Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 1/2021

09.10.2020

Mouse models of growth hormone deficiency

verfasst von: Edward O. List, Reetobrata Basu, Silvana Duran-Ortiz, Jackson Krejsa, Elizabeth A. Jensen

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH’s diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.
Literatur
2.
Zurück zum Zitat Schaible R, Gowen JW. A new dwarf mouse. Abstract. Genetics. 1961;46:896. Schaible R, Gowen JW. A new dwarf mouse. Abstract. Genetics. 1961;46:896.
3.
Zurück zum Zitat Eicher EM, Beamer WG. Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J Hered. 1976;67:87–91.PubMedCrossRef Eicher EM, Beamer WG. Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J Hered. 1976;67:87–91.PubMedCrossRef
4.
Zurück zum Zitat Alba M, Salvatori R. A mouse with targeted ablation of the growth hormone-releasing hormone gene: a new model of isolated growth hormone deficiency. Endocrinology. 2004;145:4134–43.PubMedCrossRef Alba M, Salvatori R. A mouse with targeted ablation of the growth hormone-releasing hormone gene: a new model of isolated growth hormone deficiency. Endocrinology. 2004;145:4134–43.PubMedCrossRef
5.
Zurück zum Zitat List EO, Berryman DE, Buchman M, Jensen EA, Funk K, Duran-Ortiz S, et al. GH knockout mice have increased subcutaneous adipose tissue with decreased fibrosis and enhanced insulin sensitivity. Endocrinology. 2019;160:1743–56.PubMedPubMedCentralCrossRef List EO, Berryman DE, Buchman M, Jensen EA, Funk K, Duran-Ortiz S, et al. GH knockout mice have increased subcutaneous adipose tissue with decreased fibrosis and enhanced insulin sensitivity. Endocrinology. 2019;160:1743–56.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347:528–33.PubMedCrossRef Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347:528–33.PubMedCrossRef
7.
Zurück zum Zitat Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990;4:695–711.PubMedCrossRef Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990;4:695–711.PubMedCrossRef
8.
Zurück zum Zitat Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Growth hormone and prolactin synthesis in normal and homozygous Snell and Ames dwarf mice. Endocrinology. 1981;109:1040–6.PubMedCrossRef Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Growth hormone and prolactin synthesis in normal and homozygous Snell and Ames dwarf mice. Endocrinology. 1981;109:1040–6.PubMedCrossRef
9.
Zurück zum Zitat Cheng, T. C., Beamer, W. G., Phillips, J. A., 3rd, Bartke, A., Mallonee, R. L., and Dowling, C. (1983) Etiology of growth hormone deficiency in little, Ames, and Snell dwarf mice, Endocrinology 113, 1669–1678. Cheng, T. C., Beamer, W. G., Phillips, J. A., 3rd, Bartke, A., Mallonee, R. L., and Dowling, C. (1983) Etiology of growth hormone deficiency in little, Ames, and Snell dwarf mice, Endocrinology 113, 1669–1678.
10.
Zurück zum Zitat Wilson DB, Wyatt DP. Immunocytochemical effects of thyroxine stimulation on the adenohypophysis of dwarf (dw) mutant mice. Cell Tissue Res. 1993;274:579–85.PubMedCrossRef Wilson DB, Wyatt DP. Immunocytochemical effects of thyroxine stimulation on the adenohypophysis of dwarf (dw) mutant mice. Cell Tissue Res. 1993;274:579–85.PubMedCrossRef
11.
Zurück zum Zitat Nissley SP, Knazek RA, Wolff GL. Somatomedin activity in sera of genetically small mice. Horm Metab Res. 1980;12:158–64.PubMedCrossRef Nissley SP, Knazek RA, Wolff GL. Somatomedin activity in sera of genetically small mice. Horm Metab Res. 1980;12:158–64.PubMedCrossRef
12.
Zurück zum Zitat Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci. 2012;67:652–60.PubMedCrossRef Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci. 2012;67:652–60.PubMedCrossRef
13.
Zurück zum Zitat Papaconstantinou J, Deford JH, Gerstner A, Hsieh CC, Boylston WH, Guigneaux MM, et al. Hepatic gene and protein expression of primary components of the IGF-I axis in long lived Snell dwarf mice. Mech Ageing Dev. 2005;126:692–704.PubMedCrossRef Papaconstantinou J, Deford JH, Gerstner A, Hsieh CC, Boylston WH, Guigneaux MM, et al. Hepatic gene and protein expression of primary components of the IGF-I axis in long lived Snell dwarf mice. Mech Ageing Dev. 2005;126:692–704.PubMedCrossRef
14.
Zurück zum Zitat Lin C, Lin SC, Chang CP, Rosenfeld MG. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature. 1992;360:765–8.PubMedCrossRef Lin C, Lin SC, Chang CP, Rosenfeld MG. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature. 1992;360:765–8.PubMedCrossRef
15.
Zurück zum Zitat O'Hara BF, Bendotti C, Reeves RH, Oster-Granite ML, Coyle JT, Gearhart JD. Genetic mapping and analysis of somatostatin expression in Snell dwarf mice. Brain Res. 1988;464:283–92.PubMed O'Hara BF, Bendotti C, Reeves RH, Oster-Granite ML, Coyle JT, Gearhart JD. Genetic mapping and analysis of somatostatin expression in Snell dwarf mice. Brain Res. 1988;464:283–92.PubMed
16.
Zurück zum Zitat Ward RD, Stone BM, Raetzman LT, Camper SA. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol Endocrinol. 2006;20:1378–90.PubMedCrossRef Ward RD, Stone BM, Raetzman LT, Camper SA. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol Endocrinol. 2006;20:1378–90.PubMedCrossRef
17.
Zurück zum Zitat Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98:6736–41.PubMedPubMedCentralCrossRef Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98:6736–41.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Bartke A. The response of two types of dwarf mice to growth hormone, thyrotropin, and thyroxine. Gen Comp Endocrinol. 1965;5:418–26.PubMedCrossRef Bartke A. The response of two types of dwarf mice to growth hormone, thyrotropin, and thyroxine. Gen Comp Endocrinol. 1965;5:418–26.PubMedCrossRef
19.
Zurück zum Zitat Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA. Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci. 2004;59:1244–50.PubMedPubMedCentralCrossRef Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA. Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci. 2004;59:1244–50.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Brooks NL, Trent CM, Raetzsch CF, Flurkey K, Boysen G, Perfetti MT, et al. Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. J Biol Chem. 2007;282:35069–77.PubMedCrossRef Brooks NL, Trent CM, Raetzsch CF, Flurkey K, Boysen G, Perfetti MT, et al. Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. J Biol Chem. 2007;282:35069–77.PubMedCrossRef
21.
Zurück zum Zitat Stout MB, Tchkonia T, Pirtskhalava T, Palmer AK, List EO, Berryman DE, et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY). 2014;6:575–86.CrossRef Stout MB, Tchkonia T, Pirtskhalava T, Palmer AK, List EO, Berryman DE, et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY). 2014;6:575–86.CrossRef
22.
Zurück zum Zitat Hochereau-de Reviers MT, de Reviers MM, Monet-Kuntz C, Perreau C, Fontaine I, Viguier-Martinez MC. Testicular growth and hormonal parameters in the male Snell dwarf mouse. Acta Endocrinol. 1987;115:399–405.CrossRef Hochereau-de Reviers MT, de Reviers MM, Monet-Kuntz C, Perreau C, Fontaine I, Viguier-Martinez MC. Testicular growth and hormonal parameters in the male Snell dwarf mouse. Acta Endocrinol. 1987;115:399–405.CrossRef
23.
Zurück zum Zitat Mustapha M, Fang Q, Gong TW, Dolan DF, Raphael Y, Camper SA, et al. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J Neurosci. 2009;29:1212–23.PubMedPubMedCentralCrossRef Mustapha M, Fang Q, Gong TW, Dolan DF, Raphael Y, Camper SA, et al. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J Neurosci. 2009;29:1212–23.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Trotter WR. The association of deafness with thyroid dysfunction. Br Med Bull. 1960;16:92–8.PubMedCrossRef Trotter WR. The association of deafness with thyroid dysfunction. Br Med Bull. 1960;16:92–8.PubMedCrossRef
26.
Zurück zum Zitat Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, et al. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci. 2016;43:148–61.PubMedCrossRef Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, et al. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci. 2016;43:148–61.PubMedCrossRef
27.
Zurück zum Zitat Sharlin DS, Ng L, Verrey F, Visser TJ, Liu Y, Olszewski RT, et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep. 2018;8:018–22553.CrossRef Sharlin DS, Ng L, Verrey F, Visser TJ, Liu Y, Olszewski RT, et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep. 2018;8:018–22553.CrossRef
28.
Zurück zum Zitat Sundaresan S, Balasubbu S, Mustapha M. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea. Neuroscience. 2016;312:165–78.PubMedCrossRef Sundaresan S, Balasubbu S, Mustapha M. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea. Neuroscience. 2016;312:165–78.PubMedCrossRef
29.
Zurück zum Zitat Karolyi IJ, Dootz GA, Halsey K, Beyer L, Probst FJ, Johnson KR, et al. Dietary thyroid hormone replacement ameliorates hearing deficits in hypothyroid mice. Mamm Genome. 2007;18:596–608.PubMedCrossRef Karolyi IJ, Dootz GA, Halsey K, Beyer L, Probst FJ, Johnson KR, et al. Dietary thyroid hormone replacement ameliorates hearing deficits in hypothyroid mice. Mamm Genome. 2007;18:596–608.PubMedCrossRef
30.
Zurück zum Zitat Stickland NC, Crook AR, Sutton CM. Effects of pituitary dwarfism in the mouse on fast and slow skeletal muscles. Acta Anat (Basel). 1994;151:245–9.CrossRef Stickland NC, Crook AR, Sutton CM. Effects of pituitary dwarfism in the mouse on fast and slow skeletal muscles. Acta Anat (Basel). 1994;151:245–9.CrossRef
31.
Zurück zum Zitat Rader EP, Naimo MA, Ensey J, Baker BA. VCAM-1 upregulation accompanies muscle remodeling following resistance-type exercise in Snell dwarf (Pit1(dw/dw)) mice. Aging Cell. 2018;17:e12816.PubMedPubMedCentralCrossRef Rader EP, Naimo MA, Ensey J, Baker BA. VCAM-1 upregulation accompanies muscle remodeling following resistance-type exercise in Snell dwarf (Pit1(dw/dw)) mice. Aging Cell. 2018;17:e12816.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Dumont F, Robert F, Bischoff P. T and B lymphocytes in pituitary dwarf Snell-Bagg mice. Immunology. 1979;38:23–31.PubMedPubMedCentral Dumont F, Robert F, Bischoff P. T and B lymphocytes in pituitary dwarf Snell-Bagg mice. Immunology. 1979;38:23–31.PubMedPubMedCentral
33.
Zurück zum Zitat Montecino-Rodriguez E, Clark RG, Powell-Braxton L, Dorshkind K. Primary B cell development is impaired in mice with defects of the pituitary/thyroid axis. J Immunol. 1997;159:2712–9.PubMed Montecino-Rodriguez E, Clark RG, Powell-Braxton L, Dorshkind K. Primary B cell development is impaired in mice with defects of the pituitary/thyroid axis. J Immunol. 1997;159:2712–9.PubMed
34.
Zurück zum Zitat Gala RR. Influence of thyroxine and thyroxine with growth hormone and prolactin on splenocyte subsets and on the expression of interleukin-2 and prolactin receptors on splenocyte subsets of Snell dwarf mice. Proc Soc Exp Biol Med. 1995;210:117–25.PubMedCrossRef Gala RR. Influence of thyroxine and thyroxine with growth hormone and prolactin on splenocyte subsets and on the expression of interleukin-2 and prolactin receptors on splenocyte subsets of Snell dwarf mice. Proc Soc Exp Biol Med. 1995;210:117–25.PubMedCrossRef
35.
Zurück zum Zitat Montecino-Rodriguez E, Clark R, Johnson A, Collins L, Dorshkind K. Defective B cell development in Snell dwarf (dw/dw) mice can be corrected by thyroxine treatment. J Immunol. 1996;157:3334–40.PubMed Montecino-Rodriguez E, Clark R, Johnson A, Collins L, Dorshkind K. Defective B cell development in Snell dwarf (dw/dw) mice can be corrected by thyroxine treatment. J Immunol. 1996;157:3334–40.PubMed
36.
Zurück zum Zitat Cross RJ, Bryson JS, Roszman TL. Immunologic disparity in the hypopituitary dwarf mouse. J Immunol. 1992;148:1347–52.PubMed Cross RJ, Bryson JS, Roszman TL. Immunologic disparity in the hypopituitary dwarf mouse. J Immunol. 1992;148:1347–52.PubMed
37.
Zurück zum Zitat Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev. 2002;123:121–30.PubMedCrossRef Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev. 2002;123:121–30.PubMedCrossRef
38.
Zurück zum Zitat Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C. Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol. 2001;36:21–8.PubMedCrossRef Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C. Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol. 2001;36:21–8.PubMedCrossRef
39.
Zurück zum Zitat Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, et al. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology. 2015;156:565–75.PubMedCrossRef Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, et al. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology. 2015;156:565–75.PubMedCrossRef
40.
Zurück zum Zitat Guevara-Aguirre J, Rosenbloom AL, Balasubramanian P, Teran E, Guevara-Aguirre M, Guevara C, et al. GH receptor deficiency in Ecuadorian adults is associated with obesity and enhanced insulin sensitivity. J Clin Endocrinol Metab. 2015;100:2589–96.PubMedPubMedCentralCrossRef Guevara-Aguirre J, Rosenbloom AL, Balasubramanian P, Teran E, Guevara-Aguirre M, Guevara C, et al. GH receptor deficiency in Ecuadorian adults is associated with obesity and enhanced insulin sensitivity. J Clin Endocrinol Metab. 2015;100:2589–96.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Miller BF, et al. Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity. Aging Cell. 2015;14:474–82.PubMedPubMedCentralCrossRef Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Miller BF, et al. Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity. Aging Cell. 2015;14:474–82.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Dominick G, Bowman J, Li X, Miller RA, Garcia GG. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell. 2017;16:52–60.PubMedCrossRef Dominick G, Bowman J, Li X, Miller RA, Garcia GG. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell. 2017;16:52–60.PubMedCrossRef
43.
Zurück zum Zitat Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech Ageing Dev. 2002;123:1229–44.PubMedCrossRef Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech Ageing Dev. 2002;123:1229–44.PubMedCrossRef
44.
Zurück zum Zitat Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse. Mech Ageing Dev. 2002;123:1245–55.PubMedCrossRef Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse. Mech Ageing Dev. 2002;123:1245–55.PubMedCrossRef
45.
Zurück zum Zitat Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. A whole lifespan mouse multi-tissue DNA methylation clock. Elife. 2018;7. Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. A whole lifespan mouse multi-tissue DNA methylation clock. Elife. 2018;7.
46.
Zurück zum Zitat Madsen MA, Hsieh CC, Boylston WH, Flurkey K, Harrison D, Papaconstantinou J. Altered oxidative stress response of the long-lived Snell dwarf mouse. Biochem Biophys Res Commun. 2004;318:998–1005.PubMedCrossRef Madsen MA, Hsieh CC, Boylston WH, Flurkey K, Harrison D, Papaconstantinou J. Altered oxidative stress response of the long-lived Snell dwarf mouse. Biochem Biophys Res Commun. 2004;318:998–1005.PubMedCrossRef
47.
Zurück zum Zitat Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006;20:259–68.PubMedPubMedCentralCrossRef Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006;20:259–68.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Sun LY, Steinbaugh MJ, Masternak MM, Bartke A, Miller RA. Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radic Biol Med. 2009;47:1753–61.PubMedPubMedCentralCrossRef Sun LY, Steinbaugh MJ, Masternak MM, Bartke A, Miller RA. Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radic Biol Med. 2009;47:1753–61.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Murakami S, Salmon A, Miller RA. Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 2003;17:1565–6.PubMedCrossRef Murakami S, Salmon A, Miller RA. Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 2003;17:1565–6.PubMedCrossRef
50.
Zurück zum Zitat Wang M, Miller RA. Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell. 2012;11:668–74.PubMedPubMedCentralCrossRef Wang M, Miller RA. Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell. 2012;11:668–74.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, et al. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med. 2009;46:1109–18.PubMedPubMedCentralCrossRef Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, et al. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med. 2009;46:1109–18.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Leiser SF, Miller RA. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol. 2010;30:871–84.PubMedCrossRef Leiser SF, Miller RA. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol. 2010;30:871–84.PubMedCrossRef
53.
Zurück zum Zitat Tallaksen-Greene SJ, Sadagurski M, Zeng L, Mauch R, Perkins M, Banduseela VC, et al. Differential effects of delayed aging on phenotype and striatal pathology in a murine model of Huntington disease. J Neurosci. 2014;34:15658–68.PubMedPubMedCentralCrossRef Tallaksen-Greene SJ, Sadagurski M, Zeng L, Mauch R, Perkins M, Banduseela VC, et al. Differential effects of delayed aging on phenotype and striatal pathology in a murine model of Huntington disease. J Neurosci. 2014;34:15658–68.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009;44:26–33.PubMedCrossRef Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009;44:26–33.PubMedCrossRef
55.
Zurück zum Zitat Steinbaugh MJ, Sun LY, Bartke A, Miller RA. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab. 2012;303:E488–95.PubMedPubMedCentralCrossRef Steinbaugh MJ, Sun LY, Bartke A, Miller RA. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab. 2012;303:E488–95.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Perez Millan MI, Brinkmeier ML, Mortensen AH, Camper SA. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells. Elife. 2016;5. Perez Millan MI, Brinkmeier ML, Mortensen AH, Camper SA. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells. Elife. 2016;5.
57.
Zurück zum Zitat Andersen B, Pearse RV 2nd, Jenne K, Sornson M, Lin SC, Bartke A, et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol. 1995;172:495–503.PubMedCrossRef Andersen B, Pearse RV 2nd, Jenne K, Sornson M, Lin SC, Bartke A, et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol. 1995;172:495–503.PubMedCrossRef
58.
Zurück zum Zitat Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development. 1996;122:151–60.PubMed Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development. 1996;122:151–60.PubMed
59.
Zurück zum Zitat Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol. 1996;10:1570–81.PubMed Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol. 1996;10:1570–81.PubMed
60.
Zurück zum Zitat Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, et al. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384:327–33.PubMedCrossRef Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, et al. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384:327–33.PubMedCrossRef
61.
Zurück zum Zitat Dasen JS, Martinez Barbera JP, Herman TS, Connell SO, Olson L, Ju B, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15:3193–207.PubMedPubMedCentralCrossRef Dasen JS, Martinez Barbera JP, Herman TS, Connell SO, Olson L, Ju B, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15:3193–207.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Raetzman LT, Ward R, Camper SA. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development. 2002;129:4229–39.PubMed Raetzman LT, Ward R, Camper SA. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development. 2002;129:4229–39.PubMed
63.
Zurück zum Zitat Kato Y, Murakami Y, Sohmiya M, Nishiki M. Regulation of human growth hormone secretion and its disorders. Intern Med. 2002;41:7–13.PubMedCrossRef Kato Y, Murakami Y, Sohmiya M, Nishiki M. Regulation of human growth hormone secretion and its disorders. Intern Med. 2002;41:7–13.PubMedCrossRef
64.
Zurück zum Zitat Davis SW, Keisler JL, Perez-Millan MI, Schade V, Camper SA. All hormone-producing cell types of the pituitary intermediate and anterior lobes derive from Prop1-expressing progenitors. Endocrinology. 2016;157:1385–96.PubMedPubMedCentralCrossRef Davis SW, Keisler JL, Perez-Millan MI, Schade V, Camper SA. All hormone-producing cell types of the pituitary intermediate and anterior lobes derive from Prop1-expressing progenitors. Endocrinology. 2016;157:1385–96.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Bartke A. Histology of the anterior Hypophysis, Thyroid and Gonads of Two Types of Dwarf Mice. Anat Rec. 1964;149:225–35.PubMedCrossRef Bartke A. Histology of the anterior Hypophysis, Thyroid and Gonads of Two Types of Dwarf Mice. Anat Rec. 1964;149:225–35.PubMedCrossRef
66.
Zurück zum Zitat Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA. Role of PROP1 in pituitary gland growth. Mol Endocrinol. 2005;19:698–710.PubMedCrossRef Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA. Role of PROP1 in pituitary gland growth. Mol Endocrinol. 2005;19:698–710.PubMedCrossRef
67.
Zurück zum Zitat Hurley DL, Wojtkiewicz PW, Phelps CJ. Growth hormone and Pit-1 mRNA detection using reverse transcription-polymerase chain reaction in adult and developing Ames dwarf mice. Recent Prog Horm Res. 1995;50:443–8.PubMed Hurley DL, Wojtkiewicz PW, Phelps CJ. Growth hormone and Pit-1 mRNA detection using reverse transcription-polymerase chain reaction in adult and developing Ames dwarf mice. Recent Prog Horm Res. 1995;50:443–8.PubMed
68.
Zurück zum Zitat Bartke A, Goldman BD, Bex F, Dalterio S. Effects of prolactin (PRL) on pituitary and testicular function in mice with hereditary PRL deficiency. Endocrinology. 1977;101:1760–6.PubMedCrossRef Bartke A, Goldman BD, Bex F, Dalterio S. Effects of prolactin (PRL) on pituitary and testicular function in mice with hereditary PRL deficiency. Endocrinology. 1977;101:1760–6.PubMedCrossRef
69.
Zurück zum Zitat Barkley MS, Bartke A, Gross DS, Sinha YN. Prolactin status of hereditary dwarf mice. Endocrinology. 1982;110:2088–96.PubMedCrossRef Barkley MS, Bartke A, Gross DS, Sinha YN. Prolactin status of hereditary dwarf mice. Endocrinology. 1982;110:2088–96.PubMedCrossRef
70.
Zurück zum Zitat Phillips JA 3rd, Beamer WG, Bartke A. Analysis of growth hormone genes in mice with genetic defects of growth hormone expression. J Endocrinol. 1982;92:405–7.PubMedCrossRef Phillips JA 3rd, Beamer WG, Bartke A. Analysis of growth hormone genes in mice with genetic defects of growth hormone expression. J Endocrinol. 1982;92:405–7.PubMedCrossRef
71.
Zurück zum Zitat Phelps CJ, Carlson SW, Vaccarella MY, Felten SY. Developmental assessment of hypothalamic tuberoinfundibular dopamine in prolactin-deficient dwarf mice. Endocrinology. 1993;132:2715–22.PubMedCrossRef Phelps CJ, Carlson SW, Vaccarella MY, Felten SY. Developmental assessment of hypothalamic tuberoinfundibular dopamine in prolactin-deficient dwarf mice. Endocrinology. 1993;132:2715–22.PubMedCrossRef
72.
Zurück zum Zitat Chandrashekar V, Bartke A. Induction of endogenous insulin-like growth factor-I secretion alters the hypothalamic-pituitary-testicular function in growth hormone-deficient adult dwarf mice. Biol Reprod. 1993;48:544–51.PubMedCrossRef Chandrashekar V, Bartke A. Induction of endogenous insulin-like growth factor-I secretion alters the hypothalamic-pituitary-testicular function in growth hormone-deficient adult dwarf mice. Biol Reprod. 1993;48:544–51.PubMedCrossRef
73.
Zurück zum Zitat Phelps CJ, Dalcik H, Endo H, Talamantes F, Hurley DL. Growth hormone-releasing hormone peptide and mRNA are overexpressed in GH-deficient Ames dwarf mice. Endocrinology. 1993;133:3034–7.PubMedCrossRef Phelps CJ, Dalcik H, Endo H, Talamantes F, Hurley DL. Growth hormone-releasing hormone peptide and mRNA are overexpressed in GH-deficient Ames dwarf mice. Endocrinology. 1993;133:3034–7.PubMedCrossRef
74.
Zurück zum Zitat Gage PJ, Lossie AC, Scarlett LM, Lloyd RV, Camper SA. Ames dwarf mice exhibit somatotrope commitment but lack growth hormone-releasing factor response. Endocrinology. 1995;136:1161–7.PubMedCrossRef Gage PJ, Lossie AC, Scarlett LM, Lloyd RV, Camper SA. Ames dwarf mice exhibit somatotrope commitment but lack growth hormone-releasing factor response. Endocrinology. 1995;136:1161–7.PubMedCrossRef
75.
Zurück zum Zitat Phelps CJ. Pituitary hormones as neurotrophic signals: anomalous hypophysiotrophic neuron differentiation in hypopituitary dwarf mice. Proc Soc Exp Biol Med. 1994;206:6–23.PubMedCrossRef Phelps CJ. Pituitary hormones as neurotrophic signals: anomalous hypophysiotrophic neuron differentiation in hypopituitary dwarf mice. Proc Soc Exp Biol Med. 1994;206:6–23.PubMedCrossRef
76.
Zurück zum Zitat Hurley DL, Wee BE, Phelps CJ. Hypophysiotropic somatostatin expression during postnatal development in growth hormone-deficient Ames dwarf mice: mRNA in situ hybridization. Neuroendocrinology. 1997;65:98–106.PubMedCrossRef Hurley DL, Wee BE, Phelps CJ. Hypophysiotropic somatostatin expression during postnatal development in growth hormone-deficient Ames dwarf mice: mRNA in situ hybridization. Neuroendocrinology. 1997;65:98–106.PubMedCrossRef
77.
Zurück zum Zitat Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384:33.PubMedCrossRef Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384:33.PubMedCrossRef
78.
Zurück zum Zitat Borg KE, Brown-Borg HM, Bartke A. Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med. 1995;210:126–33.PubMedCrossRef Borg KE, Brown-Borg HM, Bartke A. Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med. 1995;210:126–33.PubMedCrossRef
79.
Zurück zum Zitat Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol. 2002;173:81–94.PubMedCrossRef Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Endocrinol. 2002;173:81–94.PubMedCrossRef
80.
Zurück zum Zitat Dominici FP, Argentino DP, Bartke A, Turyn D. The dwarf mutation decreases high dose insulin responses in skeletal muscle, the opposite of effects in liver. Mech Ageing Dev. 2003;124:819–27.PubMedCrossRef Dominici FP, Argentino DP, Bartke A, Turyn D. The dwarf mutation decreases high dose insulin responses in skeletal muscle, the opposite of effects in liver. Mech Ageing Dev. 2003;124:819–27.PubMedCrossRef
81.
Zurück zum Zitat Argentino DP, Dominici FP, Munoz MC, Al-Regaiey K, Bartke A, Turyn D. Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and Ames dwarf (Prop1df/Prop1df) mice. Exp Gerontol. 2005;40:27–35.PubMedCrossRef Argentino DP, Dominici FP, Munoz MC, Al-Regaiey K, Bartke A, Turyn D. Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and Ames dwarf (Prop1df/Prop1df) mice. Exp Gerontol. 2005;40:27–35.PubMedCrossRef
82.
Zurück zum Zitat Brown-Borg HM, Rakoczy S. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice. Exp Gerontol. 2013;48:905–19.PubMedCrossRef Brown-Borg HM, Rakoczy S. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice. Exp Gerontol. 2013;48:905–19.PubMedCrossRef
83.
Zurück zum Zitat Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci. 2006;61:323–31.PubMedCrossRef Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci. 2006;61:323–31.PubMedCrossRef
84.
Zurück zum Zitat Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte. 2017;6:69–75.PubMedPubMedCentralCrossRef Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte. 2017;6:69–75.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Menon V, Zhi X, Hossain T, Bartke A, Spong A, Gesing A, et al. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell. 2014;13:497–506.PubMedPubMedCentralCrossRef Menon V, Zhi X, Hossain T, Bartke A, Spong A, Gesing A, et al. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell. 2014;13:497–506.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell. 2016;15:509–21.PubMedPubMedCentralCrossRef Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell. 2016;15:509–21.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol Behav. 1999;67:433–7.PubMedCrossRef Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol Behav. 1999;67:433–7.PubMedCrossRef
88.
Zurück zum Zitat Darcy J, McFadden S, Fang Y, Huber JA, Zhang C, Sun LY, et al. Brown adipose tissue function is enhanced in long-lived, Male Ames Dwarf Mice. Endocrinology. 2016;157:4744–53.PubMedPubMedCentralCrossRef Darcy J, McFadden S, Fang Y, Huber JA, Zhang C, Sun LY, et al. Brown adipose tissue function is enhanced in long-lived, Male Ames Dwarf Mice. Endocrinology. 2016;157:4744–53.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Tang K, Bartke A, Gardiner CS, Wagner TE, Yun JS. Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames dwarf mice. Endocrinology. 1993;132:2518–24.PubMedCrossRef Tang K, Bartke A, Gardiner CS, Wagner TE, Yun JS. Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames dwarf mice. Endocrinology. 1993;132:2518–24.PubMedCrossRef
90.
Zurück zum Zitat Nasonkin IO, Ward RD, Raetzman LT, Seasholtz AF, Saunders TL, Gillespie PJ, et al. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Hum Mol Genet. 2004;13:2727–35.PubMedCrossRef Nasonkin IO, Ward RD, Raetzman LT, Seasholtz AF, Saunders TL, Gillespie PJ, et al. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Hum Mol Genet. 2004;13:2727–35.PubMedCrossRef
91.
Zurück zum Zitat Saccon TD, Moreira F, Cruz LA, Mondadori RG, Fang Y, Barros CC, et al. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol. 2017;455:23–32.PubMedCrossRef Saccon TD, Moreira F, Cruz LA, Mondadori RG, Fang Y, Barros CC, et al. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol. 2017;455:23–32.PubMedCrossRef
92.
Zurück zum Zitat Schneider A, Matkovich SJ, Saccon T, Victoria B, Spinel L, Lavasani M, et al. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328–36.PubMedCrossRef Schneider A, Matkovich SJ, Saccon T, Victoria B, Spinel L, Lavasani M, et al. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328–36.PubMedCrossRef
93.
Zurück zum Zitat Villanua MA, Szary A, Esquifino AI, Bartke A. Thymostimulin effects on lymphoid organs in Ames dwarf mice. Acta Endocrinol. 1993;128:74–80.CrossRef Villanua MA, Szary A, Esquifino AI, Bartke A. Thymostimulin effects on lymphoid organs in Ames dwarf mice. Acta Endocrinol. 1993;128:74–80.CrossRef
94.
Zurück zum Zitat Hall MA, Bartke A, Martinko JM. Humoral immune response in mice over-expressing or deficient in growth hormone. Exp Biol Med (Maywood). 2002;227:535–44.CrossRef Hall MA, Bartke A, Martinko JM. Humoral immune response in mice over-expressing or deficient in growth hormone. Exp Biol Med (Maywood). 2002;227:535–44.CrossRef
95.
Zurück zum Zitat Capitano ML, Chitteti BR, Cooper S, Srour EF, Bartke A, Broxmeyer HE. Ames hypopituitary dwarf mice demonstrate imbalanced myelopoiesis between bone marrow and spleen. Blood Cells Mol Dis. 2015;55:15–20.PubMedPubMedCentralCrossRef Capitano ML, Chitteti BR, Cooper S, Srour EF, Bartke A, Broxmeyer HE. Ames hypopituitary dwarf mice demonstrate imbalanced myelopoiesis between bone marrow and spleen. Blood Cells Mol Dis. 2015;55:15–20.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Wang X, Darcy J, Cai C, Jin J, Bartke A, Cao D. Intestinal immunity in hypopituitary dwarf mice: effects of age. Aging (Albany NY). 2018;10:358–70.CrossRef Wang X, Darcy J, Cai C, Jin J, Bartke A, Cao D. Intestinal immunity in hypopituitary dwarf mice: effects of age. Aging (Albany NY). 2018;10:358–70.CrossRef
98.
Zurück zum Zitat Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414:412.PubMedCrossRef Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414:412.PubMedCrossRef
99.
Zurück zum Zitat Barger JL, Walford RL, Weindruch R. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol. 2003;38:1343–51.PubMedCrossRef Barger JL, Walford RL, Weindruch R. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol. 2003;38:1343–51.PubMedCrossRef
100.
Zurück zum Zitat Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A. Genetic mouse models of extended lifespan. Exp Gerontol. 2003;38:1353–64.PubMedCrossRef Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A. Genetic mouse models of extended lifespan. Exp Gerontol. 2003;38:1353–64.PubMedCrossRef
101.
Zurück zum Zitat Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J. 2010;24:5073–9.PubMedPubMedCentral Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J. 2010;24:5073–9.PubMedPubMedCentral
102.
Zurück zum Zitat Wilkes EH, Casado P, Rajeeve V, Cutillas PR. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability. Mol Cell Proteomics. 2017;16:1694–704.PubMedPubMedCentralCrossRef Wilkes EH, Casado P, Rajeeve V, Cutillas PR. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability. Mol Cell Proteomics. 2017;16:1694–704.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol. 2000;35:199–212.PubMedCrossRef Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol. 2000;35:199–212.PubMedCrossRef
104.
Zurück zum Zitat Romanick MA, Rakoczy SG, Brown-Borg HM. Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech Ageing Dev. 2004;125:269–81.PubMedCrossRef Romanick MA, Rakoczy SG, Brown-Borg HM. Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech Ageing Dev. 2004;125:269–81.PubMedCrossRef
105.
Zurück zum Zitat Kennedy MA, Rakoczy SG, Brown-Borg HM. Long-living Ames dwarf mouse hepatocytes readily undergo apoptosis. Exp Gerontol. 2003;38:997–1008.PubMedCrossRef Kennedy MA, Rakoczy SG, Brown-Borg HM. Long-living Ames dwarf mouse hepatocytes readily undergo apoptosis. Exp Gerontol. 2003;38:997–1008.PubMedCrossRef
106.
Zurück zum Zitat Brown-Borg HM, Rakoczy SG, Uthus EO. Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mech Ageing Dev. 2005;126:389–98.PubMedCrossRef Brown-Borg HM, Rakoczy SG, Uthus EO. Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mech Ageing Dev. 2005;126:389–98.PubMedCrossRef
107.
Zurück zum Zitat Uthus EO, Brown-Borg HM. Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev. 2006;127:444–50.PubMedPubMedCentralCrossRef Uthus EO, Brown-Borg HM. Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev. 2006;127:444–50.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Uthus EO, Brown-Borg HM. Altered methionine metabolism in long living Ames dwarf mice. Exp Gerontol. 2003;38:491–8.PubMedCrossRef Uthus EO, Brown-Borg HM. Altered methionine metabolism in long living Ames dwarf mice. Exp Gerontol. 2003;38:491–8.PubMedCrossRef
109.
Zurück zum Zitat Brown-Borg HM, Rakoczy SG, Wonderlich JA, Rojanathammanee L, Kopchick JJ, Armstrong V, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13:1019–27.PubMedPubMedCentralCrossRef Brown-Borg HM, Rakoczy SG, Wonderlich JA, Rojanathammanee L, Kopchick JJ, Armstrong V, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13:1019–27.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Brown-Borg HM, Rakoczy SG. Glutathione metabolism in long-living Ames dwarf mice. Exp Gerontol. 2005;40:115–20.PubMedCrossRef Brown-Borg HM, Rakoczy SG. Glutathione metabolism in long-living Ames dwarf mice. Exp Gerontol. 2005;40:115–20.PubMedCrossRef
111.
Zurück zum Zitat Choksi KB, Roberts LJ 2nd, DeFord JH, Rabek JP, Papaconstantinou J. Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochem Biophys Res Commun. 2007;364:761–4.PubMedPubMedCentralCrossRef Choksi KB, Roberts LJ 2nd, DeFord JH, Rabek JP, Papaconstantinou J. Lower levels of F2-isoprostanes in serum and livers of long-lived Ames dwarf mice. Biochem Biophys Res Commun. 2007;364:761–4.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Lee C, Wan J, Miyazaki B, Fang Y, Guevara-Aguirre J, Yen K, et al. IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell. 2014;13:958–61.PubMedPubMedCentralCrossRef Lee C, Wan J, Miyazaki B, Fang Y, Guevara-Aguirre J, Yen K, et al. IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell. 2014;13:958–61.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab. 2005;289:E23–9.PubMedCrossRef Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab. 2005;289:E23–9.PubMedCrossRef
114.
Zurück zum Zitat Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, et al. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol. 2008;295:H1882–94.PubMedPubMedCentralCrossRef Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, et al. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol. 2008;295:H1882–94.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Kinney BA, Meliska CJ, Steger RW, Bartke A. Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters. Horm Behav. 2001;39:277–84.PubMedCrossRef Kinney BA, Meliska CJ, Steger RW, Bartke A. Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters. Horm Behav. 2001;39:277–84.PubMedCrossRef
116.
Zurück zum Zitat Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci. 2003;58:291–6.PubMedCrossRef Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci. 2003;58:291–6.PubMedCrossRef
117.
Zurück zum Zitat Arum O, Rasche ZA, Rickman DJ, Bartke A. Prevention of neuromusculoskeletal frailty in slow-aging Ames dwarf mice: longitudinal investigation of interaction of longevity genes and caloric restriction. PLoS One. 2013;8:e72255.PubMedPubMedCentralCrossRef Arum O, Rasche ZA, Rickman DJ, Bartke A. Prevention of neuromusculoskeletal frailty in slow-aging Ames dwarf mice: longitudinal investigation of interaction of longevity genes and caloric restriction. PLoS One. 2013;8:e72255.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A. Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav. 2004;80:589–94.PubMedCrossRef Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A. Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav. 2004;80:589–94.PubMedCrossRef
119.
Zurück zum Zitat Ebadi M, Brown-Borg H, El Refaey H, Singh BB, Garrett S, Shavali S, et al. Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson's disease. Brain Res Mol Brain Res. 2005;134:67–75.PubMedPubMedCentralCrossRef Ebadi M, Brown-Borg H, El Refaey H, Singh BB, Garrett S, Shavali S, et al. Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson's disease. Brain Res Mol Brain Res. 2005;134:67–75.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Sun LY, Evans MS, Hsieh J, Panici J, Bartke A. Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice. Endocrinology. 2005;146:1138–44.PubMedCrossRef Sun LY, Evans MS, Hsieh J, Panici J, Bartke A. Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice. Endocrinology. 2005;146:1138–44.PubMedCrossRef
121.
Zurück zum Zitat Sharma S, Rakoczy S, Dahlheimer K, Brown-Borg H. The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress. Exp Gerontol. 2010;45:936–49.PubMedPubMedCentralCrossRef Sharma S, Rakoczy S, Dahlheimer K, Brown-Borg H. The hippocampus of Ames dwarf mice exhibits enhanced antioxidative defenses following kainic acid-induced oxidative stress. Exp Gerontol. 2010;45:936–49.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. Cancer Drug Resist. 2019;2:827–46.PubMedPubMedCentral Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. Cancer Drug Resist. 2019;2:827–46.PubMedPubMedCentral
123.
Zurück zum Zitat (2016) Correction for Chesnokova et al., Growth hormone is permissive for neoplastic colon growth, Proc Natl Acad Sci U S A 113, E5251. (2016) Correction for Chesnokova et al., Growth hormone is permissive for neoplastic colon growth, Proc Natl Acad Sci U S A 113, E5251.
124.
Zurück zum Zitat Chesnokova V, Zonis S, Zhou C, Recouvreux MV, Ben-Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250–9.PubMedPubMedCentralCrossRef Chesnokova V, Zonis S, Zhou C, Recouvreux MV, Ben-Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250–9.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Dhahbi J, Li X, Tran T, Masternak MM, Bartke A. Circulating blood leukocyte gene expression profiles: effects of the Ames dwarf mutation on pathways related to immunity and inflammation. Exp Gerontol. 2007;42:772–88.PubMedPubMedCentralCrossRef Dhahbi J, Li X, Tran T, Masternak MM, Bartke A. Circulating blood leukocyte gene expression profiles: effects of the Ames dwarf mutation on pathways related to immunity and inflammation. Exp Gerontol. 2007;42:772–88.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet. 1993;4:227–32.PubMedCrossRef Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet. 1993;4:227–32.PubMedCrossRef
127.
Zurück zum Zitat Gaylinn BD, Dealmeida VI, Lyons CE Jr, Wu KC, Mayo KE, Thorner MO. The mutant growth hormone-releasing hormone (GHRH) receptor of the little mouse does not bind GHRH. Endocrinology. 1999;140:5066–74.PubMedCrossRef Gaylinn BD, Dealmeida VI, Lyons CE Jr, Wu KC, Mayo KE, Thorner MO. The mutant growth hormone-releasing hormone (GHRH) receptor of the little mouse does not bind GHRH. Endocrinology. 1999;140:5066–74.PubMedCrossRef
128.
Zurück zum Zitat Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature. 1993;364:208–13.PubMedCrossRef Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature. 1993;364:208–13.PubMedCrossRef
129.
Zurück zum Zitat Lehman DM, Hale DE, Cody JT, Harrison JM, Leach RJ. Molecular, morphometric and functional analyses demonstrate that the growth hormone deficient little mouse is not hypomyelinated. Brain Res Dev Brain Res. 1999;116:191–9.PubMedCrossRef Lehman DM, Hale DE, Cody JT, Harrison JM, Leach RJ. Molecular, morphometric and functional analyses demonstrate that the growth hormone deficient little mouse is not hypomyelinated. Brain Res Dev Brain Res. 1999;116:191–9.PubMedCrossRef
130.
Zurück zum Zitat Donahue LR, Beamer WG. Growth hormone deficiency in 'little' mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, −1 or −4. J Endocrinol. 1993;136:91–104.PubMedCrossRef Donahue LR, Beamer WG. Growth hormone deficiency in 'little' mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, −1 or −4. J Endocrinol. 1993;136:91–104.PubMedCrossRef
131.
Zurück zum Zitat Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, et al. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology. 2003;144:929–36.PubMedPubMedCentralCrossRef Mohan S, Richman C, Guo R, Amaar Y, Donahue LR, Wergedal J, et al. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and -independent mechanisms. Endocrinology. 2003;144:929–36.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Christensen E, Wilson DB. Fine structure of somatotrophs and mammotrophs in the pituitary pars distalis of the little (lit) mutant mouse. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981;37:89–96.PubMedCrossRef Christensen E, Wilson DB. Fine structure of somatotrophs and mammotrophs in the pituitary pars distalis of the little (lit) mutant mouse. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981;37:89–96.PubMedCrossRef
133.
Zurück zum Zitat Kasukawa Y, Baylink DJ, Guo R, Mohan S. Evidence that sensitivity to growth hormone (GH) is growth period and tissue type dependent: studies in GH-deficient lit/lit mice. Endocrinology. 2003;144:3950–7.PubMedPubMedCentralCrossRef Kasukawa Y, Baylink DJ, Guo R, Mohan S. Evidence that sensitivity to growth hormone (GH) is growth period and tissue type dependent: studies in GH-deficient lit/lit mice. Endocrinology. 2003;144:3950–7.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Wong JH, Dukes J, Levy RE, Sos B, Mason SE, Fong TS, et al. Sex differences in thrombosis in mice are mediated by sex-specific growth hormone secretion patterns. J Clin Invest. 2008;118:2969–78.PubMedPubMedCentral Wong JH, Dukes J, Levy RE, Sos B, Mason SE, Fong TS, et al. Sex differences in thrombosis in mice are mediated by sex-specific growth hormone secretion patterns. J Clin Invest. 2008;118:2969–78.PubMedPubMedCentral
135.
Zurück zum Zitat Fleenor D, Oden J, Kelly PA, Mohan S, Alliouachene S, Pende M, et al. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: studies of a novel mouse model combining lactogen resistance and growth hormone deficiency. Endocrinology. 2005;146:103–12.PubMedCrossRef Fleenor D, Oden J, Kelly PA, Mohan S, Alliouachene S, Pende M, et al. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: studies of a novel mouse model combining lactogen resistance and growth hormone deficiency. Endocrinology. 2005;146:103–12.PubMedCrossRef
136.
Zurück zum Zitat del Rincon JP, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, Barbour LA, et al. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes. 2007;56:1638–46.PubMedCrossRef del Rincon JP, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, Barbour LA, et al. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes. 2007;56:1638–46.PubMedCrossRef
137.
Zurück zum Zitat Foster MP, Jensen ER, Montecino-Rodriguez E, Leathers H, Horseman N, Dorshkind K. Humoral and cell-mediated immunity in mice with genetic deficiencies of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormone. Clin Immunol. 2000;96:140–9.PubMedCrossRef Foster MP, Jensen ER, Montecino-Rodriguez E, Leathers H, Horseman N, Dorshkind K. Humoral and cell-mediated immunity in mice with genetic deficiencies of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormone. Clin Immunol. 2000;96:140–9.PubMedCrossRef
138.
Zurück zum Zitat Amador-Noguez D, Yagi K, Venable S, Darlington G. Gene expression profile of long-lived Ames dwarf mice and little mice. Aging Cell. 2004;3:423–41.PubMedCrossRef Amador-Noguez D, Yagi K, Venable S, Darlington G. Gene expression profile of long-lived Ames dwarf mice and little mice. Aging Cell. 2004;3:423–41.PubMedCrossRef
139.
Zurück zum Zitat Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D, Darlington G. Alterations in xenobiotic metabolism in the long-lived little mice. Aging Cell. 2007;6:453–70.PubMedPubMedCentralCrossRef Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D, Darlington G. Alterations in xenobiotic metabolism in the long-lived little mice. Aging Cell. 2007;6:453–70.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Yang XF, Beamer WG, Huynh H, Pollak M. Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res. 1996;56:1509–11.PubMed Yang XF, Beamer WG, Huynh H, Pollak M. Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res. 1996;56:1509–11.PubMed
141.
Zurück zum Zitat Takahara K, Tearle H, Ghaffari M, Gleave ME, Pollak M, Cox ME. Human prostate cancer xenografts in lit/lit mice exhibit reduced growth and androgen-independent progression. Prostate. 2011;71:525–37.PubMedCrossRef Takahara K, Tearle H, Ghaffari M, Gleave ME, Pollak M, Cox ME. Human prostate cancer xenografts in lit/lit mice exhibit reduced growth and androgen-independent progression. Prostate. 2011;71:525–37.PubMedCrossRef
142.
Zurück zum Zitat Deitel K, Dantzer D, Ferguson P, Pollak M, Beamer W, Andrulis I, et al. Reduced growth of human sarcoma xenografts in hosts homozygous for the lit mutation. J Surg Oncol. 2002;81:75–9.PubMedCrossRef Deitel K, Dantzer D, Ferguson P, Pollak M, Beamer W, Andrulis I, et al. Reduced growth of human sarcoma xenografts in hosts homozygous for the lit mutation. J Surg Oncol. 2002;81:75–9.PubMedCrossRef
143.
Zurück zum Zitat Alba M, Fintini D, Bowers CY, Parlow AF, Salvatori R. Effects of long-term treatment with growth hormone-releasing peptide-2 in the GHRH knockout mouse. Am J Physiol Endocrinol Metab. 2005;289:E762–7.PubMedCrossRef Alba M, Fintini D, Bowers CY, Parlow AF, Salvatori R. Effects of long-term treatment with growth hormone-releasing peptide-2 in the GHRH knockout mouse. Am J Physiol Endocrinol Metab. 2005;289:E762–7.PubMedCrossRef
144.
Zurück zum Zitat Alonso JR, Sanchez F, Arevalo R, Carretero J, Aijon J, Vazquez R. CaBP D-28k and NADPH-diaphorase coexistence in the magnocellular neurosecretory nuclei. Neuroreport. 1992;3:249–52.PubMedCrossRef Alonso JR, Sanchez F, Arevalo R, Carretero J, Aijon J, Vazquez R. CaBP D-28k and NADPH-diaphorase coexistence in the magnocellular neurosecretory nuclei. Neuroreport. 1992;3:249–52.PubMedCrossRef
145.
Zurück zum Zitat Matzkin ME, Miquet JG, Fang Y, Hill CM, Turyn D, Calandra RS, et al. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes. Aging (Albany NY). 2016;8:95–110.CrossRef Matzkin ME, Miquet JG, Fang Y, Hill CM, Turyn D, Calandra RS, et al. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes. Aging (Albany NY). 2016;8:95–110.CrossRef
146.
Zurück zum Zitat Sun LY, Spong A, Swindell WR, Fang Y, Hill C, Huber JA, et al. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. Elife. 2013;2:e01098.PubMedPubMedCentralCrossRef Sun LY, Spong A, Swindell WR, Fang Y, Hill C, Huber JA, et al. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. Elife. 2013;2:e01098.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Recinella L, Shohreh R, Salvatori R, Orlando G, Vacca M, Brunetti L. Effects of isolated GH deficiency on adipose tissue, feeding and adipokines in mice. Growth Hormon IGF Res. 2013;23:237–42.CrossRef Recinella L, Shohreh R, Salvatori R, Orlando G, Vacca M, Brunetti L. Effects of isolated GH deficiency on adipose tissue, feeding and adipokines in mice. Growth Hormon IGF Res. 2013;23:237–42.CrossRef
148.
Zurück zum Zitat Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, et al. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Hormon IGF Res. 2015;25:80–4.CrossRef Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, et al. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Hormon IGF Res. 2015;25:80–4.CrossRef
149.
Zurück zum Zitat Fintini D, Alba M, Schally AV, Bowers CY, Parlow AF, Salvatori R. Effects of combined long-term treatment with a growth hormone-releasing hormone analogue and a growth hormone secretagogue in the growth hormone-releasing hormone knock out mouse. Neuroendocrinology. 2005;82:198–207.PubMedCrossRef Fintini D, Alba M, Schally AV, Bowers CY, Parlow AF, Salvatori R. Effects of combined long-term treatment with a growth hormone-releasing hormone analogue and a growth hormone secretagogue in the growth hormone-releasing hormone knock out mouse. Neuroendocrinology. 2005;82:198–207.PubMedCrossRef
150.
Zurück zum Zitat Bodart G, Farhat K, Renard-Charlet C, Becker G, Plenevaux A, Salvatori R, et al. The severe deficiency of the Somatotrope GH-releasing hormone/growth hormone/insulin-like growth factor 1 Axis of Ghrh(−/−) mice is associated with an important splenic atrophy and relative B Lymphopenia. Front Endocrinol (Lausanne). 2018;9:296.CrossRef Bodart G, Farhat K, Renard-Charlet C, Becker G, Plenevaux A, Salvatori R, et al. The severe deficiency of the Somatotrope GH-releasing hormone/growth hormone/insulin-like growth factor 1 Axis of Ghrh(−/−) mice is associated with an important splenic atrophy and relative B Lymphopenia. Front Endocrinol (Lausanne). 2018;9:296.CrossRef
151.
Zurück zum Zitat Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, et al. Growth hormone (GH) deficient mice with GHRH gene ablation are severely deficient in vaccine and immune responses against Streptococcus pneumoniae. Front Immunol. 2018;9:2175.PubMedPubMedCentralCrossRef Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, et al. Growth hormone (GH) deficient mice with GHRH gene ablation are severely deficient in vaccine and immune responses against Streptococcus pneumoniae. Front Immunol. 2018;9:2175.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Shohreh R, Pardo CA, Guaraldi F, Schally AV, Salvatori R. GH, but not GHRH, plays a role in the development of experimental autoimmune encephalomyelitis. Endocrinology. 2011;152:3803–10.PubMedCrossRef Shohreh R, Pardo CA, Guaraldi F, Schally AV, Salvatori R. GH, but not GHRH, plays a role in the development of experimental autoimmune encephalomyelitis. Endocrinology. 2011;152:3803–10.PubMedCrossRef
153.
Zurück zum Zitat Leone S, Shohreh R, Manippa F, Recinella L, Ferrante C, Orlando G, et al. Behavioural phenotyping of male growth hormone-releasing hormone (GHRH) knockout mice. Growth Hormon IGF Res. 2014;24:192–7.CrossRef Leone S, Shohreh R, Manippa F, Recinella L, Ferrante C, Orlando G, et al. Behavioural phenotyping of male growth hormone-releasing hormone (GHRH) knockout mice. Growth Hormon IGF Res. 2014;24:192–7.CrossRef
154.
Zurück zum Zitat Leone S, Recinella L, Chiavaroli A, Ferrante C, Orlando G, Vacca M, et al. Behavioural phenotyping, learning and memory in young and aged growth hormone-releasing hormone-knockout mice. Endocr Connect. 2018;7:924–31.PubMedPubMedCentralCrossRef Leone S, Recinella L, Chiavaroli A, Ferrante C, Orlando G, Vacca M, et al. Behavioural phenotyping, learning and memory in young and aged growth hormone-releasing hormone-knockout mice. Endocr Connect. 2018;7:924–31.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Recinella L, Leone S, Ferrante C, Chiavaroli A, Shohreh R, Di Nisio C, et al. Effects of growth hormone-releasing hormone gene targeted ablation on ghrelin-induced feeding. Growth Hormon IGF Res. 2017;37:40–6.CrossRef Recinella L, Leone S, Ferrante C, Chiavaroli A, Shohreh R, Di Nisio C, et al. Effects of growth hormone-releasing hormone gene targeted ablation on ghrelin-induced feeding. Growth Hormon IGF Res. 2017;37:40–6.CrossRef
156.
Zurück zum Zitat Jensen, E. A., Young, J. A., Jackson, Z., Busken, J., List, E. O., Carroll, R. K., Kopchick, J. J., Murphy, E. R., and Berryman, D. E. (2020) Growth hormone deficiency and excess Alter the gut microbiome in adult male mice, Endocrinology 161. Jensen, E. A., Young, J. A., Jackson, Z., Busken, J., List, E. O., Carroll, R. K., Kopchick, J. J., Murphy, E. R., and Berryman, D. E. (2020) Growth hormone deficiency and excess Alter the gut microbiome in adult male mice, Endocrinology 161.
Metadaten
Titel
Mouse models of growth hormone deficiency
verfasst von
Edward O. List
Reetobrata Basu
Silvana Duran-Ortiz
Jackson Krejsa
Elizabeth A. Jensen
Publikationsdatum
09.10.2020
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 1/2021
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-020-09601-5

Weitere Artikel der Ausgabe 1/2021

Reviews in Endocrine and Metabolic Disorders 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.