypertensive rats. Journal of Dairy Research 2002; 69(1): 103–111.CrossRefPubMed Sipola M, Finckenberg P, Korpela R, Vapaatalo H, Nurminen ML. Effect of long-term intake of milk products on blood pressure in hypertensive rats. Journal of Dairy Research 2002; 69(1): 103–111.CrossRefPubMed
38.
Zurück zum Zitat Seppo L, Jauhiainen T, Poussa T, Korpela R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American Journal of Clinical Nutrition 2003; 77(2): 326–330.PubMed Seppo L, Jauhiainen T, Poussa T, Korpela R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American Journal of Clinical Nutrition 2003; 77(2): 326–330.PubMed
39.
Zurück zum Zitat Matsuzaki T, Nagata Y, Kado S, Uchida K, Hashimoto S, Yokokura T. Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 1997; 105(8): 637–642.CrossRefPubMed Matsuzaki T, Nagata Y, Kado S, Uchida K, Hashimoto S, Yokokura T. Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 1997; 105(8): 637–642.CrossRefPubMed
40.
Zurück zum Zitat Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M et al. Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 2003; 67(6): 1421–1424.CrossRefPubMed Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M et al. Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 2003; 67(6): 1421–1424.CrossRefPubMed
41.
Zurück zum Zitat Lu YC, Yin LT, Chang WT, Huang JS. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng 2010; 110(6): 709–715.CrossRefPubMed Lu YC, Yin LT, Chang WT, Huang JS. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng 2010; 110(6): 709–715.CrossRefPubMed
42.
Zurück zum Zitat Andersson U, Branning C, Ahrne S, Molin G, Alenfall J, Onning G et al. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes 2010; 1(2): 189–196.CrossRefPubMed Andersson U, Branning C, Ahrne S, Molin G, Alenfall J, Onning G et al. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes 2010; 1(2): 189–196.CrossRefPubMed
43.
Zurück zum Zitat Chen JJ, Wang R, Li XF, Wang RL. Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Exp Biol Med (Maywood ) 2011; 236(7): 823-831. Chen JJ, Wang R, Li XF, Wang RL. Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Exp Biol Med (Maywood ) 2011; 236(7): 823-831.
44.
Zurück zum Zitat Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3(9): 559–572.CrossRefPubMedCentralPubMed Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3(9): 559–572.CrossRefPubMedCentralPubMed
45.
Zurück zum Zitat Yadav H, Jain S, Sinha PR. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res 2008; 75(2): 189–195.CrossRefPubMed Yadav H, Jain S, Sinha PR. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res 2008; 75(2): 189–195.CrossRefPubMed
46.
Zurück zum Zitat Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 2008; 49(5): 821–830.CrossRefPubMedCentralPubMed Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 2008; 49(5): 821–830.CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Simon MC. Probiotics as a novel approach to modulate incretins, insulin secretion and risk factors of type 2 diabetes and complications. 2013. Ref Type: Thesis/Dissertation Simon MC. Probiotics as a novel approach to modulate incretins, insulin secretion and risk factors of type 2 diabetes and complications. 2013. Ref Type: Thesis/Dissertation
48.
Zurück zum Zitat Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012; 28(5): 539–543.CrossRefPubMed Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012; 28(5): 539–543.CrossRefPubMed
49.
Zurück zum Zitat Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. International Dairy Journal 2006; 16(9): 945–960.CrossRef Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. International Dairy Journal 2006; 16(9): 945–960.CrossRef
50.
Zurück zum Zitat Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RMG, Moller K, Svendsen KD et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. British Journal of Nutrition 2010; 104(12): 1831–1838.CrossRefPubMed Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RMG, Moller K, Svendsen KD et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. British Journal of Nutrition 2010; 104(12): 1831–1838.CrossRefPubMed
51.
Zurück zum Zitat Nieuwdorp M. The therapeutic potential of manipulating gut micobiota in obesity and type 2 diabetes mellitus. 2014. 16-9-2014. Ref Type: Conference Proceeding Nieuwdorp M. The therapeutic potential of manipulating gut micobiota in obesity and type 2 diabetes mellitus. 2014. 16-9-2014. Ref Type: Conference Proceeding
52.
Zurück zum Zitat Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455(7216): 1109–1113.CrossRefPubMedCentralPubMed Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455(7216): 1109–1113.CrossRefPubMedCentralPubMed
53.
Zurück zum Zitat Greiner TU, Hyotylainen T, Knip M, Backhed F, Oresic M. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLoS One 2014; 9(11): e110359.CrossRefPubMedCentralPubMed Greiner TU, Hyotylainen T, Knip M, Backhed F, Oresic M. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLoS One 2014; 9(11): e110359.CrossRefPubMedCentralPubMed
54.
Zurück zum Zitat Patterson E, Marques TM, O'sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD et al. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Micobiology 2015; 161(1): 182-193. Patterson E, Marques TM, O'sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD et al. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Micobiology 2015; 161(1): 182-193.
55.
Zurück zum Zitat Toivonen RK, Emani R, Munukka E, Rintala A, Laiho A, Pietila S et al. Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 2014; 57(10): 2183–2192.CrossRefPubMed Toivonen RK, Emani R, Munukka E, Rintala A, Laiho A, Pietila S et al. Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 2014; 57(10): 2183–2192.CrossRefPubMed
56.
Zurück zum Zitat de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57(8): 1569–1577.CrossRefPubMed de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014; 57(8): 1569–1577.CrossRefPubMed
57.
Zurück zum Zitat Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014; 56(3): 336–343.CrossRefPubMed Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014; 56(3): 336–343.CrossRefPubMed
58.
Zurück zum Zitat de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 2013; 62(4): 1238–1244.CrossRefPubMedCentralPubMed de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 2013; 62(4): 1238–1244.CrossRefPubMedCentralPubMed
59.
Zurück zum Zitat Endesfelder D, zu CW, Ardissone A, Davis-Richardson AG, Achenbach P, Hagen M et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 2014; 63(6): 2006–2014.CrossRefPubMed Endesfelder D, zu CW, Ardissone A, Davis-Richardson AG, Achenbach P, Hagen M et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 2014; 63(6): 2006–2014.CrossRefPubMed
60.
Zurück zum Zitat Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep 2013; 13(5): 601–607.CrossRefPubMed Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep 2013; 13(5): 601–607.CrossRefPubMed
Metadaten
Titel
Darmmikrobiota und Diabetes
Ein komplexes Zusammenspiel mit Zukunftspotenzial
verfasst von
Dr. Marie-Christine Simon
Prof. Dr. med. Nanette Schloot
Publikationsdatum
29.04.2015
Verlag
Urban & Vogel
Erschienen in
Info Diabetologie / Ausgabe 2/2015
Print ISSN: 1865-5459
Elektronische ISSN: 2196-6362
DOI
https://doi.org/10.1007/s15034-015-0553-x

Weitere Artikel der Ausgabe 2/2015

Info Diabetologie 2/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.