Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2017

07.10.2016 | Research Article

Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear

verfasst von: Hamid Motallebzadeh, Nima Maftoon, Jacob Pitaro, W. Robert J. Funnell, Sam J. Daniel

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Admittance measurement is a promising tool for evaluating the status of the middle ear in newborns. However, the newborn ear is anatomically very different from the adult one, and the acoustic input admittance is different than in adults. To aid in understanding the differences, a finite-element model of the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up to 2000 Hz. Material properties were taken from previous measurements and estimates. The simulation results were within the range of clinical admittance measurements made in newborns. Sensitivity analyses of the material properties show that in the canal model, the maximum admittance and the frequency at which that maximum admittance occurs are affected mainly by the stiffness parameter; in the middle-ear model, the damping is as important as the stiffness in influencing the maximum admittance magnitude but its effect on the corresponding frequency is negligible. Scaling up the geometries increases the admittance magnitude and shifts the resonances to lower frequencies. The results suggest that admittance measurements can provide more information about the condition of the middle ear when made at multiple frequencies around its resonance.
Literatur
Zurück zum Zitat Aernouts J, Aerts JRM, Dirckx JJJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290:45–54CrossRefPubMed Aernouts J, Aerts JRM, Dirckx JJJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290:45–54CrossRefPubMed
Zurück zum Zitat Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232CrossRefPubMed Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232CrossRefPubMed
Zurück zum Zitat Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152:100–109CrossRefPubMed Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152:100–109CrossRefPubMed
Zurück zum Zitat Akinpelu OV, Peleva E, Funnell WRJ, Daniel SJ (2014) Otoacoustic emissions in newborn hearing screening: a systematic review of the effects of different protocols on test outcomes. Int J Pediatr Otorhinolaryngol 78:711–717CrossRefPubMed Akinpelu OV, Peleva E, Funnell WRJ, Daniel SJ (2014) Otoacoustic emissions in newborn hearing screening: a systematic review of the effects of different protocols on test outcomes. Int J Pediatr Otorhinolaryngol 78:711–717CrossRefPubMed
Zurück zum Zitat Alberti PW, Jerger JF (1974) Probe-tone frequency and the diagnostic value of tympanometry. Arch Otolaryngol 99:206–210CrossRefPubMed Alberti PW, Jerger JF (1974) Probe-tone frequency and the diagnostic value of tympanometry. Arch Otolaryngol 99:206–210CrossRefPubMed
Zurück zum Zitat American Academy of Pediatrics (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120:898CrossRef American Academy of Pediatrics (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120:898CrossRef
Zurück zum Zitat Andersen HC, Hansen CC, Neergaard E (1962) Experimental studies on sound transmission in the human ear. Acta Otolaryngol (Stockh) 54:511–520CrossRef Andersen HC, Hansen CC, Neergaard E (1962) Experimental studies on sound transmission in the human ear. Acta Otolaryngol (Stockh) 54:511–520CrossRef
Zurück zum Zitat Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone and ear, 4th edn. Saunders, Philadelphia Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone and ear, 4th edn. Saunders, Philadelphia
Zurück zum Zitat Anthwal N, Thompson H (2016) The development of the mammalian outer and middle ear. J Anat 228:217–232CrossRefPubMed Anthwal N, Thompson H (2016) The development of the mammalian outer and middle ear. J Anat 228:217–232CrossRefPubMed
Zurück zum Zitat Békésy GV (1949) The structure of the middle ear and the hearing of one’s own voice by bone conduction. J Acoust Soc Am 21:217–232CrossRef Békésy GV (1949) The structure of the middle ear and the hearing of one’s own voice by bone conduction. J Acoust Soc Am 21:217–232CrossRef
Zurück zum Zitat Cancura W (1979) On the elasticity of the ligamentum annulare 225:27–32 Cancura W (1979) On the elasticity of the ligamentum annulare 225:27–32
Zurück zum Zitat Chang KW, Vohr BR, Norton SJ, Lekas MD (1993) External and middle ear status related to evoked otoacoustic emission in neonates. Arch Otolaryngol Neck Surg 119:276–282CrossRef Chang KW, Vohr BR, Norton SJ, Lekas MD (1993) External and middle ear status related to evoked otoacoustic emission in neonates. Arch Otolaryngol Neck Surg 119:276–282CrossRef
Zurück zum Zitat Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314CrossRefPubMed Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314CrossRefPubMed
Zurück zum Zitat Cheng JT, Aarnisalo AA, Harrington E, del Socorro Hernandez-Montes M, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77 Cheng JT, Aarnisalo AA, Harrington E, del Socorro Hernandez-Montes M, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77
Zurück zum Zitat Colletti V (1975) Methodologic observations on tympanometry with regard to the probe tone frequency. Acta Otolaryngol (Stockh) 80:54–60CrossRef Colletti V (1975) Methodologic observations on tympanometry with regard to the probe tone frequency. Acta Otolaryngol (Stockh) 80:54–60CrossRef
Zurück zum Zitat do Couto CM, Carvallo RMM (2009) The effect external and middle ears have in otoacoustic emissions. Rev Bras Otorrinolaringol 75:15–23CrossRef do Couto CM, Carvallo RMM (2009) The effect external and middle ears have in otoacoustic emissions. Rev Bras Otorrinolaringol 75:15–23CrossRef
Zurück zum Zitat Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, New York Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, New York
Zurück zum Zitat Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. Chronic Otitis Media Pathog Oriented Ther Manag Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. Chronic Otitis Media Pathog Oriented Ther Manag
Zurück zum Zitat Decraemer WF, Khanna SM (2004) Measurement, visualization and quantitative analysis of human and cat middle ear Decraemer WF, Khanna SM (2004) Measurement, visualization and quantitative analysis of human and cat middle ear
Zurück zum Zitat Decraemer W, Maes M, Vanhuyse V (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13:463–468CrossRefPubMed Decraemer W, Maes M, Vanhuyse V (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13:463–468CrossRefPubMed
Zurück zum Zitat Eby TL, Nadol JB Jr (1986) Postnatal growth of the human temporal bone implications for cochlear implants in children. Ann Otol Rhinol Laryngol 95:356–364CrossRefPubMed Eby TL, Nadol JB Jr (1986) Postnatal growth of the human temporal bone implications for cochlear implants in children. Ann Otol Rhinol Laryngol 95:356–364CrossRefPubMed
Zurück zum Zitat Eiber A (1999) Mechanical modeling and dynamical behavior of the human middle ear. Audiol Neurootol 4:170–177CrossRefPubMed Eiber A (1999) Mechanical modeling and dynamical behavior of the human middle ear. Audiol Neurootol 4:170–177CrossRefPubMed
Zurück zum Zitat Farmer-Fedor BL, Rabbitt RD (2002) Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am 112:600–620 Farmer-Fedor BL, Rabbitt RD (2002) Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am 112:600–620
Zurück zum Zitat Funasaka S, Funai H, Kumakawa K (1984) Sweep-frequency tympanometry: its development and diagnostic value. Int J Audiol 23:366–379CrossRef Funasaka S, Funai H, Kumakawa K (1984) Sweep-frequency tympanometry: its development and diagnostic value. Int J Audiol 23:366–379CrossRef
Zurück zum Zitat Fung Y (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York, pp 482–483CrossRef Fung Y (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York, pp 482–483CrossRef
Zurück zum Zitat Funnell WRJ, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859CrossRefPubMed Funnell WRJ, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859CrossRefPubMed
Zurück zum Zitat Funnell WRJ, Khanna SM, Decraemer WF (1992) On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 91:2082–2090CrossRefPubMed Funnell WRJ, Khanna SM, Decraemer WF (1992) On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 91:2082–2090CrossRefPubMed
Zurück zum Zitat Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467CrossRefPubMed Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467CrossRefPubMed
Zurück zum Zitat Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. ORL J Oto-Rhino-Laryngol Its Relat Spec 44:181–205CrossRef Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. ORL J Oto-Rhino-Laryngol Its Relat Spec 44:181–205CrossRef
Zurück zum Zitat Funnell WRJ, Maftoon N, Decraemer WF (2013) Modeling of middle ear mechanics. Middle Ear (Springer) pp 171–210 Funnell WRJ, Maftoon N, Decraemer WF (2013) Modeling of middle ear mechanics. Middle Ear (Springer) pp 171–210
Zurück zum Zitat Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859CrossRefPubMed Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859CrossRefPubMed
Zurück zum Zitat Gan RZ, Sun Q (2002) Finite element modeling of human ear with external ear canal and middle ear cavity. Eng Med Biol 2002 24th Annu Conf Annu Fall Meet Biomed Eng Soc EMBSBMES Conf 2002 Proc Second Jt (IEEE) Vol 1 pp 264–265 Gan RZ, Sun Q (2002) Finite element modeling of human ear with external ear canal and middle ear cavity. Eng Med Biol 2002 24th Annu Conf Annu Fall Meet Biomed Eng Soc EMBSBMES Conf 2002 Proc Second Jt (IEEE) Vol 1 pp 264–265
Zurück zum Zitat Gan RZ, Yang F, Zhang X, Nakmali D (2011) Mechanical properties of stapedial annular ligament. Med Eng Phys 33:330–339CrossRefPubMed Gan RZ, Yang F, Zhang X, Nakmali D (2011) Mechanical properties of stapedial annular ligament. Med Eng Phys 33:330–339CrossRefPubMed
Zurück zum Zitat Gariepy B (2010) Finite-element modelling of the newborn ear canal and middle ear Gariepy B (2010) Finite-element modelling of the newborn ear canal and middle ear
Zurück zum Zitat Gea SLR, Decraemer WF, Funnell RWJ, Dirckx JJJ, Maier H (2010) Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. JARO-J Assoc Res Otolaryngol 11:1–17CrossRef Gea SLR, Decraemer WF, Funnell RWJ, Dirckx JJJ, Maier H (2010) Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. JARO-J Assoc Res Otolaryngol 11:1–17CrossRef
Zurück zum Zitat Geerligs M, Van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44:1176–1181CrossRefPubMed Geerligs M, Van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44:1176–1181CrossRefPubMed
Zurück zum Zitat Gundersen T, Høgmoen K (1976) Holographic vibration analysis of the ossicular chain. Acta Otolaryngol (Stockh) 82:16–25CrossRef Gundersen T, Høgmoen K (1976) Holographic vibration analysis of the ossicular chain. Acta Otolaryngol (Stockh) 82:16–25CrossRef
Zurück zum Zitat Harlor ADB Jr, Bower C (2009) Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics 124:1252–1263CrossRefPubMed Harlor ADB Jr, Bower C (2009) Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics 124:1252–1263CrossRefPubMed
Zurück zum Zitat Harneja NK, Chaturvedi RP (1973) A study of the human ear ossicles. Indian J Otolaryngol Head Neck Surg 25:154–160 Harneja NK, Chaturvedi RP (1973) A study of the human ear ossicles. Indian J Otolaryngol Head Neck Surg 25:154–160
Zurück zum Zitat Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurotol 8:140–152CrossRef Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurotol 8:140–152CrossRef
Zurück zum Zitat Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568PubMed Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568PubMed
Zurück zum Zitat Holte L, Margolis RH, Cavanaugh RM Jr (1991) Developmental changes in multifrequency tympanograms. Audiol Off Organ Int Soc Audiol 30:1–24CrossRef Holte L, Margolis RH, Cavanaugh RM Jr (1991) Developmental changes in multifrequency tympanograms. Audiol Off Organ Int Soc Audiol 30:1–24CrossRef
Zurück zum Zitat Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:14501CrossRef Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:14501CrossRef
Zurück zum Zitat Hunter LL, Feeney MP, Lapsley Miller JA, Jeng PS, Bohning S (2010) Wideband reflectance in newborns: normative regions and relationship to hearing-screening results. Ear Hear 31:599–610PubMedPubMedCentral Hunter LL, Feeney MP, Lapsley Miller JA, Jeng PS, Bohning S (2010) Wideband reflectance in newborns: normative regions and relationship to hearing-screening results. Ear Hear 31:599–610PubMedPubMedCentral
Zurück zum Zitat Ikui A, Sudo M, Sando I, Fujita S (1997) Postnatal change in angle between the tympanic annulus and surrounding structures computer-aided three-dimensional reconstruction study. Ann Otol Rhinol Laryngol 106:33–36CrossRefPubMed Ikui A, Sudo M, Sando I, Fujita S (1997) Postnatal change in angle between the tympanic annulus and surrounding structures computer-aided three-dimensional reconstruction study. Ann Otol Rhinol Laryngol 106:33–36CrossRefPubMed
Zurück zum Zitat Joint Committee on Infant Hearing 1994 Position Statement (n.d.) Joint committee on infant hearing 1994 position statement. Otolaryngol Head Neck Surg 113:191–196 Joint Committee on Infant Hearing 1994 Position Statement (n.d.) Joint committee on infant hearing 1994 position statement. Otolaryngol Head Neck Surg 113:191–196
Zurück zum Zitat Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638CrossRefPubMed Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638CrossRefPubMed
Zurück zum Zitat Keefe DH, Levi E (1996) Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear 17:361–373CrossRefPubMed Keefe DH, Levi E (1996) Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear 17:361–373CrossRefPubMed
Zurück zum Zitat Keefe DH, Simmons JL (2003) Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 114:3217–3238 Keefe DH, Simmons JL (2003) Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 114:3217–3238
Zurück zum Zitat Kemper AR, Downs SM (2000) A cost-effectiveness analysis of newborn hearing screening strategies. Arch Pediatr Adolesc Med 154:484–488CrossRefPubMed Kemper AR, Downs SM (2000) A cost-effectiveness analysis of newborn hearing screening strategies. Arch Pediatr Adolesc Med 154:484–488CrossRefPubMed
Zurück zum Zitat Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920CrossRefPubMed Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920CrossRefPubMed
Zurück zum Zitat Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo
Zurück zum Zitat Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317CrossRefPubMed Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317CrossRefPubMed
Zurück zum Zitat Kroemer KH, Kroemer HJ (1997) Engineering physiology: bases of human factors/ergonomics (Wiley) Kroemer KH, Kroemer HJ (1997) Engineering physiology: bases of human factors/ergonomics (Wiley)
Zurück zum Zitat Kwacz M, Rymuza Z, Michałowski M, Wysocki J (2015) Elastic properties of the annular ligament of the human stapes—AFM measurement. J Assoc Res Otolaryngol 16:433–446 Kwacz M, Rymuza Z, Michałowski M, Wysocki J (2015) Elastic properties of the annular ligament of the human stapes—AFM measurement. J Assoc Res Otolaryngol 16:433–446
Zurück zum Zitat Ladak HM, Funnell WRJ (1996) Finite-element modeling of the normal and surgically repaired cat middle ear. J Acoust Soc Am 100:933–944CrossRefPubMed Ladak HM, Funnell WRJ (1996) Finite-element modeling of the normal and surgically repaired cat middle ear. J Acoust Soc Am 100:933–944CrossRefPubMed
Zurück zum Zitat Lauxmann M, Eiber A, Haag F, Ihrle S (2014) Nonlinear stiffness characteristics of the annular ligament. J Acoust Soc Am 136:1756–1767CrossRefPubMed Lauxmann M, Eiber A, Haag F, Ihrle S (2014) Nonlinear stiffness characteristics of the annular ligament. J Acoust Soc Am 136:1756–1767CrossRefPubMed
Zurück zum Zitat Lesser THJ, Williams KR (1988) The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol 102:209–214CrossRefPubMed Lesser THJ, Williams KR (1988) The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol 102:209–214CrossRefPubMed
Zurück zum Zitat Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol (Stockh) 70:176–186CrossRef Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol (Stockh) 70:176–186CrossRef
Zurück zum Zitat Luo H, Dai C, Gan RZ, Lu H (2009a) Measurement of Young’s modulus of human tympanic membrane at high strain rates. J Biomech Eng 131:64501CrossRef Luo H, Dai C, Gan RZ, Lu H (2009a) Measurement of Young’s modulus of human tympanic membrane at high strain rates. J Biomech Eng 131:64501CrossRef
Zurück zum Zitat Luo H, Lu H, Dai C, Gan RZ (2009b) A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int J Exp Comput Biomech 1:1–22CrossRef Luo H, Lu H, Dai C, Gan RZ (2009b) A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int J Exp Comput Biomech 1:1–22CrossRef
Zurück zum Zitat Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567CrossRefPubMedPubMedCentral Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567CrossRefPubMedPubMedCentral
Zurück zum Zitat Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the US school-age population. Am J Med Genet 46:486–491CrossRefPubMed Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the US school-age population. Am J Med Genet 46:486–491CrossRefPubMed
Zurück zum Zitat Margolis RH, Bass-Ringdahl S, Hanks WD, Holte L, Zapala DA (2003) Tympanometry in newborn infants--1 kHz norms. J Am Acad Audiol 14:383–392 Margolis RH, Bass-Ringdahl S, Hanks WD, Holte L, Zapala DA (2003) Tympanometry in newborn infants--1 kHz norms. J Am Acad Audiol 14:383–392
Zurück zum Zitat McLellan MS, Webb CH (1950) Ear studies in the newborn infant. J Pediatr 51:672–677CrossRef McLellan MS, Webb CH (1950) Ear studies in the newborn infant. J Pediatr 51:672–677CrossRef
Zurück zum Zitat Merchant GR, Horton NJ, Voss SE (2010) Normative reflectance and transmittance measurements on healthy newborn and 1-month-old infants. Ear Hear 31:746–754CrossRefPubMed Merchant GR, Horton NJ, Voss SE (2010) Normative reflectance and transmittance measurements on healthy newborn and 1-month-old infants. Ear Hear 31:746–754CrossRefPubMed
Zurück zum Zitat Merchant SN, Ravicz ME, Rosowski JJ (1996) Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear Res 97:30–45CrossRefPubMed Merchant SN, Ravicz ME, Rosowski JJ (1996) Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear Res 97:30–45CrossRefPubMed
Zurück zum Zitat Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174CrossRef Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174CrossRef
Zurück zum Zitat Motallebzadeh H, Charlebois M, Funnell WRJ (2013a) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434CrossRefPubMed Motallebzadeh H, Charlebois M, Funnell WRJ (2013a) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434CrossRefPubMed
Zurück zum Zitat Motallebzadeh H, Gariepy B, Maftoon N, Funnell WRJ, Daniel SJ (2013b) Finite-element modelling of the newborn ear canal and middle ear. Proc Meet Acoust (Acoust Soc Am) 19:30101CrossRef Motallebzadeh H, Gariepy B, Maftoon N, Funnell WRJ, Daniel SJ (2013b) Finite-element modelling of the newborn ear canal and middle ear. Proc Meet Acoust (Acoust Soc Am) 19:30101CrossRef
Zurück zum Zitat Motallebzadeh H, Tafazzoli-Shadpour M, Khani MM (2015) Dynamic stress distribution in a model of implanted mandible: numerical analysis of viscoelastic bone. J Mech Med Biol 15:1550050CrossRef Motallebzadeh H, Tafazzoli-Shadpour M, Khani MM (2015) Dynamic stress distribution in a model of implanted mandible: numerical analysis of viscoelastic bone. J Mech Med Biol 15:1550050CrossRef
Zurück zum Zitat Nelson HDHD, Bougatsos CC, Nygren PP (2008) Universal newborn hearing screening: systematic review to update the 2001 U.S. Preventive Services Task Force recommendation U.S. Preventive Services Task Force evidence syntheses, formerly systematic evidence reviews (Agency for Healthcare Research and Quality (US), Rockville (MD)) Nelson HDHD, Bougatsos CC, Nygren PP (2008) Universal newborn hearing screening: systematic review to update the 2001 U.S. Preventive Services Task Force recommendation U.S. Preventive Services Task Force evidence syntheses, formerly systematic evidence reviews (Agency for Healthcare Research and Quality (US), Rockville (MD))
Zurück zum Zitat Paradise JL (1982) Editorial retrospective: tympanometry. N Engl J Med 307:1074–1076 Paradise JL (1982) Editorial retrospective: tympanometry. N Engl J Med 307:1074–1076
Zurück zum Zitat Pitaro J, Al Masaoudi L, Motallebzadeh H, Funnell WRJ, Daniel SJ (2016) Wideband reflectance measurements in newborns: Relationship to otoscopic findings. Int J Pediatr Otorhinolaryngol 86:156–160 Pitaro J, Al Masaoudi L, Motallebzadeh H, Funnell WRJ, Daniel SJ (2016) Wideband reflectance measurements in newborns: Relationship to otoscopic findings. Int J Pediatr Otorhinolaryngol 86:156–160
Zurück zum Zitat Qi L, Funnell WRJ, Daniel SJ (2008) A nonlinear finite-element model of the newborn middle ear. J Acoust Soc Am 124:337CrossRefPubMed Qi L, Funnell WRJ, Daniel SJ (2008) A nonlinear finite-element model of the newborn middle ear. J Acoust Soc Am 124:337CrossRefPubMed
Zurück zum Zitat Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080CrossRefPubMed Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080CrossRefPubMed
Zurück zum Zitat Ravicz ME, Cheng JT, Rosowski JJ (2014) Sound pressure distribution within natural and artificial human ear canals: Forward stimulation. J Acoust Soc Am 136:3132–3146 Ravicz ME, Cheng JT, Rosowski JJ (2014) Sound pressure distribution within natural and artificial human ear canals: Forward stimulation. J Acoust Soc Am 136:3132–3146
Zurück zum Zitat Rollhäuser H (1950) Die zugfestigkeit der menschlichen haut. Gegenbaurs Morph Jb 90:249–261 Rollhäuser H (1950) Die zugfestigkeit der menschlichen haut. Gegenbaurs Morph Jb 90:249–261
Zurück zum Zitat Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes M, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 04-25 kHz. Hear Res 253:83–96 Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes M, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 04-25 kHz. Hear Res 253:83–96
Zurück zum Zitat Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634CrossRefPubMed Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634CrossRefPubMed
Zurück zum Zitat Rubinstein M, Feldman B, Fischler H, Frei EH, Spira D (1966) Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J Acoust Soc Am 40:1420–1426CrossRefPubMed Rubinstein M, Feldman B, Fischler H, Frei EH, Spira D (1966) Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J Acoust Soc Am 40:1420–1426CrossRefPubMed
Zurück zum Zitat Sanford CA, Feeney MP (2008) Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 124:2106–2122CrossRefPubMedPubMedCentral Sanford CA, Feeney MP (2008) Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 124:2106–2122CrossRefPubMedPubMedCentral
Zurück zum Zitat Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. Dev Audit Vestib Syst. 4–10 Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. Dev Audit Vestib Syst. 4–10
Zurück zum Zitat Shahnaz N, Miranda T, Polka L (2008) Multifrequency tympanometry in neonatal intensive care unit and well babies. J Am Acad Audiol 19:392–418CrossRefPubMed Shahnaz N, Miranda T, Polka L (2008) Multifrequency tympanometry in neonatal intensive care unit and well babies. J Am Acad Audiol 19:392–418CrossRefPubMed
Zurück zum Zitat Shanks JE, Lilly DJ (1981) An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 24:557–566CrossRefPubMed Shanks JE, Lilly DJ (1981) An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 24:557–566CrossRefPubMed
Zurück zum Zitat Soons JA, Aernouts J, Dirckx JJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263:33–37CrossRefPubMed Soons JA, Aernouts J, Dirckx JJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263:33–37CrossRefPubMed
Zurück zum Zitat Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier 40th ed Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier 40th ed
Zurück zum Zitat Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871CrossRefPubMed Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871CrossRefPubMed
Zurück zum Zitat Stinson MR, Daigle GA (2005) Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. J Acoust Soc Am 118:2405–2411CrossRefPubMed Stinson MR, Daigle GA (2005) Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. J Acoust Soc Am 118:2405–2411CrossRefPubMed
Zurück zum Zitat Stinson MR, Lawton BW (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503CrossRefPubMed Stinson MR, Lawton BW (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503CrossRefPubMed
Zurück zum Zitat Stinson MR, Shaw EAG, Lawton BW (1982) Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 72:766–773CrossRefPubMed Stinson MR, Shaw EAG, Lawton BW (1982) Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 72:766–773CrossRefPubMed
Zurück zum Zitat Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233 Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233
Zurück zum Zitat Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236CrossRefPubMed Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236CrossRefPubMed
Zurück zum Zitat Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384CrossRefPubMed Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384CrossRefPubMed
Zurück zum Zitat Voss SE, Horton NJ, Woodbury RR, Sheffield KN (2008) Sources of variability in reflectance measurements on normal cadaver ears. Ear Hear 29:651–665CrossRefPubMed Voss SE, Horton NJ, Woodbury RR, Sheffield KN (2008) Sources of variability in reflectance measurements on normal cadaver ears. Ear Hear 29:651–665CrossRefPubMed
Zurück zum Zitat Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168CrossRefPubMed Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168CrossRefPubMed
Zurück zum Zitat Waller TS, Amberg A (2002) Dynamic measurement of the circular stapes ligamentum using electrostatic forces. Ph.D. thesis, Faculty of medicine of the Bavarian Julius-Maximilian’s-University of Wurzburg, Germany pp 28–29 Waller TS, Amberg A (2002) Dynamic measurement of the circular stapes ligamentum using electrostatic forces. Ph.D. thesis, Faculty of medicine of the Bavarian Julius-Maximilian’s-University of Wurzburg, Germany pp 28–29
Zurück zum Zitat Wever EG, Lawrence M (1954) Physiological acoustics. Prinston University Press, PrinstonCrossRef Wever EG, Lawrence M (1954) Physiological acoustics. Prinston University Press, PrinstonCrossRef
Zurück zum Zitat Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44CrossRefPubMed Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44CrossRefPubMed
Zurück zum Zitat Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res Off Publ Orthop Res Soc 19:1113–1121CrossRef Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res Off Publ Orthop Res Soc 19:1113–1121CrossRef
Zurück zum Zitat Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore
Zurück zum Zitat Zhang X, Gan RZ (2013) Dynamic properties of human tympanic membrane based on frequency-temperature superposition. Ann Biomed Eng 41:205–214CrossRefPubMed Zhang X, Gan RZ (2013) Dynamic properties of human tympanic membrane based on frequency-temperature superposition. Ann Biomed Eng 41:205–214CrossRefPubMed
Metadaten
Titel
Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear
verfasst von
Hamid Motallebzadeh
Nima Maftoon
Jacob Pitaro
W. Robert J. Funnell
Sam J. Daniel
Publikationsdatum
07.10.2016
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2017
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-016-0587-3

Weitere Artikel der Ausgabe 1/2017

Journal of the Association for Research in Otolaryngology 1/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.