Skip to main content
Erschienen in: Molecular Diagnosis & Therapy 2/2016

01.04.2016 | Review Article

Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy

verfasst von: Francesco Piva, Matteo Giulietti, Matteo Santoni, Giulia Occhipinti, Marina Scarpelli, Antonio Lopez-Beltran, Liang Cheng, Giovanni Principato, Rodolfo Montironi

Erschienen in: Molecular Diagnosis & Therapy | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Epithelial-to-mesenchymal transition (EMT) is a developmentally vital reversible process by which fully differentiated cells lose their epithelial features and acquire a migratory mesenchymal phenotype. EMT contributes to the metastatic potential of tumors. The expression profile and other biological properties of EMT suggest potential targets for cancer therapy, including in renal-cell carcinoma (RCC). The preclinical and clinical results have substantiated the promises that dysregulated elements leading to EMT can be a potential target in RCC patients. In this study, we illustrated the pathogenic and prognostic role of EMT in RCC. In addition, we reconstructed, by literature analysis, the different pathways implicated in the EMT process, thus supporting the rational for future EMT-directed therapeutic approaches for RCC patients.
Literatur
1.
Zurück zum Zitat Sandock DS, Seftel AD, Resnick MI. A new protocol for the follow up of renal cell carcinoma based on pathological stage. J Urol. 1995;154:28–31.CrossRefPubMed Sandock DS, Seftel AD, Resnick MI. A new protocol for the follow up of renal cell carcinoma based on pathological stage. J Urol. 1995;154:28–31.CrossRefPubMed
2.
Zurück zum Zitat He H, Magi-Galluzzi C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv Anat Pathol. 2014;21:174–80.CrossRefPubMed He H, Magi-Galluzzi C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv Anat Pathol. 2014;21:174–80.CrossRefPubMed
3.
Zurück zum Zitat Weygant N, Qu D, May R, Tierney RM, Berry WL, Zhao L, et al. DCLK1 is a broadly dysregulated target against epithelial–mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget. 2015;6:2193–205.CrossRefPubMedPubMedCentral Weygant N, Qu D, May R, Tierney RM, Berry WL, Zhao L, et al. DCLK1 is a broadly dysregulated target against epithelial–mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget. 2015;6:2193–205.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Sampson VB, David JM, Puig I, Patil PU, de Herreros PU, Thomas GV, et al. Wilms’ tumor protein induces an epithelial–mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. PLoS One. 2014;9:102041.CrossRef Sampson VB, David JM, Puig I, Patil PU, de Herreros PU, Thomas GV, et al. Wilms’ tumor protein induces an epithelial–mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. PLoS One. 2014;9:102041.CrossRef
5.
Zurück zum Zitat Pantuck AJ, An J, Liu H, Rettig MB. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.CrossRefPubMed Pantuck AJ, An J, Liu H, Rettig MB. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.CrossRefPubMed
6.
Zurück zum Zitat Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol. 2014;230:1916–28.CrossRef Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol. 2014;230:1916–28.CrossRef
7.
Zurück zum Zitat Huang J, Yao X, Zhang J, Dong B, Chen Q, Xue W, et al. Hypoxia-induced downregulation of miR-30c promotes epithelial–mesenchymal transition in human renal cell carcinoma. Cancer Sci. 2013;104:1609–17.CrossRefPubMed Huang J, Yao X, Zhang J, Dong B, Chen Q, Xue W, et al. Hypoxia-induced downregulation of miR-30c promotes epithelial–mesenchymal transition in human renal cell carcinoma. Cancer Sci. 2013;104:1609–17.CrossRefPubMed
8.
Zurück zum Zitat Yoshida N, Ikemoto S, Narita K, Sugimura K, Wada S, Yasumoto R, et al. Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br J Cancer. 2002;86:1396–400.CrossRefPubMedPubMedCentral Yoshida N, Ikemoto S, Narita K, Sugimura K, Wada S, Yasumoto R, et al. Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br J Cancer. 2002;86:1396–400.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol. 2007;25:4542–9.CrossRefPubMed Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol. 2007;25:4542–9.CrossRefPubMed
10.
Zurück zum Zitat Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, et al. TNF-α induces epithelial–mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res. 2012;10:1109–19.CrossRefPubMed Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, et al. TNF-α induces epithelial–mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res. 2012;10:1109–19.CrossRefPubMed
11.
Zurück zum Zitat Khawam K, Giron-Michel J, Gu Y, Perier A, Giuliani M, Caignard A, et al. Human renal cancer cells express a novel membrane-bound interleukin-15 that induces, in response to the soluble interleukin-15 receptor alpha chain, epithelial-to-mesenchymal transition. Cancer Res. 2009;69:1561–9.CrossRefPubMed Khawam K, Giron-Michel J, Gu Y, Perier A, Giuliani M, Caignard A, et al. Human renal cancer cells express a novel membrane-bound interleukin-15 that induces, in response to the soluble interleukin-15 receptor alpha chain, epithelial-to-mesenchymal transition. Cancer Res. 2009;69:1561–9.CrossRefPubMed
12.
Zurück zum Zitat Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, et al. Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet. 2013;58:508–16.CrossRefPubMed Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, et al. Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet. 2013;58:508–16.CrossRefPubMed
13.
Zurück zum Zitat Ni D, Ma X, Li HZ, Gao Y, Li XT, Zhang Y, et al. Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res. 2014;20:1779–90.CrossRefPubMed Ni D, Ma X, Li HZ, Gao Y, Li XT, Zhang Y, et al. Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res. 2014;20:1779–90.CrossRefPubMed
14.
Zurück zum Zitat Gnemmi V, Bouillez A, Gaudelot K, Hémon B, Ringot B, Pottier N, et al. MUC1 drives epithelial–mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett. 2014;346:225–36.CrossRefPubMed Gnemmi V, Bouillez A, Gaudelot K, Hémon B, Ringot B, Pottier N, et al. MUC1 drives epithelial–mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett. 2014;346:225–36.CrossRefPubMed
15.
Zurück zum Zitat Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, et al. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest. 2011;91:1443–58.CrossRefPubMed Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, et al. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest. 2011;91:1443–58.CrossRefPubMed
16.
Zurück zum Zitat Conant JL, Peng Z, Evans MF, Naud S, Cooper K. Sarcomatoid renal cell carcinoma is an example of epithelial–mesenchymal transition. J Clin Pathol. 2011;64:1088–92.CrossRefPubMed Conant JL, Peng Z, Evans MF, Naud S, Cooper K. Sarcomatoid renal cell carcinoma is an example of epithelial–mesenchymal transition. J Clin Pathol. 2011;64:1088–92.CrossRefPubMed
17.
Zurück zum Zitat Boström AK, Möller C, Nilsson E, Elfving P, Axelson H, Johansson ME. Sarcomatoid conversion of clear cell renal cell carcinoma in relation to epithelial-to-mesenchymal transition. Hum Pathol. 2012;43:708–19.CrossRefPubMed Boström AK, Möller C, Nilsson E, Elfving P, Axelson H, Johansson ME. Sarcomatoid conversion of clear cell renal cell carcinoma in relation to epithelial-to-mesenchymal transition. Hum Pathol. 2012;43:708–19.CrossRefPubMed
18.
Zurück zum Zitat Dumanskiy YV, Kudriashov AG, Vasilenko IV, Kondratyuk RB, Gulkov YK, Cyrillichystiakov RS. Markers of epithelial–mesenchymal transition in renal cell carcinoma. Exp Oncol. 2013;35:325–7.PubMed Dumanskiy YV, Kudriashov AG, Vasilenko IV, Kondratyuk RB, Gulkov YK, Cyrillichystiakov RS. Markers of epithelial–mesenchymal transition in renal cell carcinoma. Exp Oncol. 2013;35:325–7.PubMed
19.
Zurück zum Zitat Harada K, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial–mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110:E1131–7.CrossRefPubMed Harada K, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial–mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110:E1131–7.CrossRefPubMed
20.
Zurück zum Zitat Chen D, Gassenmaier M, Maruschke M, Riesenberg R, Pohla H, Stief CG, et al. Expression and prognostic significance of a comprehensive epithelial–mesenchymal transition gene set in renal cell carcinoma. J Urol. 2014;191:479–86.CrossRefPubMed Chen D, Gassenmaier M, Maruschke M, Riesenberg R, Pohla H, Stief CG, et al. Expression and prognostic significance of a comprehensive epithelial–mesenchymal transition gene set in renal cell carcinoma. J Urol. 2014;191:479–86.CrossRefPubMed
21.
Zurück zum Zitat Fang Y, Wei J, Cao J, Zhao H, Liao B, Qiu S, et al. Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One. 2013;8:e62558.CrossRefPubMedPubMedCentral Fang Y, Wei J, Cao J, Zhao H, Liao B, Qiu S, et al. Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One. 2013;8:e62558.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Iacovelli R, Alesini D, Palazzo A, Trenta P, Santoni M, De Marchis L, et al. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat Rev. 2014;40:271–5.CrossRefPubMed Iacovelli R, Alesini D, Palazzo A, Trenta P, Santoni M, De Marchis L, et al. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat Rev. 2014;40:271–5.CrossRefPubMed
23.
Zurück zum Zitat Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013;62:1757–68.CrossRefPubMed Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013;62:1757–68.CrossRefPubMed
24.
Zurück zum Zitat Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear—cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther. 2014;8:218–28.CrossRefPubMedPubMedCentral Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear—cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther. 2014;8:218–28.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hammers HJ, Verheul HM, Salumbides B, Sharma R, Rudek M, Jaspers J, et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol Cancer Ther. 2010;9:1525–35.CrossRefPubMedPubMedCentral Hammers HJ, Verheul HM, Salumbides B, Sharma R, Rudek M, Jaspers J, et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol Cancer Ther. 2010;9:1525–35.CrossRefPubMedPubMedCentral
26.
27.
Zurück zum Zitat Aubert S, Fauquette V, Hémon B, Lepoivre R, Briez N, Bernard D, et al. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res. 2009;69:5707–15.CrossRefPubMed Aubert S, Fauquette V, Hémon B, Lepoivre R, Briez N, Bernard D, et al. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res. 2009;69:5707–15.CrossRefPubMed
28.
Zurück zum Zitat Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 1998;58:2014–9.PubMed Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 1998;58:2014–9.PubMed
29.
Zurück zum Zitat Yuan Z, Wong S, Borrelli A, Chung MA. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem Biophys Res Commun. 2007;362:740–6.CrossRefPubMed Yuan Z, Wong S, Borrelli A, Chung MA. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem Biophys Res Commun. 2007;362:740–6.CrossRefPubMed
30.
Zurück zum Zitat Liu X, Caffrey TC, Steele MM, Mohr A, Singh PK, Radhakrishnan P. MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin. Oncogenesis. 2014;3:e107.CrossRefPubMedPubMedCentral Liu X, Caffrey TC, Steele MM, Mohr A, Singh PK, Radhakrishnan P. MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin. Oncogenesis. 2014;3:e107.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6:214–30.CrossRefPubMed Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6:214–30.CrossRefPubMed
32.
Zurück zum Zitat Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 1999;274:20489–98.CrossRefPubMed Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 1999;274:20489–98.CrossRefPubMed
33.
Zurück zum Zitat Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22:2453–62.CrossRefPubMedPubMedCentral Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22:2453–62.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial–mesenchymal transition and metastasis. Cancer Cell. 2014;26:358–73.CrossRefPubMedPubMedCentral Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial–mesenchymal transition and metastasis. Cancer Cell. 2014;26:358–73.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer. 2005;5:51–63.CrossRefPubMed Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer. 2005;5:51–63.CrossRefPubMed
36.
Zurück zum Zitat Han KS, Li N, Raven PA, Fazli L, Ettinger S, Hong SJ, et al. Targeting integrin-linked kinase suppresses invasion and metastasis through downregulation of epithelial to mesenchymal transition in renal cell carcinoma. Mol Cancer Ther. 2015;14:1024–34.CrossRefPubMed Han KS, Li N, Raven PA, Fazli L, Ettinger S, Hong SJ, et al. Targeting integrin-linked kinase suppresses invasion and metastasis through downregulation of epithelial to mesenchymal transition in renal cell carcinoma. Mol Cancer Ther. 2015;14:1024–34.CrossRefPubMed
37.
Zurück zum Zitat Mikami S, Oya M, Mizuno R, Kosaka T, Katsube K, Okada Y. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47:63–7.CrossRefPubMed Mikami S, Oya M, Mizuno R, Kosaka T, Katsube K, Okada Y. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47:63–7.CrossRefPubMed
38.
Zurück zum Zitat Weimer JM, Anton ES. Doubling up on microtubule stabilizers: synergistic functions of doublecortin-like kinase and doublecortin in the developing cerebral cortex. Neuron. 2006;49:3–4.CrossRefPubMed Weimer JM, Anton ES. Doubling up on microtubule stabilizers: synergistic functions of doublecortin-like kinase and doublecortin in the developing cerebral cortex. Neuron. 2006;49:3–4.CrossRefPubMed
39.
Zurück zum Zitat Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.CrossRef Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.CrossRef
40.
Zurück zum Zitat Cao J, Liu J, Xu R, Zhu X, Liu L, Zhao X. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep. 2016;13:75–82.PubMedPubMedCentral Cao J, Liu J, Xu R, Zhu X, Liu L, Zhao X. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep. 2016;13:75–82.PubMedPubMedCentral
41.
Zurück zum Zitat Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.CrossRefPubMed Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.CrossRefPubMed
42.
Zurück zum Zitat Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, et al. miRNA-629 targets TRIM33 to promote TGF-beta/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 2014;13:565–74.CrossRefPubMed Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, et al. miRNA-629 targets TRIM33 to promote TGF-beta/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 2014;13:565–74.CrossRefPubMed
43.
Zurück zum Zitat Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep. 2016;35:559–67.PubMed Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep. 2016;35:559–67.PubMed
44.
Zurück zum Zitat Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, et al. miR-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting KRAS in renal cell carcinoma cells. DNA Cell Biol. 2015;34:429–36.CrossRefPubMed Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, et al. miR-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting KRAS in renal cell carcinoma cells. DNA Cell Biol. 2015;34:429–36.CrossRefPubMed
45.
Zurück zum Zitat Li W, Wang Q, Su Q, Ma D, An C, Ma L, et al. Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial–mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells. 2014;37:383–8.CrossRefPubMedPubMedCentral Li W, Wang Q, Su Q, Ma D, An C, Ma L, et al. Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial–mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells. 2014;37:383–8.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190:1059–68.CrossRefPubMed Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190:1059–68.CrossRefPubMed
Metadaten
Titel
Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy
verfasst von
Francesco Piva
Matteo Giulietti
Matteo Santoni
Giulia Occhipinti
Marina Scarpelli
Antonio Lopez-Beltran
Liang Cheng
Giovanni Principato
Rodolfo Montironi
Publikationsdatum
01.04.2016
Verlag
Springer International Publishing
Erschienen in
Molecular Diagnosis & Therapy / Ausgabe 2/2016
Print ISSN: 1177-1062
Elektronische ISSN: 1179-2000
DOI
https://doi.org/10.1007/s40291-016-0192-5

Weitere Artikel der Ausgabe 2/2016

Molecular Diagnosis & Therapy 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.