Skip to main content
Erschienen in: Experimental Brain Research 1/2012

01.11.2012 | Research Article

Gaze anticipation during human locomotion

verfasst von: Delphine Bernardin, Hideki Kadone, Daniel Bennequin, Thomas Sugar, Mohamed Zaoui, Alain Berthoz

Erschienen in: Experimental Brain Research | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

During locomotion, a top-down organization has been previously demonstrated with the head as a stabilized platform and gaze anticipating the horizontal direction of the trajectory. However, the quantitative assessment of the anticipatory sequence from gaze to trajectory and body segments has not been documented. The present paper provides a detailed investigation into the spatial and temporal anticipatory relationships among the direction of gaze and body segments during locomotion. Participants had to walk along several mentally simulated complex trajectories, without any visual cues indicating the trajectory to follow. The trajectory shapes were presented to the participants on a sheet of paper. Our study includes an analysis of the relationships between horizontal gaze anticipatory behavior direction and the upcoming changes in the trajectory. Our findings confirm the following: 1) The hierarchical ordered organization of gaze and body segment orientations during complex trajectories and free locomotion. Gaze direction anticipates the head orientation, and head orientation anticipates reorientation of the other body segments. 2) The influence of the curvature of the trajectory and constraints of the tasks on the temporal and spatial relationships between gaze and the body segments: Increased curvature resulted in increased time and spatial anticipation. 3) A different sequence of gaze movements at inflection points where gaze plans a much later segment of the trajectory.
Literatur
Zurück zum Zitat Anastasopoulos D, Ziavra N, Hollands M, Bronstein A (2009) Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Exp Brain Res 193:323–336PubMedCrossRef Anastasopoulos D, Ziavra N, Hollands M, Bronstein A (2009) Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Exp Brain Res 193:323–336PubMedCrossRef
Zurück zum Zitat Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426PubMedCrossRef Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426PubMedCrossRef
Zurück zum Zitat Billington J, Field DT, Wilkie RM, Wann JP (2010) An fMRI study of parietal cortex involvement in the visual guidance of locomotion. J Exp Psychol Hum Percept Perform 36:1495–1507PubMedCrossRef Billington J, Field DT, Wilkie RM, Wann JP (2010) An fMRI study of parietal cortex involvement in the visual guidance of locomotion. J Exp Psychol Hum Percept Perform 36:1495–1507PubMedCrossRef
Zurück zum Zitat Cinelli ME, Patla AE, Allard F (2009) Behaviour and gaze analyses during a goal-directed locomotor task. Q J Exp Psychol 62(3):483–499 Cinelli ME, Patla AE, Allard F (2009) Behaviour and gaze analyses during a goal-directed locomotor task. Q J Exp Psychol 62(3):483–499
Zurück zum Zitat Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190PubMedCrossRef Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190PubMedCrossRef
Zurück zum Zitat Crowell JA, Banks MS, Shenoy KV, Andersen RA (1998) Visual self-motion perception during head turns. Nat Neurosci 1:732–737PubMedCrossRef Crowell JA, Banks MS, Shenoy KV, Andersen RA (1998) Visual self-motion perception during head turns. Nat Neurosci 1:732–737PubMedCrossRef
Zurück zum Zitat Field DT, Wilkie RM, Wann JP (2007) Neural systems in the visual control of steering. J Neurosci 27:8002–8010PubMedCrossRef Field DT, Wilkie RM, Wann JP (2007) Neural systems in the visual control of steering. J Neurosci 27:8002–8010PubMedCrossRef
Zurück zum Zitat Glasauer S, Amorim MA, Bloomberg JJ, Reschke MF, Peters BT, Smith SL, Berthoz A (1995) Spatial orientation during locomotion [correction of locomation] following space flight. Acta Astronaut 36:423–431PubMedCrossRef Glasauer S, Amorim MA, Bloomberg JJ, Reschke MF, Peters BT, Smith SL, Berthoz A (1995) Spatial orientation during locomotion [correction of locomation] following space flight. Acta Astronaut 36:423–431PubMedCrossRef
Zurück zum Zitat Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497PubMedCrossRef Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145:489–497PubMedCrossRef
Zurück zum Zitat Gordon CR, Fletcher WA, Melvill JG, Block EW (1995) Adaptive plasticity in the control of locomotor trajectory. Exp Brain Res 102:540–545PubMedCrossRef Gordon CR, Fletcher WA, Melvill JG, Block EW (1995) Adaptive plasticity in the control of locomotor trajectory. Exp Brain Res 102:540–545PubMedCrossRef
Zurück zum Zitat Grasso R, Glasauer S, Takei Y, Berthoz A (1996) The predictive brain: anticipatory control of head direction for the steering of locomotion. NeuroReport 7:1170–1174PubMedCrossRef Grasso R, Glasauer S, Takei Y, Berthoz A (1996) The predictive brain: anticipatory control of head direction for the steering of locomotion. NeuroReport 7:1170–1174PubMedCrossRef
Zurück zum Zitat Grasso R, Prevost P, Ivanenko YP, Berthoz A (1998a) Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci Lett 253:115–118PubMedCrossRef Grasso R, Prevost P, Ivanenko YP, Berthoz A (1998a) Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci Lett 253:115–118PubMedCrossRef
Zurück zum Zitat Grasso R, Assaiante C, Prevost P, Berthoz A (1998b) Development of anticipatory orienting strategies during locomotor tasks in children. Neurosci Biobehav Rev 22:533–539PubMedCrossRef Grasso R, Assaiante C, Prevost P, Berthoz A (1998b) Development of anticipatory orienting strategies during locomotor tasks in children. Neurosci Biobehav Rev 22:533–539PubMedCrossRef
Zurück zum Zitat Hicheur H, Vieilledent S, Berthoz A (2005) Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci Lett 383:87–92PubMedCrossRef Hicheur H, Vieilledent S, Berthoz A (2005) Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci Lett 383:87–92PubMedCrossRef
Zurück zum Zitat Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233PubMedCrossRef Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233PubMedCrossRef
Zurück zum Zitat Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230PubMedCrossRef Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230PubMedCrossRef
Zurück zum Zitat Hollands MA, Ziavra NV, Bronstein AM (2004) A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. Exp Brain Res 154:261–266PubMedCrossRef Hollands MA, Ziavra NV, Bronstein AM (2004) A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. Exp Brain Res 154:261–266PubMedCrossRef
Zurück zum Zitat Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18PubMedCrossRef Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of the body, head, and eyes during walking and turning. Exp Brain Res 136:1–18PubMedCrossRef
Zurück zum Zitat Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731PubMedCrossRef Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22:1722–1731PubMedCrossRef
Zurück zum Zitat Johansson RS, Westling G, Backstrom A, Flanagan JR (2001) Eye-hand coordination in object manipulation. J Neurosci 21:6917–6932PubMed Johansson RS, Westling G, Backstrom A, Flanagan JR (2001) Eye-hand coordination in object manipulation. J Neurosci 21:6917–6932PubMed
Zurück zum Zitat Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–9122PubMedCrossRef Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–9122PubMedCrossRef
Zurück zum Zitat Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions–a conceptual model. Brain Res Brain Res Rev 28:118–135PubMedCrossRef Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions–a conceptual model. Brain Res Brain Res Rev 28:118–135PubMedCrossRef
Zurück zum Zitat Mergner T, Hlavacka F, Schweigart G (1993) Interaction of vestibular and proprioceptive inputs. J Vestib Res 3:41–57PubMed Mergner T, Hlavacka F, Schweigart G (1993) Interaction of vestibular and proprioceptive inputs. J Vestib Res 3:41–57PubMed
Zurück zum Zitat Osaki Y, Kunin M, Cohen B, Raphan T (2008) Relative contribution of walking velocity and stepping frequency to the neural control of locomotion. Exp Brain Res 185:121–135PubMedCrossRef Osaki Y, Kunin M, Cohen B, Raphan T (2008) Relative contribution of walking velocity and stepping frequency to the neural control of locomotion. Exp Brain Res 185:121–135PubMedCrossRef
Zurück zum Zitat Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? NeuroReport 8:3661–3665PubMedCrossRef Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? NeuroReport 8:3661–3665PubMedCrossRef
Zurück zum Zitat Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634PubMedCrossRef Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634PubMedCrossRef
Zurück zum Zitat Pham QC, Berthoz A, Hicheur H (2011) Invariance of locomotor trajectories across visual and gait direction conditions. Exp Brain Res 210:207–215PubMedCrossRef Pham QC, Berthoz A, Hicheur H (2011) Invariance of locomotor trajectories across visual and gait direction conditions. Exp Brain Res 210:207–215PubMedCrossRef
Zurück zum Zitat Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106PubMedCrossRef Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106PubMedCrossRef
Zurück zum Zitat Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217PubMedCrossRef Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217PubMedCrossRef
Zurück zum Zitat Reed-Jones RJ, Hollands MA, Reed-Jones JG, Vallis LA (2009) Visually evoked whole-body turning responses during stepping in place in a virtual environment. Gait Posture 30:317–321PubMedCrossRef Reed-Jones RJ, Hollands MA, Reed-Jones JG, Vallis LA (2009) Visually evoked whole-body turning responses during stepping in place in a virtual environment. Gait Posture 30:317–321PubMedCrossRef
Zurück zum Zitat Reina GA, Schwartz AB (2003) Eye-hand coupling during closed-loop drawing: evidence of shared motor planning? Hum Mov Sci 22:137–152PubMedCrossRef Reina GA, Schwartz AB (2003) Eye-hand coupling during closed-loop drawing: evidence of shared motor planning? Hum Mov Sci 22:137–152PubMedCrossRef
Zurück zum Zitat Royden CS, Banks MS, Crowell JA (1992) The perception of heading during eye movements. Nature 360:583–585PubMedCrossRef Royden CS, Banks MS, Crowell JA (1992) The perception of heading during eye movements. Nature 360:583–585PubMedCrossRef
Zurück zum Zitat Royden CS, Crowell JA, Banks MS (1994) Estimating heading during eye movements. Vision Res 34:3197–3214PubMedCrossRef Royden CS, Crowell JA, Banks MS (1994) Estimating heading during eye movements. Vision Res 34:3197–3214PubMedCrossRef
Zurück zum Zitat Snyder LH (2000) Coordinate transformations for eye and arm movements in the brain. Curr Opin Neurobiol 10:747–754PubMedCrossRef Snyder LH (2000) Coordinate transformations for eye and arm movements in the brain. Curr Opin Neurobiol 10:747–754PubMedCrossRef
Zurück zum Zitat Takei Y, Grasso R, Berthoz A (1996) Quantitative analysis of human walking trajectory on a circular path in darkness. Brain Res Bull 40:491–495PubMedCrossRef Takei Y, Grasso R, Berthoz A (1996) Quantitative analysis of human walking trajectory on a circular path in darkness. Brain Res Bull 40:491–495PubMedCrossRef
Zurück zum Zitat Takei Y, Grasso R, Amorim MA, Berthoz A (1997) Circular trajectory formation during blind locomotion: a test for path integration and motor memory. Exp Brain Res 115:361–368PubMedCrossRef Takei Y, Grasso R, Amorim MA, Berthoz A (1997) Circular trajectory formation during blind locomotion: a test for path integration and motor memory. Exp Brain Res 115:361–368PubMedCrossRef
Zurück zum Zitat Taylor MJ, Dabnichki P, Strike SC (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24:558–573PubMedCrossRef Taylor MJ, Dabnichki P, Strike SC (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24:558–573PubMedCrossRef
Zurück zum Zitat Turano KA, Geruschat DR, Baker FH (2002) Fixation behavior while walking: persons with central visual field loss. Vision Res 42:2635–2644PubMedCrossRef Turano KA, Geruschat DR, Baker FH (2002) Fixation behavior while walking: persons with central visual field loss. Vision Res 42:2635–2644PubMedCrossRef
Zurück zum Zitat Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437PubMedCrossRef Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437PubMedCrossRef
Zurück zum Zitat Wagner J, Stephan T, Kalla R, Brückmann H, Strupp M, Brandt T, Jahn K (2008) Mind the bend—Cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191:247–255PubMedCrossRef Wagner J, Stephan T, Kalla R, Brückmann H, Strupp M, Brandt T, Jahn K (2008) Mind the bend—Cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191:247–255PubMedCrossRef
Zurück zum Zitat Weber KD, Fletcher WA, Gordon CR, Melvill JG, Block EW (1998) Motor learning in the “podokinetic” system and its role in spatial orientation during locomotion. Exp Brain Res 120:377–385PubMedCrossRef Weber KD, Fletcher WA, Gordon CR, Melvill JG, Block EW (1998) Motor learning in the “podokinetic” system and its role in spatial orientation during locomotion. Exp Brain Res 120:377–385PubMedCrossRef
Zurück zum Zitat Wilkie RM, Wann JP (2005) The role of visual and nonvisual information in the control of locomotion. J Exp Psychol Hum Percept Perform 31:901–911PubMedCrossRef Wilkie RM, Wann JP (2005) The role of visual and nonvisual information in the control of locomotion. J Exp Psychol Hum Percept Perform 31:901–911PubMedCrossRef
Zurück zum Zitat Wilkie RM, Wann JP, Allison RS (2008) Active gaze, visual look-ahead, and locomotor control. J Exp Psychol Hum Percept Perform 34:1150–1164PubMedCrossRef Wilkie RM, Wann JP, Allison RS (2008) Active gaze, visual look-ahead, and locomotor control. J Exp Psychol Hum Percept Perform 34:1150–1164PubMedCrossRef
Zurück zum Zitat Zhang T, Britten KH (2011) Parietal area VIP causally influences heading perception during pursuit eye movements. J Neurosci 31:2569–2575PubMedCrossRef Zhang T, Britten KH (2011) Parietal area VIP causally influences heading perception during pursuit eye movements. J Neurosci 31:2569–2575PubMedCrossRef
Metadaten
Titel
Gaze anticipation during human locomotion
verfasst von
Delphine Bernardin
Hideki Kadone
Daniel Bennequin
Thomas Sugar
Mohamed Zaoui
Alain Berthoz
Publikationsdatum
01.11.2012
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 1/2012
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-012-3241-2

Weitere Artikel der Ausgabe 1/2012

Experimental Brain Research 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.