Skip to main content
Erschienen in: Angiogenesis 2/2017

04.04.2017 | Review Paper

Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment

verfasst von: Robert H. Berndsen, U. Kulsoom Abdul, Andrea Weiss, Marloes Zoetemelk, Marije T. te Winkel, Paul J. Dyson, Arjan W. Griffioen, Patrycja Nowak-Sliwinska

Erschienen in: Angiogenesis | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Cancer cells are often dependent on epigenetic pathways for their survival. Consequently, drugs that target the epigenome, rather than the underlying DNA sequence, are currently attracting considerable attention. In recent years, the first epigenetic drugs have been approved for cancer chemotherapy, mainly for hematological applications. Limitations in single-drug efficacies have thus far limited their application in the treatment of solid tumors. Nevertheless, promising activity for these compounds has been suggested when combined with other, distinctly targeted agents. In this review, we discuss the anti-angiogenic activity of histone deacetylase and DNA methyltransferase inhibitors and their combinations with other targeted (anti-angiogenic) therapeutics in treatment of solid tumors. The role that these inhibitors play in the inhibition of tumor angiogenesis, particularly in combination with other targeted agents, and the advantages they present over broad acting anticancer agents, are critically discussed.
Literatur
1.
Zurück zum Zitat Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339PubMedCrossRef Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339PubMedCrossRef
2.
Zurück zum Zitat Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor, New york Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor, New york
3.
Zurück zum Zitat Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874PubMedCrossRef Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874PubMedCrossRef
4.
6.
Zurück zum Zitat Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28(29):4485–4491PubMedCrossRef Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28(29):4485–4491PubMedCrossRef
7.
Zurück zum Zitat Santini V, Melnick A, Maciejewski JP, Duprez E, Nervi C, Cocco L, Ford KG, Mufti G (2013) Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Crit Rev Oncol Hematol 88(2):231–245PubMedCrossRef Santini V, Melnick A, Maciejewski JP, Duprez E, Nervi C, Cocco L, Ford KG, Mufti G (2013) Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Crit Rev Oncol Hematol 88(2):231–245PubMedCrossRef
8.
Zurück zum Zitat Nervi C, De Marinis E, Codacci-Pisanelli G (2015) Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenet 7(1):127CrossRef Nervi C, De Marinis E, Codacci-Pisanelli G (2015) Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenet 7(1):127CrossRef
9.
Zurück zum Zitat Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148PubMedCrossRef Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2(2):143–148PubMedCrossRef
10.
Zurück zum Zitat Rajesh E, Sankari LS, Malathi L, Krupaa JR (2015) Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7(Suppl 1):S181–S183PubMedPubMedCentral Rajesh E, Sankari LS, Malathi L, Krupaa JR (2015) Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7(Suppl 1):S181–S183PubMedPubMedCentral
11.
Zurück zum Zitat Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ (2013) Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 30(5):605PubMedCrossRef Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ (2013) Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 30(5):605PubMedCrossRef
12.
Zurück zum Zitat Suzuki T, Miyata N (2006) Epigenetic control using natural products and synthetic molecules. Curr Med Chem 13(8):935–958PubMedCrossRef Suzuki T, Miyata N (2006) Epigenetic control using natural products and synthetic molecules. Curr Med Chem 13(8):935–958PubMedCrossRef
13.
Zurück zum Zitat Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRef Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRef
14.
Zurück zum Zitat Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef
15.
Zurück zum Zitat Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407PubMedCrossRef Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407PubMedCrossRef
16.
Zurück zum Zitat Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed
18.
Zurück zum Zitat van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW (2015) The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 67(2):441–461PubMedCrossRef van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW (2015) The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 67(2):441–461PubMedCrossRef
19.
Zurück zum Zitat Huijbers EJM, van Beijnum JR, Thijssen VL, Sabrkhany S, Nowak-Sliwinska P, Griffioen AW (2016) Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updates 25:26–37CrossRef Huijbers EJM, van Beijnum JR, Thijssen VL, Sabrkhany S, Nowak-Sliwinska P, Griffioen AW (2016) Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updates 25:26–37CrossRef
20.
Zurück zum Zitat Bani MR, Decio A, Giavazzi R, Ghilardi C (2017) Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis. doi:10.1007/s10456-017-9549-6 Bani MR, Decio A, Giavazzi R, Ghilardi C (2017) Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis. doi:10.​1007/​s10456-017-9549-6
21.
Zurück zum Zitat Chun P (2015) Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 38(6):933–949PubMedCrossRef Chun P (2015) Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 38(6):933–949PubMedCrossRef
22.
Zurück zum Zitat Hellebrekers DMEI, Melotte V, Viré E, Langenkamp E, Molema G, Fuks F, Herman JG, Van Criekinge W, Griffioen AW, Van Engeland M (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138–4148PubMedCrossRef Hellebrekers DMEI, Melotte V, Viré E, Langenkamp E, Molema G, Fuks F, Herman JG, Van Criekinge W, Griffioen AW, Van Engeland M (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138–4148PubMedCrossRef
23.
Zurück zum Zitat Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89(3):325–328PubMedCrossRef Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89(3):325–328PubMedCrossRef
24.
Zurück zum Zitat Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606PubMedCrossRef Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606PubMedCrossRef
25.
Zurück zum Zitat Zhang W, Bieker JJ (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA 95(17):9855–9860PubMedPubMedCentralCrossRef Zhang W, Bieker JJ (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA 95(17):9855–9860PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989PubMedCrossRef Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989PubMedCrossRef
27.
Zurück zum Zitat Mottet D, Bellahcène A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101(12):1237–1246PubMedCrossRef Mottet D, Bellahcène A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101(12):1237–1246PubMedCrossRef
28.
Zurück zum Zitat Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17(3):195–211PubMed Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17(3):195–211PubMed
29.
Zurück zum Zitat Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y, Fang J, Caro J, Sang N (2006) Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem 281(19):13612–13619PubMedPubMedCentralCrossRef Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y, Fang J, Caro J, Sang N (2006) Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem 281(19):13612–13619PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634PubMedCrossRef Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634PubMedCrossRef
31.
Zurück zum Zitat Verheul HMW, Salumbides B, Van Erp K, Hammers H, Qian DZ, Sanni T, Atadja P, Pili R (2008) Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res 14(11):3589–3597PubMedCrossRef Verheul HMW, Salumbides B, Van Erp K, Hammers H, Qian DZ, Sanni T, Atadja P, Pili R (2008) Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res 14(11):3589–3597PubMedCrossRef
32.
Zurück zum Zitat Kim DH, Kim M, Kwon HJ (2003) Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 36(1):110–119PubMed Kim DH, Kim M, Kwon HJ (2003) Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 36(1):110–119PubMed
33.
Zurück zum Zitat Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SWK, Moon EJ, Kim HS, Lee SWK, Chung HY, Kim CW, Kim KW (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4):437–443PubMedCrossRef Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SWK, Moon EJ, Kim HS, Lee SWK, Chung HY, Kim CW, Kim KW (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4):437–443PubMedCrossRef
34.
Zurück zum Zitat Michaelis M, Suhan T, Cinatl J, Driever PH, Cinatl J (2004) Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo. Int J Oncol 25(6):1795–1799PubMed Michaelis M, Suhan T, Cinatl J, Driever PH, Cinatl J (2004) Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo. Int J Oncol 25(6):1795–1799PubMed
35.
Zurück zum Zitat Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl JJ, Blaheta RA, Hoffmann K, Kotchetkov R, Busse R, Nau H, Cinatl JJ (2004) Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 65(3):520–527PubMedCrossRef Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl JJ, Blaheta RA, Hoffmann K, Kotchetkov R, Busse R, Nau H, Cinatl JJ (2004) Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 65(3):520–527PubMedCrossRef
36.
Zurück zum Zitat Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145–153PubMedCrossRef Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145–153PubMedCrossRef
37.
Zurück zum Zitat Kong X, Lin Z, Liang D, Fath D (2006) Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol Cell Biol 26(6):2019–2028PubMedPubMedCentralCrossRef Kong X, Lin Z, Liang D, Fath D (2006) Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol Cell Biol 26(6):2019–2028PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hellebrekers DMEI et al (2006) Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66(22):10770–10777PubMedCrossRef Hellebrekers DMEI et al (2006) Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66(22):10770–10777PubMedCrossRef
39.
Zurück zum Zitat Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9(12):3254–3266PubMedCrossRef Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9(12):3254–3266PubMedCrossRef
40.
Zurück zum Zitat Mie Lee Y, Kim S-H, Kim H-S, Jin Son M, Nakajima H, Jeong Kwon H, Kim K-W (2003) Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun 300(1):241–246PubMedCrossRef Mie Lee Y, Kim S-H, Kim H-S, Jin Son M, Nakajima H, Jeong Kwon H, Kim K-W (2003) Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun 300(1):241–246PubMedCrossRef
41.
Zurück zum Zitat Vieira-Coimbra M, Henrique R, Jeronimo C (2015) New insights on chromatin modifiers and histone post-translational modifications in renal cell tumours. Eur J Clin Invest 45:16–24PubMedCrossRef Vieira-Coimbra M, Henrique R, Jeronimo C (2015) New insights on chromatin modifiers and histone post-translational modifications in renal cell tumours. Eur J Clin Invest 45:16–24PubMedCrossRef
42.
Zurück zum Zitat Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126(2):321–334PubMedCrossRef Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126(2):321–334PubMedCrossRef
43.
Zurück zum Zitat Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279(40):41966–41974PubMedCrossRef Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279(40):41966–41974PubMedCrossRef
44.
Zurück zum Zitat Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel J-N, Doebele C, Zelent A, Rossig L, Zeiher AM, Augustin HG, Urbich C, Dimmeler S (2013) Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells. Arterioscler Thromb Vasc Biol 33(3):533–543PubMedCrossRef Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel J-N, Doebele C, Zelent A, Rossig L, Zeiher AM, Augustin HG, Urbich C, Dimmeler S (2013) Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells. Arterioscler Thromb Vasc Biol 33(3):533–543PubMedCrossRef
45.
Zurück zum Zitat Kaluza D, Kroll J, Gesierich S, Yao T-P, Boon RA, Hergenreider E, Tjwa M, Rossig L, Seto E, Augustin HG, Zeiher AM, Dimmeler S, Urbich C (2011) Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 30(20):4142–4156PubMedPubMedCentralCrossRef Kaluza D, Kroll J, Gesierich S, Yao T-P, Boon RA, Hergenreider E, Tjwa M, Rossig L, Seto E, Augustin HG, Zeiher AM, Dimmeler S, Urbich C (2011) Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 30(20):4142–4156PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hrgovic I, Doll M, Pinter A, Kaufmann R, Kippenberger S, Meissner M (2017) Histone deacetylase inhibitors interfere with angiogenesis by decreasing endothelial VEGFR-2 protein half-life in part via a VE-cadherin-dependent mechanism. Exp Dermatol 26(2):194–201PubMedCrossRef Hrgovic I, Doll M, Pinter A, Kaufmann R, Kippenberger S, Meissner M (2017) Histone deacetylase inhibitors interfere with angiogenesis by decreasing endothelial VEGFR-2 protein half-life in part via a VE-cadherin-dependent mechanism. Exp Dermatol 26(2):194–201PubMedCrossRef
47.
Zurück zum Zitat Calera MR, Venkatakrishnan A, Kazlauskas A (2004) VE-cadherin increases the half-life of VEGF receptor 2. Exp Cell Res 300(1):248–256PubMedCrossRef Calera MR, Venkatakrishnan A, Kazlauskas A (2004) VE-cadherin increases the half-life of VEGF receptor 2. Exp Cell Res 300(1):248–256PubMedCrossRef
48.
Zurück zum Zitat Hakami NY, Dusting GJ, Peshavariya HM (2016) Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-Derived Redox Signalling and Angiogenesis. J Cell Mol Med 20(10):1932–1944PubMedPubMedCentralCrossRef Hakami NY, Dusting GJ, Peshavariya HM (2016) Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-Derived Redox Signalling and Angiogenesis. J Cell Mol Med 20(10):1932–1944PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart J-M, Nusgens BV, Castronovo V (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21(3):427–436PubMedCrossRef Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart J-M, Nusgens BV, Castronovo V (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21(3):427–436PubMedCrossRef
50.
Zurück zum Zitat Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R (2004) The histone deacetylase inhibitor NVP-LAQ824 Inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64(18):6626–6634PubMedCrossRef Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R (2004) The histone deacetylase inhibitor NVP-LAQ824 Inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64(18):6626–6634PubMedCrossRef
51.
Zurück zum Zitat Potente M, Dimmeler S (2008) Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7(14):2117–2122PubMedCrossRef Potente M, Dimmeler S (2008) Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7(14):2117–2122PubMedCrossRef
52.
Zurück zum Zitat Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504PubMedCrossRef Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504PubMedCrossRef
53.
Zurück zum Zitat Lappas M (2012) Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediat Inflamm 2012:597514CrossRef Lappas M (2012) Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediat Inflamm 2012:597514CrossRef
54.
Zurück zum Zitat Zhang Q-J, Wang Z, Chen H-Z, Zhou S, Zheng W, Liu G, Wei Y-S, Cai H, Liu D-P, Liang C-C (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80(2):191–199PubMedPubMedCentralCrossRef Zhang Q-J, Wang Z, Chen H-Z, Zhou S, Zheng W, Liu G, Wei Y-S, Cai H, Liu D-P, Liang C-C (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80(2):191–199PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Safe S, Kasiappan R (2016) Natural products as mechanism-based anticancer agents: Sp transcription factors as targets. Phyther Res 30(11):1723–1732CrossRef Safe S, Kasiappan R (2016) Natural products as mechanism-based anticancer agents: Sp transcription factors as targets. Phyther Res 30(11):1723–1732CrossRef
56.
Zurück zum Zitat Gerhauser C (2013) Cancer chemoprevention and nutri-epigenetics: state of the art and future challenges. Top Curr Chem 11(1):73–132 Gerhauser C (2013) Cancer chemoprevention and nutri-epigenetics: state of the art and future challenges. Top Curr Chem 11(1):73–132
57.
Zurück zum Zitat Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—part 2. Curr Oncol 13(3):14–26PubMedPubMedCentral Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—part 2. Curr Oncol 13(3):14–26PubMedPubMedCentral
58.
Zurück zum Zitat Dhar S, Kumar A, Li K, Tzivion G, Levenson AS (2015) Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta Mol Cell Res 1853(2):265–275CrossRef Dhar S, Kumar A, Li K, Tzivion G, Levenson AS (2015) Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta Mol Cell Res 1853(2):265–275CrossRef
59.
Zurück zum Zitat Saenglee S, Jogloy S, Patanothai A, Leid M, Senawong T (2016) Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep 68(6):1102–1110PubMedCrossRef Saenglee S, Jogloy S, Patanothai A, Leid M, Senawong T (2016) Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep 68(6):1102–1110PubMedCrossRef
60.
Zurück zum Zitat Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK, Lin PY, Chen Y (2004) Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 10(6):2190–2202PubMedCrossRef Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK, Lin PY, Chen Y (2004) Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 10(6):2190–2202PubMedCrossRef
61.
Zurück zum Zitat Raina K, Kumar S, Dhar D, Agarwal R (2016) Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J Biomed Res 30(6):452–465PubMed Raina K, Kumar S, Dhar D, Agarwal R (2016) Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J Biomed Res 30(6):452–465PubMed
62.
Zurück zum Zitat Deep G, Kumar R, Nambiar DK, Jain AK, Ramteke AM, Serkova NJ, Agarwal C, Agarwal R (2016) Silibinin inhibits hypoxia-induced HIF-1α–mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: in vitro evidence and in vivo functional imaging and metabolomics. Mol Carcinog 56(3):833–848PubMedCrossRef Deep G, Kumar R, Nambiar DK, Jain AK, Ramteke AM, Serkova NJ, Agarwal C, Agarwal R (2016) Silibinin inhibits hypoxia-induced HIF-1α–mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: in vitro evidence and in vivo functional imaging and metabolomics. Mol Carcinog 56(3):833–848PubMedCrossRef
63.
Zurück zum Zitat Jiang C, Agarwal R, Lü J (2000) Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun 276(1):371–378PubMedCrossRef Jiang C, Agarwal R, Lü J (2000) Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun 276(1):371–378PubMedCrossRef
64.
Zurück zum Zitat Singh RP, Sharma G, Dhanalakshmi S, Agarwal C, Agarwal R (2003) Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomark Prev 12(9):933–939 Singh RP, Sharma G, Dhanalakshmi S, Agarwal C, Agarwal R (2003) Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomark Prev 12(9):933–939
65.
Zurück zum Zitat Singh T, Prasad R, Katiyar SK (2016) Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res 6(6):1287–1301PubMedPubMedCentral Singh T, Prasad R, Katiyar SK (2016) Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res 6(6):1287–1301PubMedPubMedCentral
66.
Zurück zum Zitat Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 30(1):441–464PubMedCrossRef Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 30(1):441–464PubMedCrossRef
67.
Zurück zum Zitat Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2(9):1136–1143PubMedCrossRef Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2(9):1136–1143PubMedCrossRef
68.
Zurück zum Zitat Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547PubMedPubMedCentralCrossRef Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64(6):1123–1134PubMedCrossRef Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64(6):1123–1134PubMedCrossRef
70.
Zurück zum Zitat Bird A, Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389PubMedCrossRef Bird A, Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389PubMedCrossRef
71.
Zurück zum Zitat Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Am Inc 19(3):219–220 Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Am Inc 19(3):219–220
72.
Zurück zum Zitat Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRef Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRef
73.
Zurück zum Zitat Beard C, Li E, Jaenisch R (1995) Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9(19):2325–2334PubMedCrossRef Beard C, Li E, Jaenisch R (1995) Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9(19):2325–2334PubMedCrossRef
74.
Zurück zum Zitat Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11(7):2611–2617PubMedPubMedCentral Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11(7):2611–2617PubMedPubMedCentral
75.
Zurück zum Zitat Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926PubMedCrossRef Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926PubMedCrossRef
76.
Zurück zum Zitat Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102(8):873–878PubMedCrossRef Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102(8):873–878PubMedCrossRef
77.
Zurück zum Zitat Şahin M, Şahin E, Gümüşlü S, Erdoǧan A, Gültekin M (2010) DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 29(4):655–676PubMedCrossRef Şahin M, Şahin E, Gümüşlü S, Erdoǧan A, Gültekin M (2010) DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 29(4):655–676PubMedCrossRef
78.
Zurück zum Zitat Guo W, Dong Z, He M, Guo Y, Guo J, Chen Z, Yang Z, Kuang G (2010) Aberrant methylation of thrombospondin-1 and its association with reduced expression in gastric cardia adenocarcinoma. J Biomed Biotechnol. doi:10.1155/2010/721485 Guo W, Dong Z, He M, Guo Y, Guo J, Chen Z, Yang Z, Kuang G (2010) Aberrant methylation of thrombospondin-1 and its association with reduced expression in gastric cardia adenocarcinoma. J Biomed Biotechnol. doi:10.​1155/​2010/​721485
79.
Zurück zum Zitat Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, Zhou J, Hu J, Jiang B (2013) Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 30(4):1976–1984PubMedCrossRef Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, Zhou J, Hu J, Jiang B (2013) Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 30(4):1976–1984PubMedCrossRef
80.
Zurück zum Zitat Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, Ng KM, Wang Y, Lee KY, Tsao GSW, Zhong S, Robertson KD, Rha SY, Chan ATC, Tao Q (2007) The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Investig 87(7):644–650PubMedCrossRef Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, Ng KM, Wang Y, Lee KY, Tsao GSW, Zhong S, Robertson KD, Rha SY, Chan ATC, Tao Q (2007) The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Investig 87(7):644–650PubMedCrossRef
81.
Zurück zum Zitat Bo BL, Eun JL, Eun HJ, Chun HK, Dong KC, Sang YS, Park J, Kim DH (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15(19):6185–6191CrossRef Bo BL, Eun JL, Eun HJ, Chun HK, Dong KC, Sang YS, Park J, Kim DH (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15(19):6185–6191CrossRef
82.
Zurück zum Zitat Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R, Dahl E (2009) Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer. doi:10.1186/1471-2407-9-217 PubMedPubMedCentral Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R, Dahl E (2009) Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer. doi:10.​1186/​1471-2407-9-217 PubMedPubMedCentral
83.
Zurück zum Zitat Lee SM, Park JY, Kim DS (2013) Wif1 hypermethylation as unfavorable prognosis of non-small cell lung cancers with EGFR mutation. Mol Cells 36(1):69–73PubMedPubMedCentralCrossRef Lee SM, Park JY, Kim DS (2013) Wif1 hypermethylation as unfavorable prognosis of non-small cell lung cancers with EGFR mutation. Mol Cells 36(1):69–73PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro Oncol 13(7):736–747PubMedPubMedCentralCrossRef Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro Oncol 13(7):736–747PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K (2005) Glycogen-synthase kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96(3):308–318PubMedCrossRef Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K (2005) Glycogen-synthase kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96(3):308–318PubMedCrossRef
87.
Zurück zum Zitat Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills WK, Benbrook DM, Zuna R, Lightfoot S, Reis A, Anant S, Queimado L (2012) Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31(22):2725–2737PubMedCrossRef Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills WK, Benbrook DM, Zuna R, Lightfoot S, Reis A, Anant S, Queimado L (2012) Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31(22):2725–2737PubMedCrossRef
88.
Zurück zum Zitat Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731PubMedCrossRef Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731PubMedCrossRef
89.
Zurück zum Zitat van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW (2017) miRNAs: micro-managers of anti-cancer combination therapies. Angiogenesis. doi:10.1007/s10456-017-9545-x van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW (2017) miRNAs: micro-managers of anti-cancer combination therapies. Angiogenesis. doi:10.​1007/​s10456-017-9545-x
90.
Zurück zum Zitat Lindner DJ, Wu Y, Haney R, Jacobs BS, Fruehauf JP, Tuthill R, Borden EC (2013) Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol 32(2):123–132PubMedCrossRef Lindner DJ, Wu Y, Haney R, Jacobs BS, Fruehauf JP, Tuthill R, Borden EC (2013) Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol 32(2):123–132PubMedCrossRef
91.
Zurück zum Zitat Mirochnik Y, Kwiatek A, Volpert O (2008) Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation treatments. Curr Drug Targets 9(10):851–862PubMedPubMedCentralCrossRef Mirochnik Y, Kwiatek A, Volpert O (2008) Thrombospondin and apoptosis: molecular mechanisms and use for design of complementation treatments. Curr Drug Targets 9(10):851–862PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O, Peyrou M, Villarroya F, Pazienza V, Rappa F, Cappello F, Azab M, Taverna P, Vinciguerra M (2016) Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 11(10):709–720PubMedCentralCrossRef Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O, Peyrou M, Villarroya F, Pazienza V, Rappa F, Cappello F, Azab M, Taverna P, Vinciguerra M (2016) Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 11(10):709–720PubMedCentralCrossRef
94.
95.
Zurück zum Zitat Hellebrekers DMEI, Jair K-W, Viré E, Eguchi S, Hoebers NTH, Fraga MF, Esteller M, Fuks F, Baylin SB, van Engeland M, Griffioen AW (2006) Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther 5(2):467–475PubMedCrossRef Hellebrekers DMEI, Jair K-W, Viré E, Eguchi S, Hoebers NTH, Fraga MF, Esteller M, Fuks F, Baylin SB, van Engeland M, Griffioen AW (2006) Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther 5(2):467–475PubMedCrossRef
96.
Zurück zum Zitat Alexius-Lindgren M, Andersson E, Lindstedt I, Engström W (2014) The RECK gene and biological malignancy-its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res 34(8):3867–3874PubMed Alexius-Lindgren M, Andersson E, Lindstedt I, Engström W (2014) The RECK gene and biological malignancy-its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res 34(8):3867–3874PubMed
97.
Zurück zum Zitat Shian S-G, Kao Y-R, Wu FY-H, Wu C-W (2003) Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram. Mol Pharmacol 64(5):1076–1084PubMedCrossRef Shian S-G, Kao Y-R, Wu FY-H, Wu C-W (2003) Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram. Mol Pharmacol 64(5):1076–1084PubMedCrossRef
98.
Zurück zum Zitat Murai R, Yoshida Y, Muraguchi T, Nishimoto E, Morioka Y, Kitayama H, Kondoh S, Kawazoe Y, Hiraoka M, Uesugi M, Noda M (2010) A novel screen using the Reck tumor suppressor gene promoter detects both conventional and metastasis-suppressing anticancer drugs. Oncotarget 1(4):252–264PubMedPubMedCentralCrossRef Murai R, Yoshida Y, Muraguchi T, Nishimoto E, Morioka Y, Kitayama H, Kondoh S, Kawazoe Y, Hiraoka M, Uesugi M, Noda M (2010) A novel screen using the Reck tumor suppressor gene promoter detects both conventional and metastasis-suppressing anticancer drugs. Oncotarget 1(4):252–264PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, Henrique R, Jerónimo C (2014) Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget 5(15):5950–5964PubMedPubMedCentralCrossRef Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, Henrique R, Jerónimo C (2014) Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget 5(15):5950–5964PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, Cabrera G, Duenas-Gonzalez A (2006) Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. doi:10.1186/1475-2867-6-2 Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, Cabrera G, Duenas-Gonzalez A (2006) Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. doi:10.​1186/​1475-2867-6-2
101.
Zurück zum Zitat Zhang Q, Lin Z, Yin X, Tang L, Luo H, Li H, Zhang Y, Luo W (2016) In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. Eur J Pharmacol 779:138–146PubMedCrossRef Zhang Q, Lin Z, Yin X, Tang L, Luo H, Li H, Zhang Y, Luo W (2016) In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. Eur J Pharmacol 779:138–146PubMedCrossRef
102.
Zurück zum Zitat Li X, Feng Y, Liu J, Feng X, Zhou K, Tang X (2013) Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression. J Nutrigenet Nutrigenom 6(3):169–178CrossRef Li X, Feng Y, Liu J, Feng X, Zhou K, Tang X (2013) Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression. J Nutrigenet Nutrigenom 6(3):169–178CrossRef
103.
Zurück zum Zitat Sakamoto Y, Terashita N, Muraguchi T, Fukusato T, Kubota S (2013) Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci Biotechnol Biochem 77(9):1799–1803PubMedCrossRef Sakamoto Y, Terashita N, Muraguchi T, Fukusato T, Kubota S (2013) Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci Biotechnol Biochem 77(9):1799–1803PubMedCrossRef
104.
Zurück zum Zitat Gu J, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Thomas EY, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1alpha and NFkappaB, and VEGF expression. Vasc Cell 5(1):9PubMedPubMedCentralCrossRef Gu J, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Thomas EY, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1alpha and NFkappaB, and VEGF expression. Vasc Cell 5(1):9PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654PubMedPubMedCentralCrossRef Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225PubMedCrossRef Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225PubMedCrossRef
107.
Zurück zum Zitat Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383PubMedPubMedCentral Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383PubMedPubMedCentral
108.
Zurück zum Zitat Du L, Xie Z, Wu LC, Chiu M, Lin J, Chan KK, Liu S, Liu Z (2012) Reactivation of RASSF1A in breast cancer cells by curcumin. Nutr Cancer Int J 64(8):1228–1235CrossRef Du L, Xie Z, Wu LC, Chiu M, Lin J, Chan KK, Liu S, Liu Z (2012) Reactivation of RASSF1A in breast cancer cells by curcumin. Nutr Cancer Int J 64(8):1228–1235CrossRef
109.
Zurück zum Zitat Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16(1):23–31PubMedPubMedCentralCrossRef Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16(1):23–31PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Teiten MH, Dicato M, Diederich M (2013) Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57(9):1619–1629PubMedCrossRef Teiten MH, Dicato M, Diederich M (2013) Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57(9):1619–1629PubMedCrossRef
111.
Zurück zum Zitat Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB, Kumar NB (2012) Curcumin: a novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev 21(5):407–412PubMedPubMedCentralCrossRef Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB, Kumar NB (2012) Curcumin: a novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev 21(5):407–412PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008PubMedCrossRef Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008PubMedCrossRef
113.
Zurück zum Zitat Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL, Xie K (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319–329PubMedCrossRef Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL, Xie K (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319–329PubMedCrossRef
114.
Zurück zum Zitat Lee H, Zhang P, Herrmann A, Yang C, Xin H, Wang Z, Hoon DSB, Forman SJ, Jove R, Riggs AD, Yu H (2012) Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci 109(20):7765–7769PubMedPubMedCentralCrossRef Lee H, Zhang P, Herrmann A, Yang C, Xin H, Wang Z, Hoon DSB, Forman SJ, Jove R, Riggs AD, Yu H (2012) Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci 109(20):7765–7769PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, Yang L, Zeng Y, Wan R, Hu G, Wang X (2016) Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res 35(1):27PubMedPubMedCentralCrossRef Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, Yang L, Zeng Y, Wan R, Hu G, Wang X (2016) Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J Exp Clin Cancer Res 35(1):27PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Stahl A, Joyal JS, Chen J, Sapieha P, Juan AM, Hatton CJ, Pei DT, Hurst CG, Seaward MR, Krah NM, Dennison RJ, Greene ER, Boscolo E, Panigrahy D, Smith LEH (2012) SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood 120(14):2925–2929PubMedPubMedCentralCrossRef Stahl A, Joyal JS, Chen J, Sapieha P, Juan AM, Hatton CJ, Pei DT, Hurst CG, Seaward MR, Krah NM, Dennison RJ, Greene ER, Boscolo E, Panigrahy D, Smith LEH (2012) SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood 120(14):2925–2929PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499PubMedCrossRef Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499PubMedCrossRef
118.
Zurück zum Zitat Licona C, Spaety M-E, Capuozzo A, Ali M, Santamaria R, Armant O, Delalande F, Van Dorsselaer A, Cianferani S, Spencer J, Pfeffer M, Mellitzer G, Gaiddon C (2017) A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin. Oncotarget 8(2):2568–2584PubMed Licona C, Spaety M-E, Capuozzo A, Ali M, Santamaria R, Armant O, Delalande F, Van Dorsselaer A, Cianferani S, Spencer J, Pfeffer M, Mellitzer G, Gaiddon C (2017) A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin. Oncotarget 8(2):2568–2584PubMed
119.
Zurück zum Zitat Nazarov AA, Baquié M, Nowak-Sliwinska P, Zava O, van Beijnum JR, Groessl M, Chisholm DM, Ahmadi Z, McIndoe JS, Griffioen AW, van den Bergh H, Dyson PJ (2013) Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci Rep 3:1485PubMedCrossRef Nazarov AA, Baquié M, Nowak-Sliwinska P, Zava O, van Beijnum JR, Groessl M, Chisholm DM, Ahmadi Z, McIndoe JS, Griffioen AW, van den Bergh H, Dyson PJ (2013) Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci Rep 3:1485PubMedCrossRef
120.
Zurück zum Zitat Clavel CM, Păunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ (2014) Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex. J Med Chem 57(8):3546–3558PubMedCrossRef Clavel CM, Păunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ (2014) Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex. J Med Chem 57(8):3546–3558PubMedCrossRef
121.
Zurück zum Zitat Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45(8):3201–3209PubMedCrossRef Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45(8):3201–3209PubMedCrossRef
122.
Zurück zum Zitat Singh V, Azad GK, Mandal P, Amarendar Reddy M, Tomar RS (2014) Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. FEBS Lett 588(6):1044–1052PubMedCrossRef Singh V, Azad GK, Mandal P, Amarendar Reddy M, Tomar RS (2014) Anti-cancer drug KP1019 modulates epigenetics and induces DNA damage response in Saccharomyces cerevisiae. FEBS Lett 588(6):1044–1052PubMedCrossRef
123.
Zurück zum Zitat Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, Van Werkhoven E, Alessio E, Sava G, Beijnen JH, Schellens JHM (2015) Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Investig New Drugs 33(1):201–214CrossRef Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, Van Werkhoven E, Alessio E, Sava G, Beijnen JH, Schellens JHM (2015) Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Investig New Drugs 33(1):201–214CrossRef
124.
Zurück zum Zitat Rademaker-Lakhai JM, Van Den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727PubMedCrossRef Rademaker-Lakhai JM, Van Den Bongard D, Pluim D, Beijnen JH, Schellens JHM (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727PubMedCrossRef
125.
Zurück zum Zitat Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5(10):2140–2155PubMedCrossRef Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5(10):2140–2155PubMedCrossRef
126.
Zurück zum Zitat Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK (2014) NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 5(8):2925CrossRef Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK (2014) NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 5(8):2925CrossRef
127.
Zurück zum Zitat Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P, Sava G, Ziche M (2003) Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Br J Cancer 88(9):1484–1491PubMedPubMedCentralCrossRef Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P, Sava G, Ziche M (2003) Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Br J Cancer 88(9):1484–1491PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMI-A down regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269(23):5861–5870PubMedCrossRef Pintus G, Tadolini B, Posadino AM, Sanna B, Debidda M, Bennardini F, Sava G, Ventura C (2002) Inhibition of the MEK/ERK signaling pathway by the novel antimetastatic agent NAMI-A down regulates c-myc gene expression and endothelial cell proliferation. Eur J Biochem 269(23):5861–5870PubMedCrossRef
129.
Zurück zum Zitat Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, Garbisa S, Sartor L, Sava G (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86(6):993–998PubMedPubMedCentralCrossRef Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, Garbisa S, Sartor L, Sava G (2002) Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer 86(6):993–998PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry–from teaching paradigms to medicinal applications. Chem Soc Rev 38(2):391–401PubMedCrossRef Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry–from teaching paradigms to medicinal applications. Chem Soc Rev 38(2):391–401PubMedCrossRef
131.
Zurück zum Zitat Smith GS, Therrien B (2011) Targeted and multifunctional arene ruthenium chemotherapeutics. Dalton Trans 40(41):10793PubMedCrossRef Smith GS, Therrien B (2011) Targeted and multifunctional arene ruthenium chemotherapeutics. Dalton Trans 40(41):10793PubMedCrossRef
132.
Zurück zum Zitat Süss-Fink G (2014) Water-soluble arene ruthenium complexes: from serendipity to catalysis and drug design. J Organomet Chem 751:2–19CrossRef Süss-Fink G (2014) Water-soluble arene ruthenium complexes: from serendipity to catalysis and drug design. J Organomet Chem 751:2–19CrossRef
133.
Zurück zum Zitat Murray BS, Babak MV, Hartinger CG, Dyson PJ (2016) The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 306:86–114CrossRef Murray BS, Babak MV, Hartinger CG, Dyson PJ (2016) The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 306:86–114CrossRef
134.
Zurück zum Zitat Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171PubMedCrossRef Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171PubMedCrossRef
135.
Zurück zum Zitat Weiss A, Berndsen RH, Dubois M, Müller C, Schibli R, Griffioen AW, Dyson PJ, Nowak-Sliwinska P (2014) In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2 (pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem Sci 5(12):4742–4748CrossRef Weiss A, Berndsen RH, Dubois M, Müller C, Schibli R, Griffioen AW, Dyson PJ, Nowak-Sliwinska P (2014) In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2 (pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem Sci 5(12):4742–4748CrossRef
136.
Zurück zum Zitat Nowak-Sliwinska P, Van Beijnum JR, Casini A, Nazarov AA, Wagnieres G, Van Den Bergh H, Dyson PJ, Griffioen AW (2011) Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem 54(11):3895–3902PubMedCrossRef Nowak-Sliwinska P, Van Beijnum JR, Casini A, Nazarov AA, Wagnieres G, Van Den Bergh H, Dyson PJ, Griffioen AW (2011) Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem 54(11):3895–3902PubMedCrossRef
137.
Zurück zum Zitat Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823PubMedCrossRef Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823PubMedCrossRef
138.
Zurück zum Zitat Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu H, Nazarov AA, Yeo CHF, Ang WH, Dröge P, Rothlisberger U, Dyson PJ, Davey CA (2014) Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun 5:3462PubMedPubMedCentralCrossRef Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu H, Nazarov AA, Yeo CHF, Ang WH, Dröge P, Rothlisberger U, Dyson PJ, Davey CA (2014) Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun 5:3462PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Nowak-Sliwinska P, Segura T, Iruela-Arispe ML (2014) The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 4:779–804CrossRef Nowak-Sliwinska P, Segura T, Iruela-Arispe ML (2014) The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 4:779–804CrossRef
140.
Zurück zum Zitat Lee RFS, Escrig S, Croisier M, Clerc-Rosset S, Knott GW, Meibom A, Davey CA, Johnsson K, Dyson PJ (2015) NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem Commun (Camb) 51(92):16486–16489CrossRef Lee RFS, Escrig S, Croisier M, Clerc-Rosset S, Knott GW, Meibom A, Davey CA, Johnsson K, Dyson PJ (2015) NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem Commun (Camb) 51(92):16486–16489CrossRef
141.
Zurück zum Zitat Wu B, Ong MS, Groessl M, Adhireksan Z, Hartinger CG, Dyson PJ, Davey CA (2011) A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core. Chemistry 17(13):3562–3566PubMedCrossRef Wu B, Ong MS, Groessl M, Adhireksan Z, Hartinger CG, Dyson PJ, Davey CA (2011) A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core. Chemistry 17(13):3562–3566PubMedCrossRef
142.
Zurück zum Zitat Adhireksan Z, Palermo G, Riedel T, Ma Z, Muhammad R, Röthlisberger U, Dyson PJ, Davey CA (2017) Allosteric cross-talk in chromatin can mediate drug-drug synergy. Nat Commun. doi:10.1038/ncomms14860 Adhireksan Z, Palermo G, Riedel T, Ma Z, Muhammad R, Röthlisberger U, Dyson PJ, Davey CA (2017) Allosteric cross-talk in chromatin can mediate drug-drug synergy. Nat Commun. doi:10.​1038/​ncomms14860
145.
Zurück zum Zitat Weiss A, Ding X, van Beijnum JR, Wong I, Wong TJ, Berndsen RH, Dormond O, Dallinga M, Shen L, Schlingemann RO, Pili R, Ho C-M, Dyson PJ, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (2015) Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis 18(3):233–244PubMedPubMedCentralCrossRef Weiss A, Ding X, van Beijnum JR, Wong I, Wong TJ, Berndsen RH, Dormond O, Dallinga M, Shen L, Schlingemann RO, Pili R, Ho C-M, Dyson PJ, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (2015) Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis 18(3):233–244PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Oronsky BT, Oronsky AL, Lybeck M, Oronsky NC, Scicinski JJ, Carter C, Day RM, Rodriguez Orengo JF, Rodriguez-Torres M, Fanger GF, Reid TR (2015) Episensitization: defying time’s arrow. Front Oncol. doi:10.3389/fonc.2015.00134 Oronsky BT, Oronsky AL, Lybeck M, Oronsky NC, Scicinski JJ, Carter C, Day RM, Rodriguez Orengo JF, Rodriguez-Torres M, Fanger GF, Reid TR (2015) Episensitization: defying time’s arrow. Front Oncol. doi:10.​3389/​fonc.​2015.​00134
147.
Zurück zum Zitat Spencer J, Amin J, Wang M, Packham G, Alwi SSS, Tizzard GJ, Coles SJ, Paranal RM, Bradner JE, Heightman TD (2011) Synthesis and biological evaluation of JAHAs: ferrocene-based histone deacetylase inhibitors. ACS Med Chem Lett 2(5):358–362PubMedPubMedCentralCrossRef Spencer J, Amin J, Wang M, Packham G, Alwi SSS, Tizzard GJ, Coles SJ, Paranal RM, Bradner JE, Heightman TD (2011) Synthesis and biological evaluation of JAHAs: ferrocene-based histone deacetylase inhibitors. ACS Med Chem Lett 2(5):358–362PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Librizzi M, Longo A, Chiarelli R, Amin J, Spencer J, Luparello C (2012) Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class i histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells. Chem Res Toxicol 25(11):2608–2616PubMedCrossRef Librizzi M, Longo A, Chiarelli R, Amin J, Spencer J, Luparello C (2012) Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class i histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells. Chem Res Toxicol 25(11):2608–2616PubMedCrossRef
149.
Zurück zum Zitat Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12(2):123–135PubMedCrossRef Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12(2):123–135PubMedCrossRef
150.
Zurück zum Zitat Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25(3):338–342PubMedCrossRef Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25(3):338–342PubMedCrossRef
151.
Zurück zum Zitat Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25(3):269–277PubMedCrossRef Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25(3):269–277PubMedCrossRef
152.
Zurück zum Zitat Shiva Shankar TV, Willems L (2014) Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vasc Pharmacol 60(2):57–66CrossRef Shiva Shankar TV, Willems L (2014) Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vasc Pharmacol 60(2):57–66CrossRef
153.
Zurück zum Zitat Chen WY, Townes TM (2000) Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc Natl Acad Sci USA 97(1):377–382PubMedPubMedCentralCrossRef Chen WY, Townes TM (2000) Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc Natl Acad Sci USA 97(1):377–382PubMedPubMedCentralCrossRef
154.
155.
Zurück zum Zitat Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95PubMedCrossRef Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95PubMedCrossRef
157.
Zurück zum Zitat Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE (2008) Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 6(5):873–883PubMedPubMedCentralCrossRef Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE (2008) Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 6(5):873–883PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Vaissière T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659(1–2):40–48PubMedCrossRef Vaissière T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659(1–2):40–48PubMedCrossRef
159.
Zurück zum Zitat Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304PubMedCrossRef Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304PubMedCrossRef
160.
Zurück zum Zitat Lyu T, Jia N, Wang J, Yan X, Yu Y, Lu Z, Bast RC, Hua K, Feng W (2013) Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics 8(12):1330–1346PubMedPubMedCentralCrossRef Lyu T, Jia N, Wang J, Yan X, Yu Y, Lu Z, Bast RC, Hua K, Feng W (2013) Expression and epigenetic regulation of angiogenesis-related factors during dormancy and recurrent growth of ovarian carcinoma. Epigenetics 8(12):1330–1346PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispé S, Arimondo PB (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94(11):2280–2296PubMedCrossRef Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispé S, Arimondo PB (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94(11):2280–2296PubMedCrossRef
162.
Zurück zum Zitat Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107PubMedCrossRef Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107PubMedCrossRef
163.
Zurück zum Zitat Zhang J, Lu A, Li L, Yue J, Lu Y (2010) p16 Modulates VEGF expression via its interaction with HIF-1alpha in breast cancer cells. Cancer Invest 28(6):588–597PubMedPubMedCentralCrossRef Zhang J, Lu A, Li L, Yue J, Lu Y (2010) p16 Modulates VEGF expression via its interaction with HIF-1alpha in breast cancer cells. Cancer Invest 28(6):588–597PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Miki K, Shimizu E, Yano S, Tani K, Sone S (2001) Demethylation by 5-aza-2′-deoxycytidine (5-azadC) of p16INK4A gene results in downregulation of vascular endothelial growth factor expression in human lung cancer cell lines. Oncol Res 12(8):335–342PubMed Miki K, Shimizu E, Yano S, Tani K, Sone S (2001) Demethylation by 5-aza-2′-deoxycytidine (5-azadC) of p16INK4A gene results in downregulation of vascular endothelial growth factor expression in human lung cancer cell lines. Oncol Res 12(8):335–342PubMed
165.
Zurück zum Zitat Anand-Apte B, Bao L, Smith R, Iwata K, Olsen BR, Zetter B, Apte SS (1996) A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol 74(6):853–862PubMedCrossRef Anand-Apte B, Bao L, Smith R, Iwata K, Olsen BR, Zetter B, Apte SS (1996) A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol 74(6):853–862PubMedCrossRef
166.
Zurück zum Zitat Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9(4):407–415PubMedCrossRef Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9(4):407–415PubMedCrossRef
167.
Zurück zum Zitat Suzuki M, Shinohara F, Rikiishi H (2008) Zebularine-induced reduction in VEGF secretion by HIF-1α degradation in oral squamous cell carcinoma. Mol Med Rep 1(4):465–471PubMed Suzuki M, Shinohara F, Rikiishi H (2008) Zebularine-induced reduction in VEGF secretion by HIF-1α degradation in oral squamous cell carcinoma. Mol Med Rep 1(4):465–471PubMed
168.
Zurück zum Zitat Cecconi D, Donadelli M, Pozza ED, Rinalducci S, Zolla L, Scupoli MT, Righetti PG, Scarpa A, Palmieri M (2009) Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study. Proteomics 9(7):1952–1966PubMedCrossRef Cecconi D, Donadelli M, Pozza ED, Rinalducci S, Zolla L, Scupoli MT, Righetti PG, Scarpa A, Palmieri M (2009) Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study. Proteomics 9(7):1952–1966PubMedCrossRef
169.
Zurück zum Zitat Shaker S, Bernstein M, Momparler LF, Momparler RL (2003) Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res 27(5):437–444PubMedCrossRef Shaker S, Bernstein M, Momparler LF, Momparler RL (2003) Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res 27(5):437–444PubMedCrossRef
170.
Zurück zum Zitat Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45(1):23–30PubMedPubMedCentralCrossRef Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45(1):23–30PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Kirschbaum MH, Foon KA, Frankel P, Ruel C, Pulone B, Tuscano JM, Newman EM (2014) A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk Lymphoma 55(10):2301–2304PubMedPubMedCentralCrossRef Kirschbaum MH, Foon KA, Frankel P, Ruel C, Pulone B, Tuscano JM, Newman EM (2014) A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk Lymphoma 55(10):2301–2304PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Gore SD et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66(12):6361–6369PubMedCrossRef Gore SD et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66(12):6361–6369PubMedCrossRef
173.
Zurück zum Zitat Voso MT et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15(15):5002–5007PubMedCrossRef Voso MT et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15(15):5002–5007PubMedCrossRef
174.
Zurück zum Zitat Fandy TE et al (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114(13):2764–2773PubMedPubMedCentralCrossRef Fandy TE et al (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114(13):2764–2773PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Gryder BE, Sodji QH, Oyelere Adegboyega K (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Futur Med Chem 4(4):505–524CrossRef Gryder BE, Sodji QH, Oyelere Adegboyega K (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Futur Med Chem 4(4):505–524CrossRef
176.
Zurück zum Zitat Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, Salumbides BC, Van Erp K, Schulick R, Pili R (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13(15):4538–4546PubMedCrossRef Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, Salumbides BC, Van Erp K, Schulick R, Pili R (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13(15):4538–4546PubMedCrossRef
177.
Zurück zum Zitat Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R (2012) Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE 7(1):e30815PubMedPubMedCentralCrossRef Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R (2012) Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE 7(1):e30815PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Pili R, Salumbides B, Zhao M, Altiok S, Qian D, Zwiebel J, Carducci MA, Rudek MA (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106(1):77–84PubMedCrossRef Pili R, Salumbides B, Zhao M, Altiok S, Qian D, Zwiebel J, Carducci MA, Rudek MA (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106(1):77–84PubMedCrossRef
179.
Zurück zum Zitat Smits KM, Melotte V, Niessen HEC, Dubois L, Oberije C, Troost EGC, Starmans MHW, Boutros PC, Vooijs M, van Engeland M, Lambin P (2014) Epigenetics in radiotherapy: where are we heading? Radiother Oncol 111(2):168–177PubMedCrossRef Smits KM, Melotte V, Niessen HEC, Dubois L, Oberije C, Troost EGC, Starmans MHW, Boutros PC, Vooijs M, van Engeland M, Lambin P (2014) Epigenetics in radiotherapy: where are we heading? Radiother Oncol 111(2):168–177PubMedCrossRef
180.
182.
183.
Zurück zum Zitat Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. doi:10.1007/s10456-017-9552-y Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. doi:10.​1007/​s10456-017-9552-y
184.
Zurück zum Zitat Hamming LC, Slotman BJ, Verheul HMW, Thijssen V (2017) The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis. doi:10.1007/s10456-017-9546-9 Hamming LC, Slotman BJ, Verheul HMW, Thijssen V (2017) The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis. doi:10.​1007/​s10456-017-9546-9
185.
Zurück zum Zitat Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584PubMedCrossRef Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584PubMedCrossRef
186.
Zurück zum Zitat Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, Mosher DF, Bouck N (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 217:326–332PubMedCrossRef Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, Mosher DF, Bouck N (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 217:326–332PubMedCrossRef
187.
Zurück zum Zitat Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868–880PubMedCrossRef Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868–880PubMedCrossRef
188.
Zurück zum Zitat Heffeter P, Atil B, Kryeziu K, Groza D, Koellensperger G, Korner W, Jungwirth U, Mohr T, Keppler BK, Berger W (2013) The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur J Cancer 49:3366–3375PubMedPubMedCentralCrossRef Heffeter P, Atil B, Kryeziu K, Groza D, Koellensperger G, Korner W, Jungwirth U, Mohr T, Keppler BK, Berger W (2013) The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur J Cancer 49:3366–3375PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Kassouf E, Tehfe MA, Florescu M, Soulieres D, Lemieux B, Ayoub J-PM, Charpentier D, Yelle L, Daigneault L, Colin P, Momparler RL, Plante I, Lassonde G, Charbonneau MR, Raynal NJ-M, Blais N (2015) Phase I and II studies of the decitabine–genistein drug combination in advanced solid tumors. J Clin Oncol 33(15_suppl):e13556 Kassouf E, Tehfe MA, Florescu M, Soulieres D, Lemieux B, Ayoub J-PM, Charpentier D, Yelle L, Daigneault L, Colin P, Momparler RL, Plante I, Lassonde G, Charbonneau MR, Raynal NJ-M, Blais N (2015) Phase I and II studies of the decitabine–genistein drug combination in advanced solid tumors. J Clin Oncol 33(15_suppl):e13556
190.
Zurück zum Zitat Puduvalli VK, Wu J, Yuan Y, Armstrong TS, Groves MD, Raizer JJ, Giglio P, Colman H, Peereboom DM, Walbert T, Avgeropoulos NG, Iwamoto FM, Chamberlain MC, Paleologos N, Gilbert MR (2015). Brain tumor trials collaborative bayesian adaptive Adaptive randomized phase II trial of bevacizumab plus vorinostat versus bevacizumab alone in adults with recurrent glioblastoma (BTTC-1102). J Clin Oncol 33:1 Puduvalli VK, Wu J, Yuan Y, Armstrong TS, Groves MD, Raizer JJ, Giglio P, Colman H, Peereboom DM, Walbert T, Avgeropoulos NG, Iwamoto FM, Chamberlain MC, Paleologos N, Gilbert MR (2015). Brain tumor trials collaborative bayesian adaptive Adaptive randomized phase II trial of bevacizumab plus vorinostat versus bevacizumab alone in adults with recurrent glioblastoma (BTTC-1102). J Clin Oncol 33:1
191.
Zurück zum Zitat Stimson L, La Thangue NB (2009) Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Lett 280(2):177–183PubMedCrossRef Stimson L, La Thangue NB (2009) Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Lett 280(2):177–183PubMedCrossRef
192.
Zurück zum Zitat Wheler JJ, Janku F, Falchook GS, Jackson TL, Fu S, Naing A, Tsimberidou AM, Moulder SL, Hong DS, Yang H, Piha-Paul SA, Atkins JT, Garcia-Manero G, Kurzrock R (2014) Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers. Cancer Chemother Pharmacol 73(3):495–501PubMedPubMedCentralCrossRef Wheler JJ, Janku F, Falchook GS, Jackson TL, Fu S, Naing A, Tsimberidou AM, Moulder SL, Hong DS, Yang H, Piha-Paul SA, Atkins JT, Garcia-Manero G, Kurzrock R (2014) Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers. Cancer Chemother Pharmacol 73(3):495–501PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R (2000) Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60(21):6039–6044PubMed Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R (2000) Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60(21):6039–6044PubMed
194.
Zurück zum Zitat Wang L, Li H, Ren Y, Zou S, Fang W, Jiang X, Jia L, Li M, Liu X, Yuan X, Chen G, Yang J, Wu C (2016) Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis. doi:10.1038/cddis.2015.328 Wang L, Li H, Ren Y, Zou S, Fang W, Jiang X, Jia L, Li M, Liu X, Yuan X, Chen G, Yang J, Wu C (2016) Targeting HDAC with a novel inhibitor effectively reverses paclitaxel resistance in non-small cell lung cancer via multiple mechanisms. Cell Death Dis. doi:10.​1038/​cddis.​2015.​328
195.
Zurück zum Zitat Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P (2017) Combination of ruthenium(II)-arene complex [Ru(eta6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep. doi:10.1038/srep43005 Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P (2017) Combination of ruthenium(II)-arene complex [Ru(eta6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep. doi:10.​1038/​srep43005
196.
Zurück zum Zitat Yu C, Friday BB, Lai J-P, McCollum A, Atadja P, Roberts LR, Adjei AA (2007) Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res 13(4):1140–1148PubMedCrossRef Yu C, Friday BB, Lai J-P, McCollum A, Atadja P, Roberts LR, Adjei AA (2007) Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res 13(4):1140–1148PubMedCrossRef
197.
Zurück zum Zitat Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan DC, Sugita M, Chan Z, Baron A, Franklin W, Drabkin HA, Girard L, Gazdar AF, Minna JD, Bunn PA (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66(2):944–950PubMedCrossRef Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan DC, Sugita M, Chan Z, Baron A, Franklin W, Drabkin HA, Girard L, Gazdar AF, Minna JD, Bunn PA (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66(2):944–950PubMedCrossRef
198.
Zurück zum Zitat Derksen PWB, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449PubMedCrossRef Derksen PWB, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449PubMedCrossRef
199.
Zurück zum Zitat Peinado H, Marin F, Cubillo E, Stark H-J, Fusenig N, Nieto MA, Cano A (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117(Pt 13):2827–2839PubMedCrossRef Peinado H, Marin F, Cubillo E, Stark H-J, Fusenig N, Nieto MA, Cano A (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117(Pt 13):2827–2839PubMedCrossRef
200.
Zurück zum Zitat Chen M-C, Chen C-H, Wang J-C, Tsai A-C, Liou J-P, Pan S-L, Teng C-M (2013) The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis 4:e810PubMedPubMedCentralCrossRef Chen M-C, Chen C-H, Wang J-C, Tsai A-C, Liou J-P, Pan S-L, Teng C-M (2013) The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis 4:e810PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Lee T-G, Jeong E-H, Kim SY, Kim H-R, Kim CH (2015) The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int J Cancer 136(11):2717–2729PubMedCrossRef Lee T-G, Jeong E-H, Kim SY, Kim H-R, Kim CH (2015) The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int J Cancer 136(11):2717–2729PubMedCrossRef
202.
Zurück zum Zitat Witta SE, Jotte RM, Konduri K, Neubauer MA, Spira AI, Ruxer RL, Varella-Garcia M, Bunn PA, Hirsch FR (2012) Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol 30(18):2248–2255PubMedPubMedCentralCrossRef Witta SE, Jotte RM, Konduri K, Neubauer MA, Spira AI, Ruxer RL, Varella-Garcia M, Bunn PA, Hirsch FR (2012) Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol 30(18):2248–2255PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Gray JE, Haura E, Chiappori A, Tanvetyanon T, Williams CC, Pinder-Schenck M, Kish JA, Kreahling J, Lush R, Neuger A, Tetteh L, Akar A, Zhao X, Schell MJ, Bepler G, Altiok S (2014) A phase i, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors. Clin Cancer Res 20(6):1644–1655PubMedPubMedCentralCrossRef Gray JE, Haura E, Chiappori A, Tanvetyanon T, Williams CC, Pinder-Schenck M, Kish JA, Kreahling J, Lush R, Neuger A, Tetteh L, Akar A, Zhao X, Schell MJ, Bepler G, Altiok S (2014) A phase i, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors. Clin Cancer Res 20(6):1644–1655PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Loges S, Schmidt T, Carmeliet P (2010) Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1(1):12–25PubMedPubMedCentralCrossRef Loges S, Schmidt T, Carmeliet P (2010) Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1(1):12–25PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Ding X, Liu W, Weiss A, Li Y, Wong I, Griffioen AW, van den Bergh H, Xu H, Nowak-Sliwinska P, Ho C-M (2014) Discovery of a low order drug-cell response surface for applications in personalized medicine. Phys Biol 11(6):65003CrossRef Ding X, Liu W, Weiss A, Li Y, Wong I, Griffioen AW, van den Bergh H, Xu H, Nowak-Sliwinska P, Ho C-M (2014) Discovery of a low order drug-cell response surface for applications in personalized medicine. Phys Biol 11(6):65003CrossRef
207.
Zurück zum Zitat Treps L, Conradi L-C, Harjes U, Carmeliet P (2016) Manipulating angiogenesis by targeting endothelial metabolism: hitting the engine rather than the drivers—a new perspective? Pharmacol Rev 68(3):872–887PubMedCrossRef Treps L, Conradi L-C, Harjes U, Carmeliet P (2016) Manipulating angiogenesis by targeting endothelial metabolism: hitting the engine rather than the drivers—a new perspective? Pharmacol Rev 68(3):872–887PubMedCrossRef
208.
Zurück zum Zitat Weiss A, Berndsen RH, Ding X, Ho C-M, Dyson PJ, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (2015) A streamlined search technology for identification of synergistic drug combinations. Sci Rep 5:14508PubMedPubMedCentralCrossRef Weiss A, Berndsen RH, Ding X, Ho C-M, Dyson PJ, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (2015) A streamlined search technology for identification of synergistic drug combinations. Sci Rep 5:14508PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Yang Q, Tian Y, Liu S, Zeine R, Chlenski A, Salwen HR, Henkin J, Cohn SL (2007) Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 67(4):1716–1724PubMedCrossRef Yang Q, Tian Y, Liu S, Zeine R, Chlenski A, Salwen HR, Henkin J, Cohn SL (2007) Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 67(4):1716–1724PubMedCrossRef
210.
Zurück zum Zitat Pili R, Kruszewski MP, Hager BW, Lantz J, Carducci MA (2001) Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res 61(4):1477–1485PubMed Pili R, Kruszewski MP, Hager BW, Lantz J, Carducci MA (2001) Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res 61(4):1477–1485PubMed
211.
Zurück zum Zitat Wang H, Zhou H, Zou Y, Liu Q, Guo C, Gao G, Shao C, Gong Y (2010) Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol 80(9):1386–1395PubMedCrossRef Wang H, Zhou H, Zou Y, Liu Q, Guo C, Gao G, Shao C, Gong Y (2010) Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol 80(9):1386–1395PubMedCrossRef
Metadaten
Titel
Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment
verfasst von
Robert H. Berndsen
U. Kulsoom Abdul
Andrea Weiss
Marloes Zoetemelk
Marije T. te Winkel
Paul J. Dyson
Arjan W. Griffioen
Patrycja Nowak-Sliwinska
Publikationsdatum
04.04.2017
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2017
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-017-9551-z

Weitere Artikel der Ausgabe 2/2017

Angiogenesis 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.