Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 1/2021

08.10.2020

Genetic causes of growth hormone insensitivity beyond GHR

verfasst von: Vivian Hwa, Masanobu Fujimoto, Gaohui Zhu, Wen Gao, Corinne Foley, Meenasri Kumbaji, Ron G. Rosenfeld

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Literatur
1.
Zurück zum Zitat Rosenfeld RG. Biochemical diagnostic strategies in the evaluation of short stature: the diagnosis of insulin-like growth factor deficiency. Horm Res. 1996;46(4–5):170–3.PubMedCrossRef Rosenfeld RG. Biochemical diagnostic strategies in the evaluation of short stature: the diagnosis of insulin-like growth factor deficiency. Horm Res. 1996;46(4–5):170–3.PubMedCrossRef
2.
Zurück zum Zitat Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone--a new inborn error of metabolism? Isr J Med Sci. 1966;2(2):152–5.PubMed Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentation of growth hormone--a new inborn error of metabolism? Isr J Med Sci. 1966;2(2):152–5.PubMed
3.
Zurück zum Zitat Goncalves FT, Fridman C, Pinto EM, Guevara-Aguirre J, Shevah O, Rosembloom AL, et al. The E180splice mutation in the GHR gene causing Laron syndrome: witness of a Sephardic Jewish exodus from the Iberian Peninsula to the New World? Am J Med Genet A. 2014;164A(5):1204–8.PubMedCrossRef Goncalves FT, Fridman C, Pinto EM, Guevara-Aguirre J, Shevah O, Rosembloom AL, et al. The E180splice mutation in the GHR gene causing Laron syndrome: witness of a Sephardic Jewish exodus from the Iberian Peninsula to the New World? Am J Med Genet A. 2014;164A(5):1204–8.PubMedCrossRef
4.
Zurück zum Zitat Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, et al. Nonclassical GH insensitivity: characterization of mild abnormalities of GH action. Endocr Rev. 2019;40(2):476–505.PubMedCrossRef Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, et al. Nonclassical GH insensitivity: characterization of mild abnormalities of GH action. Endocr Rev. 2019;40(2):476–505.PubMedCrossRef
5.
Zurück zum Zitat Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev. 1994;15(3):369–90.PubMedCrossRef Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev. 1994;15(3):369–90.PubMedCrossRef
6.
Zurück zum Zitat Laron Z. Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome). J Pediatr Endocrinol Metab. 1999;12(Suppl 1):231–49.PubMed Laron Z. Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome). J Pediatr Endocrinol Metab. 1999;12(Suppl 1):231–49.PubMed
7.
Zurück zum Zitat David A, Hwa V, Metherell LA, Netchine I, Camacho-Hubner C, Clark AJ, et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev. 2011;32(4):472–97.PubMedCrossRef David A, Hwa V, Metherell LA, Netchine I, Camacho-Hubner C, Clark AJ, et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev. 2011;32(4):472–97.PubMedCrossRef
8.
Zurück zum Zitat Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344(6185):1249783.PubMedCrossRef Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344(6185):1249783.PubMedCrossRef
9.
Zurück zum Zitat Derr MA, Fang P, Sinha SK, Ten S, Hwa V, Rosenfeld RG. A novel Y332C missense mutation in the intracellular domain of the human growth hormone receptor (GHR) does not alter STAT5b signaling: redundancy of GHR intracellular tyrosines involved in STAT5b signaling. Horm Res. 2011;75(3):187–99. Derr MA, Fang P, Sinha SK, Ten S, Hwa V, Rosenfeld RG. A novel Y332C missense mutation in the intracellular domain of the human growth hormone receptor (GHR) does not alter STAT5b signaling: redundancy of GHR intracellular tyrosines involved in STAT5b signaling. Horm Res. 2011;75(3):187–99.
10.
Zurück zum Zitat Storr HL, Dunkel L, Kowalczyk J, Savage MO, Metherell LA. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation. Eur J Endocrinol. 2015;172(2):151–61.PubMedCrossRef Storr HL, Dunkel L, Kowalczyk J, Savage MO, Metherell LA. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation. Eur J Endocrinol. 2015;172(2):151–61.PubMedCrossRef
11.
Zurück zum Zitat Levy DE, Darnell JE Jr. STATs: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.PubMedCrossRef Levy DE, Darnell JE Jr. STATs: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.PubMedCrossRef
14.
Zurück zum Zitat Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A. 2013;110(8):3053–8.PubMedPubMedCentralCrossRef Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A. 2013;110(8):3053–8.PubMedPubMedCentralCrossRef
15.
16.
Zurück zum Zitat Schimke LF, Hibbard J, Martinez-Barricarte R, Khan TA, de Souza CR. Borges de Oliveira junior E, et al. Paracoccidioidomycosis associated with a heterozygous STAT4 mutation and impaired IFN-gamma immunity. J Infect Dis. 2017;216(12):1623–34.PubMedCrossRef Schimke LF, Hibbard J, Martinez-Barricarte R, Khan TA, de Souza CR. Borges de Oliveira junior E, et al. Paracoccidioidomycosis associated with a heterozygous STAT4 mutation and impaired IFN-gamma immunity. J Infect Dis. 2017;216(12):1623–34.PubMedCrossRef
17.
Zurück zum Zitat Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth-hormone insensitivity (GHI) associated with a STAT-5b mutation. N Engl J Med. 2003;349:1139–47.PubMedCrossRef Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth-hormone insensitivity (GHI) associated with a STAT-5b mutation. N Engl J Med. 2003;349:1139–47.PubMedCrossRef
18.
Zurück zum Zitat Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, et al. Severe growth hormone insensivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90:4260–6.PubMedCrossRef Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, et al. Severe growth hormone insensivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90:4260–6.PubMedCrossRef
19.
Zurück zum Zitat Bernasconi A, Marino R, Ribas A, Rossi J, Ciaccio M, Oleastro M, et al. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. PEDIATRICS. 2006;118:e1584–e92.PubMedCrossRef Bernasconi A, Marino R, Ribas A, Rossi J, Ciaccio M, Oleastro M, et al. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. PEDIATRICS. 2006;118:e1584–e92.PubMedCrossRef
20.
Zurück zum Zitat Vidarsdottir S, Walenkamp MJE, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, et al. Clinical and biochemical characteristics of a male patient with a novel homozygous STAT5b mutation. J Clin Endocrinol Metab. 2006;91:3482–5.PubMedCrossRef Vidarsdottir S, Walenkamp MJE, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, et al. Clinical and biochemical characteristics of a male patient with a novel homozygous STAT5b mutation. J Clin Endocrinol Metab. 2006;91:3482–5.PubMedCrossRef
21.
Zurück zum Zitat Hwa V, Camacho-Hubner C, Little BM, David A, Metherell LA, El-Khatib N, et al. Growth hormone insensitivity and severe short stature in siblings: a novel mutation at the exon13-intron 13 junction of the STAT5b gene. Horm Res. 2007;68(5):218–24.PubMed Hwa V, Camacho-Hubner C, Little BM, David A, Metherell LA, El-Khatib N, et al. Growth hormone insensitivity and severe short stature in siblings: a novel mutation at the exon13-intron 13 junction of the STAT5b gene. Horm Res. 2007;68(5):218–24.PubMed
22.
Zurück zum Zitat Pugliese-Pires PN, Tonelli CA, Dora JM, Silva PCA, Czepielewski M, Simoni G, et al. A novel STAT5B mutation causing GH insenstivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur J Endocrinol. 2010;163:349–55.PubMedCrossRef Pugliese-Pires PN, Tonelli CA, Dora JM, Silva PCA, Czepielewski M, Simoni G, et al. A novel STAT5B mutation causing GH insenstivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur J Endocrinol. 2010;163:349–55.PubMedCrossRef
23.
Zurück zum Zitat Scaglia PA, Martinez AS, Feigerlová E, Bezrodnik L, Gaillard MI, Di Giovanni D, et al. A novel missense mutation in the SH2 domain of the STAT5B gene results in a transcriptionally inactive STAT5b associated with severe IGF-I deficiency, immune dysfunction, and lack of pulmonary disease. J Clin Endocrinol Metab. 2012;97:E830–E9.PubMedCrossRef Scaglia PA, Martinez AS, Feigerlová E, Bezrodnik L, Gaillard MI, Di Giovanni D, et al. A novel missense mutation in the SH2 domain of the STAT5B gene results in a transcriptionally inactive STAT5b associated with severe IGF-I deficiency, immune dysfunction, and lack of pulmonary disease. J Clin Endocrinol Metab. 2012;97:E830–E9.PubMedCrossRef
24.
Zurück zum Zitat Acres MJ, Gothe F, Grainger A, Skelton AJ, Swan DJ, Willet JDP, et al. Signal transducer and activator of transcription 5B deficiency due to a novel missense mutation in the coiled-coil domain. J Allergy Clin Immunol. 2019;143(1):413–6 e4.PubMedPubMedCentralCrossRef Acres MJ, Gothe F, Grainger A, Skelton AJ, Swan DJ, Willet JDP, et al. Signal transducer and activator of transcription 5B deficiency due to a novel missense mutation in the coiled-coil domain. J Allergy Clin Immunol. 2019;143(1):413–6 e4.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Chia DJ, Subbian E, Buck TM, Hwa V, Rosenfeld RG, Skach WR, et al. Aberrant folding of a mutant STAT5b causes growth hormone insensitivity and proteasomal dysfunction. J Biol Chem. 2006;281:6552–8.PubMedCrossRef Chia DJ, Subbian E, Buck TM, Hwa V, Rosenfeld RG, Skach WR, et al. Aberrant folding of a mutant STAT5b causes growth hormone insensitivity and proteasomal dysfunction. J Biol Chem. 2006;281:6552–8.PubMedCrossRef
26.
Zurück zum Zitat Varco-Merth B, Feigerlova E, Shinde U, Rosenfeld RG, Hwa V, Rotwein P. Severe growth deficiency is associated with STAT5b mutations that disrupt protein folding and activity. Mol Endocrinol. 2013;27(1):150–61.PubMedCrossRef Varco-Merth B, Feigerlova E, Shinde U, Rosenfeld RG, Hwa V, Rotwein P. Severe growth deficiency is associated with STAT5b mutations that disrupt protein folding and activity. Mol Endocrinol. 2013;27(1):150–61.PubMedCrossRef
27.
Zurück zum Zitat Cohen AC, Nadeau KC, Tu W, Hwa V, Dionis K, Bezrodnik L, et al. Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency. J Immunol. 2006;177:2770–4.PubMedCrossRef Cohen AC, Nadeau KC, Tu W, Hwa V, Dionis K, Bezrodnik L, et al. Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency. J Immunol. 2006;177:2770–4.PubMedCrossRef
28.
Zurück zum Zitat Hwa V, Little B, Kofoed EM, Rosenfeld RG. Transcriptional regulation of insulin-like growth factor-I (IGF-I) by interferon-gamma (IFN-g) requires Stat-5b. J Biol Chem. 2004;279:2728–36.PubMedCrossRef Hwa V, Little B, Kofoed EM, Rosenfeld RG. Transcriptional regulation of insulin-like growth factor-I (IGF-I) by interferon-gamma (IFN-g) requires Stat-5b. J Biol Chem. 2004;279:2728–36.PubMedCrossRef
29.
Zurück zum Zitat Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94(14):7239–44.PubMedPubMedCentralCrossRef Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94(14):7239–44.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93(5):841–50.PubMedCrossRef Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93(5):841–50.PubMedCrossRef
31.
Zurück zum Zitat Hwa V. Growth Hormone Receptor in Growth. In: Ho K, editor. Growth Hormone Related Diseases and Therapy: a molecular and physiological perspective for the clinician. Contemporary Endocrinology. New York: Humana Press; 2011. p. 3–16. Hwa V. Growth Hormone Receptor in Growth. In: Ho K, editor. Growth Hormone Related Diseases and Therapy: a molecular and physiological perspective for the clinician. Contemporary Endocrinology. New York: Humana Press; 2011. p. 3–16.
32.
Zurück zum Zitat Hwa V. STAT5B deficiency: impacts on human growth and immunity. Growth Hormon IGF Res. 2016;28:16–20.CrossRef Hwa V. STAT5B deficiency: impacts on human growth and immunity. Growth Hormon IGF Res. 2016;28:16–20.CrossRef
33.
Zurück zum Zitat Klammt J, Neumann D, Gevers EF, Andrew SF, Schwartz ID, Rockstroh D, et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun. 2018;9(1):2105.PubMedPubMedCentralCrossRef Klammt J, Neumann D, Gevers EF, Andrew SF, Schwartz ID, Rockstroh D, et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun. 2018;9(1):2105.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ayling RM, Ross R, Towner P, Von Laue S, Finidori J, Moutoussamy S, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat Genet. 1997;16(1):13–4.PubMedCrossRef Ayling RM, Ross R, Towner P, Von Laue S, Finidori J, Moutoussamy S, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat Genet. 1997;16(1):13–4.PubMedCrossRef
36.
Zurück zum Zitat Iida K, Takahashi Y, Kaji H, Takahashi MO, Okimura Y, Nose O, et al. Functional characterization of truncated growth hormone (GH) receptor- (1-277) causing partial GH insensitivity syndrome with high GH-binding protein. J Clin Endocrinol Metab. 1999;84(3):1011–6.PubMed Iida K, Takahashi Y, Kaji H, Takahashi MO, Okimura Y, Nose O, et al. Functional characterization of truncated growth hormone (GH) receptor- (1-277) causing partial GH insensitivity syndrome with high GH-binding protein. J Clin Endocrinol Metab. 1999;84(3):1011–6.PubMed
37.
Zurück zum Zitat Aisenberg J, Auyeung V, Pedro JF, Sugalski R, Chartoff A, Rothenberg R, et al. Atypical growth hormone insensitivity syndrome (GHIS) and severe insulin-like growth factor-I deficiency (IGFD) resulting from compound heterozygous mutations of the GH receptor (GHR), including a novel frameshift mutation affecting the intracellular domain. Horm Res Paediatr. 2010;74(6):406–11.PubMedCrossRef Aisenberg J, Auyeung V, Pedro JF, Sugalski R, Chartoff A, Rothenberg R, et al. Atypical growth hormone insensitivity syndrome (GHIS) and severe insulin-like growth factor-I deficiency (IGFD) resulting from compound heterozygous mutations of the GH receptor (GHR), including a novel frameshift mutation affecting the intracellular domain. Horm Res Paediatr. 2010;74(6):406–11.PubMedCrossRef
38.
Zurück zum Zitat Derr MA, Aisenberg J, Fang P, Tenenbaum-Rakover Y, Rosenfeld RG, Hwa V. The growth hormone receptor (GHR) c.899dupC mutation functions as a dominant negative: insights into the pathophysiology of intracellular GHR defects. J Clin Endocrinol Metab. 2011;96(11):E1896–904.PubMedCrossRef Derr MA, Aisenberg J, Fang P, Tenenbaum-Rakover Y, Rosenfeld RG, Hwa V. The growth hormone receptor (GHR) c.899dupC mutation functions as a dominant negative: insights into the pathophysiology of intracellular GHR defects. J Clin Endocrinol Metab. 2011;96(11):E1896–904.PubMedCrossRef
39.
Zurück zum Zitat Takagi M, Shinohara H, Nagashima Y, Hasegawa Y, Narumi S, Hasegawa T. A novel dominant negative mutation in the intracellular domain of GHR is associated with growth hormone insensitivity. Clin Endocrinol. 2016;85(4):669–71.CrossRef Takagi M, Shinohara H, Nagashima Y, Hasegawa Y, Narumi S, Hasegawa T. A novel dominant negative mutation in the intracellular domain of GHR is associated with growth hormone insensitivity. Clin Endocrinol. 2016;85(4):669–71.CrossRef
40.
Zurück zum Zitat Vairamani K, Merjaneh L, Casano-Sancho P, Sanli ME, David A, Metherell LA, et al. Novel dominant-negative GH receptor mutations expands the Spectrum of GHI and IGF-I deficiency. J Endocr Soc. 2017;1(4):345–58.PubMedPubMedCentralCrossRef Vairamani K, Merjaneh L, Casano-Sancho P, Sanli ME, David A, Metherell LA, et al. Novel dominant-negative GH receptor mutations expands the Spectrum of GHI and IGF-I deficiency. J Endocr Soc. 2017;1(4):345–58.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Maamra M, Milward A, Esfahani HZ, Abbot LP, Metherell LA, Savage MO, et al. A 36 residues insertion in the dimerization domain of the growth hormone receptor results in defective trafficking rather than impaired signaling. J Endocrinol. 2006;188(2):251–61.PubMedCrossRef Maamra M, Milward A, Esfahani HZ, Abbot LP, Metherell LA, Savage MO, et al. A 36 residues insertion in the dimerization domain of the growth hormone receptor results in defective trafficking rather than impaired signaling. J Endocrinol. 2006;188(2):251–61.PubMedCrossRef
42.
Zurück zum Zitat Metherell LA, Akker SA, Munroe PB, Rose SJ, Caulfield M, Savage MO, et al. Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am J Hum Genet. 2001;69(3):641–6.PubMedPubMedCentralCrossRef Metherell LA, Akker SA, Munroe PB, Rose SJ, Caulfield M, Savage MO, et al. Pseudoexon activation as a novel mechanism for disease resulting in atypical growth-hormone insensitivity. Am J Hum Genet. 2001;69(3):641–6.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat David A, Camacho-Hubner C, Bhangoo A, Rose SJ, Miraki-Moud F, Akker SA, et al. An intronic growth hormone receptor mutation causing activation of a pseudoexon is associated with a broad spectrum of growth hormone insensitivity phenotypes. J Clin Endocrinol Metab. 2007;92(2):655–9.PubMedCrossRef David A, Camacho-Hubner C, Bhangoo A, Rose SJ, Miraki-Moud F, Akker SA, et al. An intronic growth hormone receptor mutation causing activation of a pseudoexon is associated with a broad spectrum of growth hormone insensitivity phenotypes. J Clin Endocrinol Metab. 2007;92(2):655–9.PubMedCrossRef
44.
Zurück zum Zitat Bezrodnik L, Di Giovanni D, Caldirola MS, Azcoiti ME, Torgerson T, Gaillard MI. Long-term follow-up of STAT5B deficiency in three argentinian patients: clinical and immunological features. J Clin Immunol. 2015;35(3):264–72.PubMedCrossRef Bezrodnik L, Di Giovanni D, Caldirola MS, Azcoiti ME, Torgerson T, Gaillard MI. Long-term follow-up of STAT5B deficiency in three argentinian patients: clinical and immunological features. J Clin Immunol. 2015;35(3):264–72.PubMedCrossRef
45.
Zurück zum Zitat Vargas-Hernandez A, Witalisz-Siepracka A, Prchal-Murphy M, Klein K, Mahapatra S, Al-Herz W, et al. Human signal transducer and activator of transcription 5b (STAT5b) mutation causes dysregulated human natural killer cell maturation and impaired lytic function. J Allergy Clin Immunol. 2020;145(1):345–57 e9.PubMedCrossRef Vargas-Hernandez A, Witalisz-Siepracka A, Prchal-Murphy M, Klein K, Mahapatra S, Al-Herz W, et al. Human signal transducer and activator of transcription 5b (STAT5b) mutation causes dysregulated human natural killer cell maturation and impaired lytic function. J Allergy Clin Immunol. 2020;145(1):345–57 e9.PubMedCrossRef
46.
Zurück zum Zitat Walenkamp MJE, Vidarsdottir S, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, et al. Growth hormone secretion and immunological function of a male patient with a homozygous STAT5b mutation. Eur J Endocrinol. 2007;156:155–65.PubMedCrossRef Walenkamp MJE, Vidarsdottir S, Pereira AM, Karperien M, van Doorn J, van Duyvenvoorde HA, et al. Growth hormone secretion and immunological function of a male patient with a homozygous STAT5b mutation. Eur J Endocrinol. 2007;156:155–65.PubMedCrossRef
47.
Zurück zum Zitat Majri SS, Fritz JM, Villarino AV, Zheng L, Kanellopoulou C, Chaigne-Delalande B, et al. STAT5B: a differential regulator of the life and death of CD4(+) effector memory T cells. J Immunol. 2018;200(1):110–8.PubMedCrossRef Majri SS, Fritz JM, Villarino AV, Zheng L, Kanellopoulou C, Chaigne-Delalande B, et al. STAT5B: a differential regulator of the life and death of CD4(+) effector memory T cells. J Immunol. 2018;200(1):110–8.PubMedCrossRef
48.
Zurück zum Zitat Rotwein P. Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors. 1991;5(1):3–18.PubMedCrossRef Rotwein P. Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors. 1991;5(1):3–18.PubMedCrossRef
49.
Zurück zum Zitat Magee BA, Shooter JC, Wallace JC, Francis GL. Insulin-like growth factor I and its binding proteins: a study of the binding interface wuing B-domain analogues. Biochemistry. 1999;38:15863–70.PubMedCrossRef Magee BA, Shooter JC, Wallace JC, Francis GL. Insulin-like growth factor I and its binding proteins: a study of the binding interface wuing B-domain analogues. Biochemistry. 1999;38:15863–70.PubMedCrossRef
50.
Zurück zum Zitat Menting JG, Lawrence CF, Kong GK, Margetts MB, Ward CW, Lawrence MC. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like Growth factor hybrid receptors. Structure. 2015;23(7):1271–82.PubMedCrossRef Menting JG, Lawrence CF, Kong GK, Margetts MB, Ward CW, Lawrence MC. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like Growth factor hybrid receptors. Structure. 2015;23(7):1271–82.PubMedCrossRef
51.
Zurück zum Zitat Machackova K, Mlcochova K, Potalitsyn P, Hankova K, Socha O, Budesinsky M, et al. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem. 2019;294(46):17371–82.PubMedPubMedCentralCrossRef Machackova K, Mlcochova K, Potalitsyn P, Hankova K, Socha O, Budesinsky M, et al. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem. 2019;294(46):17371–82.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. New Engl J Med. 1996;335:1363–7.PubMedCrossRef Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. New Engl J Med. 1996;335:1363–7.PubMedCrossRef
53.
Zurück zum Zitat Walenkamp MJE, Karperien M, Pereira AM, Hilhorst-Hofstee Y, van Doorn J, Chen JW, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab. 2005;90:2855–64.PubMedCrossRef Walenkamp MJE, Karperien M, Pereira AM, Hilhorst-Hofstee Y, van Doorn J, Chen JW, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab. 2005;90:2855–64.PubMedCrossRef
54.
Zurück zum Zitat Netchine I, Azzi S, Houang M, Seurin D, Perin L, Ricot J-M, et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF-1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab. 2009;94(10):3913–21.PubMedCrossRef Netchine I, Azzi S, Houang M, Seurin D, Perin L, Ricot J-M, et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF-1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab. 2009;94(10):3913–21.PubMedCrossRef
55.
Zurück zum Zitat Shaheen R, Faqeih E, Ansari S, Abdel-Salam G, Al-Hassnan ZN, Al-Shidi T, et al. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res. 2014;24(2):291–9.PubMedPubMedCentralCrossRef Shaheen R, Faqeih E, Ansari S, Abdel-Salam G, Al-Hassnan ZN, Al-Shidi T, et al. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res. 2014;24(2):291–9.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Keselman AC, Martin A, Scaglia PA, Sanguineti NM, Armando R, Gutierrez M, et al. A homozygous mutation in the highly conserved Tyr60 of the mature IGF1 peptide broadens the spectrum of IGF1 deficiency. Eur J Endocrinol. 2019;181(5):K43–53.PubMedCrossRef Keselman AC, Martin A, Scaglia PA, Sanguineti NM, Armando R, Gutierrez M, et al. A homozygous mutation in the highly conserved Tyr60 of the mature IGF1 peptide broadens the spectrum of IGF1 deficiency. Eur J Endocrinol. 2019;181(5):K43–53.PubMedCrossRef
57.
Zurück zum Zitat Denley A, Wang CC, McNeil KA, Walenkamp MJE, van Duyvenvoorde HA, Wit JM, et al. Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol Endocrinol. 2005;19:711–21.PubMedCrossRef Denley A, Wang CC, McNeil KA, Walenkamp MJE, van Duyvenvoorde HA, Wit JM, et al. Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol Endocrinol. 2005;19:711–21.PubMedCrossRef
59.
Zurück zum Zitat Bonapace G, Concolino D, Formicola S, Strisciuglio P. A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J Med Genet. 2003;40(12):913–7.PubMedPubMedCentralCrossRef Bonapace G, Concolino D, Formicola S, Strisciuglio P. A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J Med Genet. 2003;40(12):913–7.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Woods KA, Camacho-Hubner C, Bergman RN, Barter D, Clark AJ, Savage MO. Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab. 2000;85:1407–11.PubMedCrossRef Woods KA, Camacho-Hubner C, Bergman RN, Barter D, Clark AJ, Savage MO. Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab. 2000;85:1407–11.PubMedCrossRef
61.
Zurück zum Zitat Batey L, Moon JE, Yu Y, Wu B, Hirschhorn JN, Shen Y, et al. A novel deletion of IGF1 in a patient with idiopathic short stature provides insight into IGF1 haploinsufficiency. J Clin Endocrinol Metab. 2014;99(1):E153–9.PubMedCrossRef Batey L, Moon JE, Yu Y, Wu B, Hirschhorn JN, Shen Y, et al. A novel deletion of IGF1 in a patient with idiopathic short stature provides insight into IGF1 haploinsufficiency. J Clin Endocrinol Metab. 2014;99(1):E153–9.PubMedCrossRef
62.
Zurück zum Zitat Fuqua JS, Derr M, Rosenfeld RG, Hwa V. Identification of a novel heterozygous IGF1 splicing mutation in a large kindred with familial short stature. Horm Res Paediatr. 2012;78(1):59–66.PubMedCrossRef Fuqua JS, Derr M, Rosenfeld RG, Hwa V. Identification of a novel heterozygous IGF1 splicing mutation in a large kindred with familial short stature. Horm Res Paediatr. 2012;78(1):59–66.PubMedCrossRef
63.
Zurück zum Zitat van Duyvenvoorde HA, van Setten PA, Walenkamp MJ, van Doorn J, Koenig J, Gauguin L, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab. 2010;95:E363–E7.PubMedCrossRef van Duyvenvoorde HA, van Setten PA, Walenkamp MJ, van Doorn J, Koenig J, Gauguin L, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab. 2010;95:E363–E7.PubMedCrossRef
64.
Zurück zum Zitat Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34.PubMed Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34.PubMed
65.
Zurück zum Zitat Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761–87.PubMed Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999;20(6):761–87.PubMed
66.
Zurück zum Zitat Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab. 2000;278(6):E967–76.PubMedCrossRef Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab. 2000;278(6):E967–76.PubMedCrossRef
67.
Zurück zum Zitat David A, Kelley LA, Sternberg MJ. A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations. J Mol Endocrinol. 2012;49(3):213–20.PubMedCrossRef David A, Kelley LA, Sternberg MJ. A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations. J Mol Endocrinol. 2012;49(3):213–20.PubMedCrossRef
68.
Zurück zum Zitat Domene HM, Bengolea SV, Martinez AS, Ropelato MG, Pennisi P, Scaglia P, et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med. 2004;350:570–7.PubMedCrossRef Domene HM, Bengolea SV, Martinez AS, Ropelato MG, Pennisi P, Scaglia P, et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med. 2004;350:570–7.PubMedCrossRef
69.
Zurück zum Zitat Isik E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, et al. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol. 2017;176(6):657–67.PubMedCrossRef Isik E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, et al. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol. 2017;176(6):657–67.PubMedCrossRef
70.
Zurück zum Zitat Scaglia PA, Keselman AC, Braslavsky D, Martucci LC, Karabatas LM, Domene S, et al. Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency. Clin Endocrinol. 2017;87(3):300–11.CrossRef Scaglia PA, Keselman AC, Braslavsky D, Martucci LC, Karabatas LM, Domene S, et al. Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency. Clin Endocrinol. 2017;87(3):300–11.CrossRef
71.
Zurück zum Zitat Poyrazoglu S, Hwa V, Bas F, Dauber A, Rosenfeld R, Darendeliler F. A novel homozygous mutation of the acid-labile subunit (IGFALS) gene in a male adolescent. J Clin Res Pediatr Endocrinol. 2019;11(4):432–8.PubMedPubMedCentralCrossRef Poyrazoglu S, Hwa V, Bas F, Dauber A, Rosenfeld R, Darendeliler F. A novel homozygous mutation of the acid-labile subunit (IGFALS) gene in a male adolescent. J Clin Res Pediatr Endocrinol. 2019;11(4):432–8.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Dominguez-Menendez G, Poggi Mayorga H, Arancibia M, Benavides F, Martinez-Aguayo A. ALS deficiency caused by an exon 2 deletion and a novel missense variant in the gene encoding ALS. Growth Hormon IGF Res. 2019;48–49:5–8.CrossRef Dominguez-Menendez G, Poggi Mayorga H, Arancibia M, Benavides F, Martinez-Aguayo A. ALS deficiency caused by an exon 2 deletion and a novel missense variant in the gene encoding ALS. Growth Hormon IGF Res. 2019;48–49:5–8.CrossRef
73.
Zurück zum Zitat Kumar A, Jain V, Chowdhury MR, Kumar M, Kaur P, Kabra M. Pathogenic/likely pathogenic variants in the SHOX, GHR and IGFALS genes among Indian children with idiopathic short stature. J Pediatr Endocrinol Metab. 2020;33(1):79–88.PubMedCrossRef Kumar A, Jain V, Chowdhury MR, Kumar M, Kaur P, Kabra M. Pathogenic/likely pathogenic variants in the SHOX, GHR and IGFALS genes among Indian children with idiopathic short stature. J Pediatr Endocrinol Metab. 2020;33(1):79–88.PubMedCrossRef
74.
Zurück zum Zitat Hogler W, Martin DD, Crabtree N, Nightingale P, Tomlinson J, Metherell L, et al. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. J Clin Endocrinol Metab. 2014;99(4):E703–12.PubMedCrossRef Hogler W, Martin DD, Crabtree N, Nightingale P, Tomlinson J, Metherell L, et al. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. J Clin Endocrinol Metab. 2014;99(4):E703–12.PubMedCrossRef
75.
Zurück zum Zitat Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab. 2010;95(9):4184–91.PubMedCrossRef Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab. 2010;95(9):4184–91.PubMedCrossRef
76.
Zurück zum Zitat van Duyvenvoorde HA, Kempers MJ, Twickler TB, van Doorn J, Gerver WJ, Noordam C, et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur J Endocrinol. 2008;159(2):113–20.PubMedCrossRef van Duyvenvoorde HA, Kempers MJ, Twickler TB, van Doorn J, Gerver WJ, Noordam C, et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur J Endocrinol. 2008;159(2):113–20.PubMedCrossRef
77.
Zurück zum Zitat Domene HM, Scaglia PA, Martinez AS, Keselman AC, Karabatas LM, Pipman VR, et al. Heterozygous IGFALS gene variants in idiopathic short stature and Normal children: impact on height and the IGF system. Horm Res Paediatr. 2013;80(6):413–23.PubMedCrossRef Domene HM, Scaglia PA, Martinez AS, Keselman AC, Karabatas LM, Pipman VR, et al. Heterozygous IGFALS gene variants in idiopathic short stature and Normal children: impact on height and the IGF system. Horm Res Paediatr. 2013;80(6):413–23.PubMedCrossRef
78.
Zurück zum Zitat Grandone A, Miraglia del Giudice E, Cirillo G, Abbondanza C, Cioffi M, Romano T, et al. Clinical features of a new acid-labile subunit (IGFALS) heterozygous mutation: anthropometric and biochemical characterization and response to growth hormone administration. Horm Res Paediatr. 2014;81(1):67–72.PubMedCrossRef Grandone A, Miraglia del Giudice E, Cirillo G, Abbondanza C, Cioffi M, Romano T, et al. Clinical features of a new acid-labile subunit (IGFALS) heterozygous mutation: anthropometric and biochemical characterization and response to growth hormone administration. Horm Res Paediatr. 2014;81(1):67–72.PubMedCrossRef
79.
Zurück zum Zitat Domene HM, Hwa V, Jasper HG, Rosenfeld RG. Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab. 2011;25:101–13.PubMedCrossRef Domene HM, Hwa V, Jasper HG, Rosenfeld RG. Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab. 2011;25:101–13.PubMedCrossRef
80.
Zurück zum Zitat Hwa V, Haeusler G, Pratt KL, Little BM, Frisch H, Koller D, et al. Total absence of functional acid labile subunit, resulting in severe insulin-like growth factor deficiency and moderate growth failure. J Clin Endocrinol Metab. 2006;91(5):1826–31.PubMedCrossRef Hwa V, Haeusler G, Pratt KL, Little BM, Frisch H, Koller D, et al. Total absence of functional acid labile subunit, resulting in severe insulin-like growth factor deficiency and moderate growth failure. J Clin Endocrinol Metab. 2006;91(5):1826–31.PubMedCrossRef
81.
Zurück zum Zitat Firth SM, Yan X, Baxter RC. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. Mol Endocrinol. 2011;25(2):307–14.PubMedCrossRef Firth SM, Yan X, Baxter RC. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. Mol Endocrinol. 2011;25(2):307–14.PubMedCrossRef
82.
Zurück zum Zitat Dauber A, Munoz-Calvo MT, Barrios V, Domene HM, Kloverpris S, Serra-Juhe C, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med. 2016;8(4):363–74.PubMedPubMedCentralCrossRef Dauber A, Munoz-Calvo MT, Barrios V, Domene HM, Kloverpris S, Serra-Juhe C, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol Med. 2016;8(4):363–74.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Cabrera-Salcedo C, Mizuno T, Tyzinski L, Andrew M, Vinks AA, Frystyk J, et al. Pharmacokinetics of IGF-1 in PAPP-A2-deficient patients, Growth response, and effects on glucose and bone density. J Clin Endocrinol Metab. 2017;102(12):4568–77.PubMedPubMedCentralCrossRef Cabrera-Salcedo C, Mizuno T, Tyzinski L, Andrew M, Vinks AA, Frystyk J, et al. Pharmacokinetics of IGF-1 in PAPP-A2-deficient patients, Growth response, and effects on glucose and bone density. J Clin Endocrinol Metab. 2017;102(12):4568–77.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Hawkins-Carranza FG, Munoz-Calvo MT, Martos-Moreno GA, Allo-Miguel G, Del Rio L, Pozo J, et al. rhIGF-1 treatment increases bone mineral density and trabecular bone structure in children with PAPP-A2 deficiency. Horm Res Paediatr. 2018;89(3):200–4.PubMedCrossRef Hawkins-Carranza FG, Munoz-Calvo MT, Martos-Moreno GA, Allo-Miguel G, Del Rio L, Pozo J, et al. rhIGF-1 treatment increases bone mineral density and trabecular bone structure in children with PAPP-A2 deficiency. Horm Res Paediatr. 2018;89(3):200–4.PubMedCrossRef
85.
Zurück zum Zitat Argente J, Perez-Jurado LA. Letter to the editor: history and clinical implications of PAPP-A2 in human growth: when reflecting on idiopathic short stature leads to a specific and new diagnosis: understanding the concept of "low IGF-I availability". Growth Hormon IGF Res. 2018;40:17–9.CrossRef Argente J, Perez-Jurado LA. Letter to the editor: history and clinical implications of PAPP-A2 in human growth: when reflecting on idiopathic short stature leads to a specific and new diagnosis: understanding the concept of "low IGF-I availability". Growth Hormon IGF Res. 2018;40:17–9.CrossRef
86.
Zurück zum Zitat Munoz-Calvo MT, Barrios V, Pozo J, Chowen JA, Martos-Moreno GA, Hawkins F, et al. Treatment with recombinant human insulin-like Growth Factor-1 improves Growth in patients with PAPP-A2 deficiency. J Clin Endocrinol Metab. 2016;101(11):3879–83.PubMedPubMedCentralCrossRef Munoz-Calvo MT, Barrios V, Pozo J, Chowen JA, Martos-Moreno GA, Hawkins F, et al. Treatment with recombinant human insulin-like Growth Factor-1 improves Growth in patients with PAPP-A2 deficiency. J Clin Endocrinol Metab. 2016;101(11):3879–83.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Conover CA, Boldt HB, Bale LK, Clifton KB, Grell JA, Mader JR, et al. Pregnancy-associated plasma protein-A2 (PAPP-A2): tissue expression and biological consequences of gene knockout in mice. Endocrinology. 2011;152(7):2837–44.PubMedCrossRef Conover CA, Boldt HB, Bale LK, Clifton KB, Grell JA, Mader JR, et al. Pregnancy-associated plasma protein-A2 (PAPP-A2): tissue expression and biological consequences of gene knockout in mice. Endocrinology. 2011;152(7):2837–44.PubMedCrossRef
88.
Zurück zum Zitat Fujimoto M, Andrew M, Liao L, Zhang D, Yildirim G, Sluss P, et al. Low IGF-I bioavailability impairs Growth and glucose metabolism in a mouse model of human PAPPA2 p.Ala1033Val mutation. Endocrinology. 2019;160(6):1363–76.PubMedPubMedCentralCrossRef Fujimoto M, Andrew M, Liao L, Zhang D, Yildirim G, Sluss P, et al. Low IGF-I bioavailability impairs Growth and glucose metabolism in a mouse model of human PAPPA2 p.Ala1033Val mutation. Endocrinology. 2019;160(6):1363–76.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Fujimoto M, Hwa V, Dauber A. Novel modulators of the Growth hormone - insulin-like Growth factor Axis: pregnancy-associated plasma protein-A2 and Stanniocalcin-2. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):1–8.PubMedPubMedCentral Fujimoto M, Hwa V, Dauber A. Novel modulators of the Growth hormone - insulin-like Growth factor Axis: pregnancy-associated plasma protein-A2 and Stanniocalcin-2. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):1–8.PubMedPubMedCentral
90.
Zurück zum Zitat Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57(7):1050–93.PubMedCrossRef Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57(7):1050–93.PubMedCrossRef
91.
Zurück zum Zitat LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63.PubMedCrossRef LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16(2):143–63.PubMedCrossRef
92.
Zurück zum Zitat Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1----qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991;38(1):74–9.PubMedPubMedCentralCrossRef Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1----qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991;38(1):74–9.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.PubMedCrossRef Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.PubMedCrossRef
94.
Zurück zum Zitat Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-I) and type I IGF receptor (Igflr). Cell. 1993;75:59–72.PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-I) and type I IGF receptor (Igflr). Cell. 1993;75:59–72.PubMed
95.
Zurück zum Zitat Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349:2211–22.PubMedCrossRef Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349:2211–22.PubMedCrossRef
96.
Zurück zum Zitat Klammt J, Kiess W, Pfaffle R. IGFIR mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab. 2011;25:191–206.PubMedCrossRef Klammt J, Kiess W, Pfaffle R. IGFIR mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab. 2011;25:191–206.PubMedCrossRef
97.
Zurück zum Zitat Essakow JL, Lauterpacht A, Lilos P, Kauli R, Laron Z. Genetic mutations, birth lengths, weights and head circumferences of children with IGF-I receptor defects. Comparison with other congenital defects in the GH/IGF-I axis. Pediatr Endocrinol Rev. 2016;14(1):19–26.PubMed Essakow JL, Lauterpacht A, Lilos P, Kauli R, Laron Z. Genetic mutations, birth lengths, weights and head circumferences of children with IGF-I receptor defects. Comparison with other congenital defects in the GH/IGF-I axis. Pediatr Endocrinol Rev. 2016;14(1):19–26.PubMed
98.
Zurück zum Zitat Hattori A, Katoh-Fukui Y, Nakamura A, Matsubara K, Kamimaki T, Tanaka H, et al. Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. Endocr J. 2017;64(10):947–54.PubMedCrossRef Hattori A, Katoh-Fukui Y, Nakamura A, Matsubara K, Kamimaki T, Tanaka H, et al. Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. Endocr J. 2017;64(10):947–54.PubMedCrossRef
99.
Zurück zum Zitat Solomon-Zemler R, Basel-Vanagaite L, Steier D, Yakar S, Mel E, Phillip M, et al. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia. Endocr Connect. 2017;6(6):395–403.PubMedPubMedCentralCrossRef Solomon-Zemler R, Basel-Vanagaite L, Steier D, Yakar S, Mel E, Phillip M, et al. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia. Endocr Connect. 2017;6(6):395–403.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Meyer R, Soellner L, Begemann M, Dicks S, Fekete G, Rahner N, et al. Targeted next generation sequencing approach in patients referred for silver-Russell syndrome testing increases the mutation detection rate and provides decisive information for clinical management. J Pediatr. 2017;187:206–12 e1.PubMedCrossRef Meyer R, Soellner L, Begemann M, Dicks S, Fekete G, Rahner N, et al. Targeted next generation sequencing approach in patients referred for silver-Russell syndrome testing increases the mutation detection rate and provides decisive information for clinical management. J Pediatr. 2017;187:206–12 e1.PubMedCrossRef
101.
Zurück zum Zitat Yang L, Xu DD, Sun CJ, Wu J, Wei HY, Liu Y, et al. IGF1R variants in patients with Growth impairment: four novel variants and genotype-phenotype correlations. J Clin Endocrinol Metab. 2018;103(11):3939–44.PubMedCrossRef Yang L, Xu DD, Sun CJ, Wu J, Wei HY, Liu Y, et al. IGF1R variants in patients with Growth impairment: four novel variants and genotype-phenotype correlations. J Clin Endocrinol Metab. 2018;103(11):3939–44.PubMedCrossRef
102.
Zurück zum Zitat Janchevska A, Krstevska-Konstantinova M, Pfaffle H, Schlicke M, Laban N, Tasic V, et al. IGF1R gene alterations in children born small for Gestitional age (SGA). Open Access Maced J Med Sci. 2018;6(11):2040–4.PubMedPubMedCentralCrossRef Janchevska A, Krstevska-Konstantinova M, Pfaffle H, Schlicke M, Laban N, Tasic V, et al. IGF1R gene alterations in children born small for Gestitional age (SGA). Open Access Maced J Med Sci. 2018;6(11):2040–4.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Walenkamp MJE, Robers JML, Wit JM, Zandwijken GRJ, van Duyvenvoorde HA, Oostdijk W, et al. Phenotypic features and response to GH treatment of patients with a molecular defect of the IGF-1 receptor. J Clin Endocrinol Metab. 2019;104(8):3157–71.PubMedCrossRef Walenkamp MJE, Robers JML, Wit JM, Zandwijken GRJ, van Duyvenvoorde HA, Oostdijk W, et al. Phenotypic features and response to GH treatment of patients with a molecular defect of the IGF-1 receptor. J Clin Endocrinol Metab. 2019;104(8):3157–71.PubMedCrossRef
104.
Zurück zum Zitat Gopel E, Rockstroh D, Pfaffle H, Schlicke M, Pozza SB, Gannage-Yared MH, et al. A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children. J Clin Endocrinol Metab. 2020;105(4). Gopel E, Rockstroh D, Pfaffle H, Schlicke M, Pozza SB, Gannage-Yared MH, et al. A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children. J Clin Endocrinol Metab. 2020;105(4).
105.
Zurück zum Zitat Yang Y, Huang H, Chen K, Yang L, Xie LL, Xiong T, et al. Novel mutation of type-1 insulin-like growth factor receptor (IGF-1R) gene in a severe short stature pedigree identified by targeted next-generation sequencing. J Genet. 2019;98. Yang Y, Huang H, Chen K, Yang L, Xie LL, Xiong T, et al. Novel mutation of type-1 insulin-like growth factor receptor (IGF-1R) gene in a severe short stature pedigree identified by targeted next-generation sequencing. J Genet. 2019;98.
106.
Zurück zum Zitat Cabrera-Salcedo C, Hawkes CP, Tyzinski L, Andrew M, Labilloy G, Campos D, et al. Targeted searches of the electronic health record and genomics identify an etiology in three patients with short stature and high IGF-I levels. Horm Res Paediatr. 2019;92(3):186–95.PubMedPubMedCentralCrossRef Cabrera-Salcedo C, Hawkes CP, Tyzinski L, Andrew M, Labilloy G, Campos D, et al. Targeted searches of the electronic health record and genomics identify an etiology in three patients with short stature and high IGF-I levels. Horm Res Paediatr. 2019;92(3):186–95.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Plachy L, Strakova V, Elblova L, Obermannova B, Kolouskova S, Snajderova M, et al. High prevalence of Growth plate gene variants in children with familial short stature treated with GH. J Clin Endocrinol Metab. 2019;104(10):4273–81.PubMedCrossRef Plachy L, Strakova V, Elblova L, Obermannova B, Kolouskova S, Snajderova M, et al. High prevalence of Growth plate gene variants in children with familial short stature treated with GH. J Clin Endocrinol Metab. 2019;104(10):4273–81.PubMedCrossRef
108.
Zurück zum Zitat Gkourogianni A, Andrade AC, Jonsson BA, Segerlund E, Werner-Sperker A, Horemuzova E, et al. Pre- and postnatal growth failure with microcephaly due to two novel heterozygous IGF1R mutations and response to growth hormone treatment. Acta Paediatr. 2020;109:2067–74.PubMedCrossRef Gkourogianni A, Andrade AC, Jonsson BA, Segerlund E, Werner-Sperker A, Horemuzova E, et al. Pre- and postnatal growth failure with microcephaly due to two novel heterozygous IGF1R mutations and response to growth hormone treatment. Acta Paediatr. 2020;109:2067–74.PubMedCrossRef
109.
Zurück zum Zitat Giabicani E, Willems M, Steunou V, Chantot-Bastaraud S, Thibaud N, Abi Habib W, et al. Increasing knowledge in IGF1R defects: lessons from 35 new patients. J Med Genet. 2020;57(3):160–8.PubMedCrossRef Giabicani E, Willems M, Steunou V, Chantot-Bastaraud S, Thibaud N, Abi Habib W, et al. Increasing knowledge in IGF1R defects: lessons from 35 new patients. J Med Genet. 2020;57(3):160–8.PubMedCrossRef
110.
Zurück zum Zitat Okubo Y, Siddle K, Firth H, O'Rahilly S, Wilson LC, Willatt L, et al. Cell proliferation activities on skin fibroblasts from a short child with absence of one copy of the type 1 insulin-like growth factor receptor (IGF1R) gene and a tall child with three copies of the IGF1R gene. J Clin Endocrinol Metab. 2003;88(12):5981–8.PubMedCrossRef Okubo Y, Siddle K, Firth H, O'Rahilly S, Wilson LC, Willatt L, et al. Cell proliferation activities on skin fibroblasts from a short child with absence of one copy of the type 1 insulin-like growth factor receptor (IGF1R) gene and a tall child with three copies of the IGF1R gene. J Clin Endocrinol Metab. 2003;88(12):5981–8.PubMedCrossRef
111.
Zurück zum Zitat Kant SG, Kriek M, Walenkamp MJ, Hansson KB, van Rhijn A, Clayton-Smith J, et al. Tall stature and duplication of the insulin-like growth factor I receptor gene. Eur J Med Genet. 2007;50(1):1–10.PubMedCrossRef Kant SG, Kriek M, Walenkamp MJ, Hansson KB, van Rhijn A, Clayton-Smith J, et al. Tall stature and duplication of the insulin-like growth factor I receptor gene. Eur J Med Genet. 2007;50(1):1–10.PubMedCrossRef
112.
Zurück zum Zitat Fang P, Schwartz ID, Johnson BD, Derr MA, Roberts JCT, Hwa V, et al. Familal short stature caused by haploinsufficiency of the insulin-like growth factor I receptor due to nonsense-mediated messenger ribonucleic acid decay. J Clin Endocrinol Metab. 2009;94:1740–7.PubMedCrossRef Fang P, Schwartz ID, Johnson BD, Derr MA, Roberts JCT, Hwa V, et al. Familal short stature caused by haploinsufficiency of the insulin-like growth factor I receptor due to nonsense-mediated messenger ribonucleic acid decay. J Clin Endocrinol Metab. 2009;94:1740–7.PubMedCrossRef
113.
Zurück zum Zitat Choi J-H, Kang M, Kim G-H, Hong M, Jin HY, Lee B-H, et al. Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2->qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab. 2011;96:E130–E4.PubMedCrossRef Choi J-H, Kang M, Kim G-H, Hong M, Jin HY, Lee B-H, et al. Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2->qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab. 2011;96:E130–E4.PubMedCrossRef
114.
Zurück zum Zitat Walenkamp MJ, de Muinck Keizer-Schrama SM, de Mos M, Kalf ME, den Dunnen JT, Karperien M, et al. Successful long-term growth hormone therapy in a girl with haploinsufficiency of the insulin-like growth factor-I receptor due to a terminal 15q26.2->qter deletion detected by multiplex ligation probe amplification. J Clin Endocrinol Metab. 2008;93:2421–5.PubMedCrossRef Walenkamp MJ, de Muinck Keizer-Schrama SM, de Mos M, Kalf ME, den Dunnen JT, Karperien M, et al. Successful long-term growth hormone therapy in a girl with haploinsufficiency of the insulin-like growth factor-I receptor due to a terminal 15q26.2->qter deletion detected by multiplex ligation probe amplification. J Clin Endocrinol Metab. 2008;93:2421–5.PubMedCrossRef
115.
Zurück zum Zitat Ocaranza P, Golekoh MC, Andrew SF, Guo MH, Kaplowitz P, Saal H, et al. Expanding genetic and functional diagnoses of IGF1R Haploinsufficiencies. Horm Res Paediatr. 2017;87(6):412–22.PubMedPubMedCentralCrossRef Ocaranza P, Golekoh MC, Andrew SF, Guo MH, Kaplowitz P, Saal H, et al. Expanding genetic and functional diagnoses of IGF1R Haploinsufficiencies. Horm Res Paediatr. 2017;87(6):412–22.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Siebler T, Lopaczynski W, Terry CL, Casella SJ, Munson P, De Leon DD, et al. Insulin-like growth factor I receptor expression and function in fibroblasts from two patients with deletion of the distal long arm of chromosome 15. J Clin Endocrinol Metab. 1995;80(12):3447–57.PubMedCrossRef Siebler T, Lopaczynski W, Terry CL, Casella SJ, Munson P, De Leon DD, et al. Insulin-like growth factor I receptor expression and function in fibroblasts from two patients with deletion of the distal long arm of chromosome 15. J Clin Endocrinol Metab. 1995;80(12):3447–57.PubMedCrossRef
117.
Zurück zum Zitat Hammer E, Kutsche K, Haag F, Ullrich K, Sudbrak R, Willig RP, et al. Mono-allelic expression of the IGF-I receptor does not affect IGF responses in human fibroblasts. Eur J Endocrinol. 2004;151(4):521–9.PubMedCrossRef Hammer E, Kutsche K, Haag F, Ullrich K, Sudbrak R, Willig RP, et al. Mono-allelic expression of the IGF-I receptor does not affect IGF responses in human fibroblasts. Eur J Endocrinol. 2004;151(4):521–9.PubMedCrossRef
118.
Zurück zum Zitat Gannagé-Yared M-H, Klammt J, Chouery E, Corbani S, Mégarbané H, Ghoch JA, et al. Homozygous mutation of the IGF1 receptor gene in a patient with severe pre- and postnatal growth failure and congenital malformations. Eur J Endocrinol. 2013;168:K1–7.PubMedCrossRef Gannagé-Yared M-H, Klammt J, Chouery E, Corbani S, Mégarbané H, Ghoch JA, et al. Homozygous mutation of the IGF1 receptor gene in a patient with severe pre- and postnatal growth failure and congenital malformations. Eur J Endocrinol. 2013;168:K1–7.PubMedCrossRef
119.
Zurück zum Zitat Prontera P, Micale L, Verrotti A, Napolioni V, Stangoni G, Merla G. A new homozygous IGF1R variant defines a clinically recognizable incomplete dominant form of SHORT syndrome. Hum Mutat. 2015;36(11):1043–7.PubMedCrossRef Prontera P, Micale L, Verrotti A, Napolioni V, Stangoni G, Merla G. A new homozygous IGF1R variant defines a clinically recognizable incomplete dominant form of SHORT syndrome. Hum Mutat. 2015;36(11):1043–7.PubMedCrossRef
120.
Zurück zum Zitat Kruis T, Klammt J, Galli-Tsinopoulou A, Wallborn T, Schlicke M, Muller E, et al. Heterozygous mutation within a kinase-conserved motif of the insulin-like growth factor I receptor causes intrauterine and postnatal growth retardation. J Clin Endocrinol Metab. 2010;95(3):1137–42.PubMedCrossRef Kruis T, Klammt J, Galli-Tsinopoulou A, Wallborn T, Schlicke M, Muller E, et al. Heterozygous mutation within a kinase-conserved motif of the insulin-like growth factor I receptor causes intrauterine and postnatal growth retardation. J Clin Endocrinol Metab. 2010;95(3):1137–42.PubMedCrossRef
121.
Zurück zum Zitat Wallborn T, Wuller S, Klammt J, Kruis T, Kratzsch J, Schmidt G, et al. A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab. 2010;95(5):2316–24.PubMedCrossRef Wallborn T, Wuller S, Klammt J, Kruis T, Kratzsch J, Schmidt G, et al. A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab. 2010;95(5):2316–24.PubMedCrossRef
122.
Zurück zum Zitat Walenkamp MJE, van der Kamp HJ, Pereira AM, Kant SG, van Duyvenvoordes HA, Kruithof MF, et al. A variable degree of intrauterine and postnatuatl growth retardation in a family with a missense mutation in the IGF-I receptor. J Clin Endocrinol Metab. 2006;91(8):3062–70.PubMedCrossRef Walenkamp MJE, van der Kamp HJ, Pereira AM, Kant SG, van Duyvenvoordes HA, Kruithof MF, et al. A variable degree of intrauterine and postnatuatl growth retardation in a family with a missense mutation in the IGF-I receptor. J Clin Endocrinol Metab. 2006;91(8):3062–70.PubMedCrossRef
123.
Zurück zum Zitat Fang P, Cho YH, Derr MA, Rosenfeld RG, Hwa V, Cowell CT. Severe short stature caused by novel compound heterozygous mutations of the insulin-like growth factor 1 receptor (IGF1R). J Clin Endocrinol Metab. 2012;97:E243–E7.PubMedCrossRef Fang P, Cho YH, Derr MA, Rosenfeld RG, Hwa V, Cowell CT. Severe short stature caused by novel compound heterozygous mutations of the insulin-like growth factor 1 receptor (IGF1R). J Clin Endocrinol Metab. 2012;97:E243–E7.PubMedCrossRef
124.
Zurück zum Zitat Muller E, Dunstheimer D, Klammt J, Friebe D, Kiess W, Kratzsch J, et al. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation. PLoS One. 2012;7(5):e38220.PubMedPubMedCentralCrossRef Muller E, Dunstheimer D, Klammt J, Friebe D, Kiess W, Kratzsch J, et al. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation. PLoS One. 2012;7(5):e38220.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Domene HM, Hwa V, Argente J, Wit JM, Camacho-Hubner C, Jasper HG, et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res. 2009;72(3):129–41.PubMedCrossRef Domene HM, Hwa V, Argente J, Wit JM, Camacho-Hubner C, Jasper HG, et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm Res. 2009;72(3):129–41.PubMedCrossRef
126.
Zurück zum Zitat Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993;4(1):98–101.PubMedCrossRef Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993;4(1):98–101.PubMedCrossRef
127.
Zurück zum Zitat Ekstrom TJ, Cui H, Li X, Ohlsson R. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development. 1995;121(2):309–16.PubMed Ekstrom TJ, Cui H, Li X, Ohlsson R. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development. 1995;121(2):309–16.PubMed
128.
Zurück zum Zitat Begemann M, Zirn B, Santen G, Wirthgen E, Soellner L, Buttel HM, et al. Paternally inherited IGF2 mutation and Growth restriction. N Engl J Med. 2015;373(4):349–56.PubMedCrossRef Begemann M, Zirn B, Santen G, Wirthgen E, Soellner L, Buttel HM, et al. Paternally inherited IGF2 mutation and Growth restriction. N Engl J Med. 2015;373(4):349–56.PubMedCrossRef
129.
Zurück zum Zitat Masunaga Y, Inoue T, Yamoto K, Fujisawa Y, Sato Y, Kawashima-Sonoyama Y, et al. IGF2 Mutations. J Clin Endocrinol Metab. 2020;105(1). Masunaga Y, Inoue T, Yamoto K, Fujisawa Y, Sato Y, Kawashima-Sonoyama Y, et al. IGF2 Mutations. J Clin Endocrinol Metab. 2020;105(1).
130.
Zurück zum Zitat Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab. 2007;92(8):3148–54.PubMedCrossRef Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab. 2007;92(8):3148–54.PubMedCrossRef
131.
Zurück zum Zitat Kerns SL, Guevara-Aguirre J, Andrew S, Geng J, Guevara C, Guevara-Aguirre M, et al. A novel variant in CDKN1C is associated with intrauterine growth restriction, short stature, and early-adulthood-onset diabetes. J Clin Endocrinol Metab. 2014;99(10):E2117–22.PubMedPubMedCentralCrossRef Kerns SL, Guevara-Aguirre J, Andrew S, Geng J, Guevara C, Guevara-Aguirre M, et al. A novel variant in CDKN1C is associated with intrauterine growth restriction, short stature, and early-adulthood-onset diabetes. J Clin Endocrinol Metab. 2014;99(10):E2117–22.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, et al. Diagnosis and management of silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13(2):105–24.PubMedCrossRef Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, et al. Diagnosis and management of silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13(2):105–24.PubMedCrossRef
133.
Zurück zum Zitat Yamoto K, Saitsu H, Nakagawa N, Nakajima H, Hasegawa T, Fujisawa Y, et al. De novo IGF2 mutation on the paternal allele in a patient with silver-Russell syndrome and ectrodactyly. Hum Mutat. 2017;38(8):953–8.PubMedCrossRef Yamoto K, Saitsu H, Nakagawa N, Nakajima H, Hasegawa T, Fujisawa Y, et al. De novo IGF2 mutation on the paternal allele in a patient with silver-Russell syndrome and ectrodactyly. Hum Mutat. 2017;38(8):953–8.PubMedCrossRef
134.
Zurück zum Zitat Liu D, Wang Y, Yang XA, Liu D. De novo mutation of paternal IGF2 gene causing silver-Russell syndrome in a sporadic patient. Front Genet. 2017;8:105.PubMedPubMedCentralCrossRef Liu D, Wang Y, Yang XA, Liu D. De novo mutation of paternal IGF2 gene causing silver-Russell syndrome in a sporadic patient. Front Genet. 2017;8:105.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 2018;20(2):250–8.PubMedCrossRef Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 2018;20(2):250–8.PubMedCrossRef
136.
Zurück zum Zitat Poulton C, Azmanov D, Atkinson V, Beilby J, Ewans L, Gration D, et al. Silver Russel syndrome in an aboriginal patient from Australia. Am J Med Genet A. 2018;176(12):2561–3.PubMedCrossRef Poulton C, Azmanov D, Atkinson V, Beilby J, Ewans L, Gration D, et al. Silver Russel syndrome in an aboriginal patient from Australia. Am J Med Genet A. 2018;176(12):2561–3.PubMedCrossRef
137.
Zurück zum Zitat Rockstroh D, Pfaffle H, Le Duc D, Rossler F, Schlensog-Schuster F, Heiker JT, et al. A new p.(Ile66Serfs*93) IGF2 variant is associated with pre- and postnatal growth retardation. Eur J Endocrinol. 2019;180(1):K1–K13.PubMedCrossRef Rockstroh D, Pfaffle H, Le Duc D, Rossler F, Schlensog-Schuster F, Heiker JT, et al. A new p.(Ile66Serfs*93) IGF2 variant is associated with pre- and postnatal growth retardation. Eur J Endocrinol. 2019;180(1):K1–K13.PubMedCrossRef
Metadaten
Titel
Genetic causes of growth hormone insensitivity beyond GHR
verfasst von
Vivian Hwa
Masanobu Fujimoto
Gaohui Zhu
Wen Gao
Corinne Foley
Meenasri Kumbaji
Ron G. Rosenfeld
Publikationsdatum
08.10.2020
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 1/2021
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-020-09603-3

Weitere Artikel der Ausgabe 1/2021

Reviews in Endocrine and Metabolic Disorders 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.