Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2023

Open Access 01.12.2023 | Research

Genetic polymorphisms of CYP24A1 gene and cancer susceptibility: a meta-analysis including 40640 subjects

verfasst von: Yubin Wang, Ruiwen Wang, Shaofei Yuan, Xiaotang Liu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2023

Abstract

Background

Whether cytochrome P450 24A1 (CYP24A1) polymorphism is associated with cancer susceptibility, the individual study results are still controversial. Therefore, we performed a comprehensive study to identify the association of CYP24A1 polymorphisms (rs4809960, rs6068816, rs2296241, rs4809957, rs2762939) with cancer susceptibility.

Methods

Electronic databases including Cochrane Library, PubMed, and Embase were systematically retrieved for relevant publications. Fixed or random-effect model was selected to calculate odds ratios (ORs) with their 95% confidence intervals (95%CI).

Results

Eighteen published articles were identified. The results indicated that rs4809960 polymorphism was associated with a decreased cancer risk in Caucasian (TT vs. TC+CC: P=0.035; C vs. T: P=0.016) and Asian population (CC vs. TC+TT: OR P=0.044; TT vs. TC+CC: P=0.021; CC vs. TT: P=0.020; C vs. T: P=0.008) and breast cancer risk (TT vs. TC+CC: P = 0.007; TC vs. TT: P=0.004; C vs. T: P=0.033). A significant association was found between rs2296241 polymorphism and esophageal squamous cell carcinoma risk (AA vs. GG+AG: P = 0.023) and prostate cancer susceptibility (A vs. G: P=0.022). Furthermore, rs4809957 polymorphism was associated with prostate cancer susceptibility in Caucasian (GG vs. GA+AA: P=0.029; GA vs. GG: P=0.022) and breast cancer susceptibility (AA vs. GG+GA: P=0.012; AA vs. GG, P=0.010; A vs. G: P=0.024). Additionally, rs6068816 polymorphism significantly decreased the lung cancer (CC vs. CT+TT: P = 0.016; TT vs. CC: P = 0.044; CT vs. CC: P = 0.036; T vs. C: P = 0.016) and breast cancer risk (TT vs. CC+CT: P = 0.043; TT vs. CC: P = 0.039). No association was found for rs2762939 polymorphism with overall cancer risk. However, for rs2296241, rs4809957, and rs6068816 polymorphisms, there were no significant differences after the Bonferroni correction.

Conclusion

The meta-analysis suggested that rs4809960 was associated with cancer risk and might be a genetic marker for predicting cancer risk. More large-scale and large-sample studies are necessary to further confirm these results.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12957-023-03156-w.
Yubin Wang and Ruiwen Wang have contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CYP24A1
Cytochrome P450 24A1
CI
Confidence interval
GWAS
Genome-wide association studies
HWE
Hardy-Weinberg equilibrium
NOS
Newcastle-Ottawa Scale
OR
Odds ratio
SNPs
Single-nucleotide polymorphisms

Introduction

Cancer is a global public health problem, and incidence and mortality are rapidly growing worldwide. According to the data of the International Agency for Research on Cancer, GLOBOCAN 2020 investigation results showed 19.3 million new cancer cases and 10.0 million cancer deaths in 2020 [1]. In 2023, it is estimated that there will be 1,958,310 new cancer cases and 609,820 cancer-related deaths in the USA [2]. With the rapid growth and aging of the world population, the predominance of cancer is a leading cause of death. Current evidence suggests that factors, such as irregular lifestyles, smoking, alcohol intake, environmental factors, and genetic factors, are closely associated with the occurrence of cancer [1, 2]. Accumulative evidence has demonstrated that genetic factors may be associated with the etiology of cancer and the individual’s risk of cancer development, especially whole-genome association studies (GWAS) have identified various genes that may be involved in cancer development [3, 4].
Vitamin D, an essential fat-soluble vitamin, is mainly come from ultraviolet exposure and diet metabolism [5]. Meanwhile, it plays critical roles in cellular growth and anti-proliferative activities [6]. Clinical studies have indicated that vitamin D deficiency contributed to cancer risk, including prostate cancer, breast cancer, and thyroid carcinoma [7]. 25 hydroxy vitamin D (25(OH)D) is the main circulating form of vitamin D. In addition, 1,25 dihydroxy vitamin D (1,25(OH)2D3), an active form of vitamin D, which is associated with cell functions and gene expression. In the process of vitamin D metabolism, 25(OH)D and 1,25(OH)2D3 are converted to 24,25 dihydroxy vitamin D (24,25(OH)2D3) and 1,24,25 trihydroxy vitamin D (1,24,25(OH)3D3), respectively, which are degraded by 25-hydroxyvitamin D 24-hydrolase (encoded by CYP24A1 gene) [8]. Mutation of CYP24A1 may influence the metabolism of Vitamin D and anti-proliferative effects [9, 10].
Single-nucleotide polymorphisms (SNPs) are the most common form of variation in the human genome, which can alter the expression level or function of genes or their encoded products and thus determine the phenotype of the organism [11, 12]. Therefore, it is increasingly recognized that SNPs play a crucial role in the mechanisms of cancer [13]. Epidemiological studies have demonstrated that several common SNPs of CYP24A1 are involved in the concentration of circulating 25(OH)D [14]. To date, five common SNPs (rs4809960, rs6068816, rs2296241, rs4809957, rs2762939) were found to be associated with cancer risk, including esophageal squamous cell carcinoma prostate cancer, breast cancer, and lung cancer [5, 14, 15]. However, controversial results were reported and the association was not yet well established. Therefore, a comprehensive meta-analysis was performed to better explore the associations of CYP24A1 polymorphisms with cancer risk.

Materials and methods

This study was performed under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and was registered in PROSPERO (CRD42023446451).

Search strategy

The relevant paper was identified (published until Feb. 2023) through Embase, PubMed, and Cochrane Library using the following strategy: (CYP24A1 or rs2296241 or rs4809957 or rs2762939 or rs4809960 or rs6068816) and (polymorphism or SNP or variant or variation or mutation or genotype) and (cancer or carcinoma or tumor or neoplasm). In addition, other potential publications were also searched by scanning the reference list. The details of the search strategy can be found in Supplementary Table 1.

Inclusion and exclusion criteria

Relevant studies were included according to the following criteria: (1) case-control studies, (2) evaluated the association between CYP24A1 polymorphism and cancer risk, (3) provided sufficient data to calculate the OR with 95%CI, and (4) control group conform to the Hardy–Weinberg equilibrium (HWE). The exclusion criteria were (1) review, abstract, comment, or letter; (2) duplication publications; and (3) relevant data not reported. In addition, for studies with repeat data, the study with the largest sample size was included. Each ethnicity was regarded as a separate study when different ethnicities were reported in a study.

Data extraction and quality assessment

Two authors independently extracted relevant data from the included studies. The extraction parameters included the first author, publication year, country, ethnicity, sample size, cancer type, genotype, and allele distribution in cases and controls, and the P value of HWE in the control group, methodology quality of each study was assessed according to the Newcastle–Ottawa Scale (NOS).

Statistical analyses

HWE was assessed by the chi-square test. The ORs and 95%CIs were calculated to evaluate the strength under allelic, recessive, dominant, homozygous, and heterozygous models. The P value of < 0.05 was considered as statistically significant. The chi-square test and I2 statistics were calculated to evaluate the heterogeneity across studies. If heterogeneity was found (P<0.10 or I2> 50%), the random-effect model was adopted. Otherwise, the fixed-effect model was adopted. Bonferroni correction was performed to adjust multiple-test P value [16]. Sensitivity analyses were performed to evaluate the stability of the results. Stratified analyses were performed by cancer type and ethnicity. Begg’s and Egger’s test was used to assess publication bias. Statistical analyses were completed using Stata 12.0 software (StataCorp, College Station, TX).

Results

Characteristics of the included studies

A total of 258 articles were retrieved in the initial search. Finally, a total of 18 articles [14, 15, 1732] (19,017 cancer patients and 21,623 controls) were identified (Fig. 1). Among these 18 articles, nine publications about rs2296241 polymorphism, four publications focused on rs4809957 polymorphism, four on rs2762939 polymorphism, six on rs4809960 polymorphism, and six on rs6068816 polymorphism. In addition, four studies focused on prostate cancer, three on lung cancer, five on breast cancer, one on thyroid carcinoma, three on colorectal cancer, one on esophageal squamous cell carcinoma, and one on pancreas cancer. The characteristics of the included studies were described in Table 1.
Table 1
The main characteristics of the included studies
First author
Year
Country
Ethnicity
Cancer type
Sample size
Case
Controls
HWE (control)
Case
Control
AA
AB
BB
AA
AB
BB
rs2296241
 Holt a
2009
USA
Caucasian
Prostate cancer
692
705
166
356
170
151
371
183
0.147
 Holt b
2009
USA
African
Prostate cancer
112
66
25
50
37
12
39
15
0.134
 Wu
2017
China
Asian
Lung cancer
426
445
119
230
77
114
227
104
0.662
 Holick
2007
UK
Caucasian
Prostate cancer
571
539
134
285
152
107
275
157
0.497
 McCullough
2007
USA
Caucasian
Breast cancer
494
490
99
254
141
98
253
139
0.377
 Penna-Martinez PTC
2012
Germany
Caucasian
Thyroid carcinoma
205
302
47
101
57
62
151
89
0.889
 Penna-Martinez FTC
2012
Germany
Caucasian
Thyroid carcinoma
48
302
17
22
9
62
151
89
0.889
 Yang
2017
China
Asian
ESCC
569
556
116
263
190
113
292
151
0.192
 Anderson
2011
Canada
Caucasian
Breast cancer
1556
1630
330
777
449
371
791
468
0.294
 Oh
2009
Korea
Asian
Prostate cancer
272
173
64(A%)
36(B%)
 
55.8(A%)
44.2(B%)
  
 Beuten
2011
USA
Caucasian
Prostate cancer
609
348
48.4(A%)
51.6(B%)
 
47(A%)
53(B%)
  
 Beuten
2011
USA
Caucasian
Prostate cancer
195
514
55.4(A%)
44.6(B%)
 
55.9(A%)
44.1(B%)
  
 Beuten
2011
USA
African
Prostate cancer
82
109
54.9(A%)
45.1(B%)
 
49.7(A%)
50.3(B%)
  
rs4809957
 Anderson
2013
Canada
Caucasian
Pancreas cancer
627
1189
362
232
33
749
377
63
0.088
 Zhuo
2018
China
Asian
Lung cancer
322
384
124
152
46
143
185
56
0.759
 Gong
2017
China
Asian
Colorectal cancer
524
595
206
260
58
230
295
70
0.093
 Wei
2019
China
Asian
Breast cancer
378
402
134
180
64
162
197
43
0.144
rs2762939
 Holt a
2009
USA
Caucasian
Prostate cancer
702
715
380
272
50
376
294
45
0.324
 Holt b
2009
USA
African
Prostate cancer
114
67
29
48
37
13
32
22
0.824
 Wu
2017
China
Asian
Lung cancer
426
445
160
192
74
156
220
69
0.553
 Holick
2007
UK
Caucasian
Prostate cancer
568
539
319
212
37
300
196
43
0.173
 Reimers
2015
USA
Caucasian
Breast cancer
921
970
514
348
59
560
353
57
0.889
rs4809960
 Holick
2007
UK
Caucasian
Prostate cancer
586
544
329
230
27
323
184
37
0.129
 Holt a
2009
USA
Caucasian
Prostate cancer
697
693
432
220
45
387
260
46
0.794
 Holt b
2009
USA
African
Prostate cancer
112
63
93
18
1
46
17
0
0.216
 Reimers
2015
USA
Caucasian
Breast cancer
948
989
522
342
84
512
395
82
0.637
 Clendenen
2015
Sweden
Caucasian
Breast cancer
733
1433
479
218
36
861
496
76
0.679
 Sadeghi
2020
Iran
Caucasian
Colorectal cancer
220
243
119
95
6
105
119
19
0.062
 Yi
2019
China
Asian
Colorectal cancer
787
800
415
311
61
468
290
42
0.736
rs6068816
 Holick
2007
UK
Caucasian
Prostate cancer
583
544
454
118
11
443
93
8
0.227
 Holt a
2009
USA
Caucasian
Prostate Cancer
699
712
558
135
6
580
127
5
0.493
 Reimers
2015
USA
Caucasian
Breast cancer
948
990
778
164
6
784
189
17
0.158
 Clendenen
2015
Sweden
Caucasian
Breast cancer
733
1432
590
136
7
1149
264
19
0.389
 Yi
2019
China
Asian
Colorectal cancer
787
800
342
354
91
362
348
90
0.645
 Qu
2019
China
Asian
Lung cancer
345
351
160
155
30
131
178
42
0.116
HWE Hardy–Weinberg equilibrium, ESCC Esophageal squamous cell carcinoma, a Caucasian population, b African population, A wild type allele, B Mutated type allele

Meta-analysis of rs4809960

Six publications [21, 26, 3033] including seven studies (4509 cancer patients and 5210 controls) examined rs4809960 polymorphism. As shown in Table 2, no significant association between rs4809960 polymorphism and overall cancer susceptibility (Table 2). Subgroup analyses by ethnicity indicated that rs4809960 polymorphism was related to Caucasian population (TT vs. TC+CC: OR 1.18, 95%CI 1.01~1.37, P=0.035; C vs. T: OR 0.88, 95%CI 0.79~0.98, P=0.016) and Asian population (CC vs. TC+TT: OR 1.52, 95%CI 1.01~2.28, P=0.044; TT vs. TC+CC: OR 0.79, 95%CI 0.65~0.97, P=0.021; CC vs. TT: OR 1.52, 95%CI 1.08~2.48, P=0.020; C vs. T: OR 1.24, 95%CI 1.06~1.46, P=0.008). Subgroup analyses by cancer type revealed that rs4809960 polymorphism decreased breast cancer risk (TT vs. TC+CC: OR 1.19, 95%CI 1.05~1.36, P = 0.007; TC vs. TT: OR 0.82, 95%CI 0.72~0.94, P=0.004; C vs. T: OR 0.89, 95%CI 0.80~0.99, P=0.033). However, we only observed that rs4809960 polymorphism was significantly associated with the risk of breast cancer after Bonferroni correction.
Table 2
Summary of meta-analysis of association of rs4809960 polymorphism and cancer risk
Comparison
 
Studies
Overall effect
Heterogeneity
OR (95% CI)
Z score
p value
padjust
I2 (%)
p value
CC vs. TC+TT
Overall
7
0.94 (0.71, 1.24)
0.43
0.667
1.000
51.6
0.054
Caucasian
5
0.85 (0.65, 1.12)
1.14
0.255
1.000
43.9
0.129
African
1
1.71 (0.07, 42.57)
0.33
0.744
1.000
-
-
Asian
1
1.52 (1.01, 2.28)
2.01
0.044
0.308
-
-
Prostate cancer
3
0.84 (0.60, 1.16)
1.08
0.280
1.000
0
0.480
Breast cancer
2
1.01 (0.79, 1.30)
0.11
0.911
1.000
0
0.560
Colorectal cancer
2
0.75 (0.17, 3.34)
0.37
0.708
1.000
88.4
0.003
TT vs. TC+CC
Overall
7
1.13 (0.94, 1.36)
1.30
0.192
1.000
74.3
0.001
Caucasian
5
1.18 (1.01, 1.37)
2.10
0.035
0.245
57.4
0.052
African
1
1.81 (0.86, 3.81)
1.56
0.118
0.826
-
-
Asian
1
0.79 (0.65, 0.97)
2.31
0.021
0.147
-
-
Prostate cancer
3
1.16 (0.81, 1.65)
0.82
0.415
1.000
72.9
0.025
Breast cancer
2
1.19 (1.05, 1.36)
2.70
0.007
0.049
0
0.479
Colorectal cancer
2
1.09 (0.56, 2.10)
0.25
0.804
1.000
89.9
0.002
CC vs. TT
Overall
7
0.90 (0.66, 1.23)
0.68
0.498
1.000
59.2
0.023
Caucasian
5
0.81 (0.62, 1.06)
1.55
0.121
0.847
40.2
0.153
African
1
1.49 (0.06, 37.34)
0.24
0.808
1.000
-
-
Asian
1
1.64 (1.08, 2.48)
2.33
0.020
0.140
-
-
Prostate cancer
3
0.81 (0.58, 1.13)
1.23
0.218
1.000
0
0.787
Breast cancer
2
0.94 (0.73, 1.22)
0.45
0.650
1.000
0
0.538
Colorectal cancer
2
0.71 (0.13, 4.05)
0.38
0.703
1.000
91.1
0.001
TC vs. TC+TT
Overall
7
0.89 (0.74, 1.07)
1.29
0.197
1.000
72.4
0.001
Caucasian
5
0.86 (0.72, 1.02)
1.76
0.079
0.553
63.5
0.027
African
1
0.52 (0.25, 1.11)
1.69
0.091
0.637
-
-
Asian
1
1.21 (0.98, 1.49)
1.80
0.073
0.511
-
-
Prostate cancer
3
0.86 (0.56, 1.32)
0.71
0.479
3.353
80.4
0.006
Breast cancer
2
0.82 (0.72, 0.94)
2.87
0.004
0.028
0
0.602
Colorectal cancer
2
0.95 (0.56, 1.60)
0.21
0.834
1.000
83.5
0.014
C vs. T
Overall
7
0.91 (0.79, 1.06)
1.24
0.217
1.000
73.3
0.001
Caucasian
5
0.88 (0.79, 0.98)
2.40
0.016
0.112
43.1
0.135
African
1
0.63 (0.32, 1.25)
1.32
0.185
1.000
-
-
Asian
1
1.24 (1.06, 1.46)
2.67
0.008
0.056
-
-
Prostate cancer
3
0.90 (0.74, 1.09)
1.07
0.284
1.000
42.3
0.177
Breast cancer
2
0.89 (0.80, 0.99)
2.14
0.033
0.231
0
0.344
Colorectal cancer
2
0.93 (0.51, 1.69)
0.25
0.804
1.000
92.5
<0.001
OR Odds ratio, CI Confidence interval
Significant heterogeneity was found in all genetic models. Sensitivity analysis suggested that a significant association between rs4809960 polymorphism and overall cancer susceptibility was found (TT vs. TC+CC: OR 1.20, 95%CI 1.03~1.39, P=0.020, I2 = 53.1%; TC vs. TT: OR 0.84, 95%CI 0.70~0.99, P=0.043, I2 = 60.2%; C vs. T: OR 0.88, 95%CI 0.81~0.95, P=0.001, I2 = 37.2%) when after removed Yi et al. (Fig. 2). No visual publication bias was detected under the allelic genetic model. In addition, Egger’s test showed that there was no publication bias under the allelic genetic model (P=0.347).

Meta-analysis of rs2296241

Nine publications [14, 15, 17, 19, 2125] including 5831 cancer patients and 6179 controls were used to calculate pooled ORs and 95%CIs. As shown in Table 3, there was no significant association between rs2296241 polymorphism and overall cancer susceptibility in all genetic models. Subgroup analysis was performed according to ethnicity and cancer type. Stratification by ethnicity indicated that rs2296241 polymorphism was not related to ethnicity. In addition, subgroup analyses by cancer type revealed that rs2296241 polymorphism increased the risk of esophageal squamous cell carcinoma (AA vs. GG+AG: OR 1.34, 95%CI 1.04~1.74, P = 0.023) and decreased risk in prostate cancer (A vs. G: OR 0.91, 95%CI 0.84~0.99, P=0.022) (Fig. 3) (Table 3). However, these associations were no longer significant after the Bonferroni correction.
Table 3
Summary of meta-analysis of association of rs2296241 polymorphism and cancer risk
Comparison
 
Studies
Overall effect
Heterogeneity
OR (95% CI)
Z score
p value
padjust
I2 (%)
p value
AA vs. GG+AG
Overall
9
0.99 (0.90, 1.08)
0.30
0.768
1.000
45.2
0.067
Caucasian
6
0.96 (0.86, 1.06)
0.87
0.384
1.000
0
0.700
African
1
1.68 (0.84, 3.37)
1.45
0.146
1.000
-
-
Asian
2
1.06 (0.87, 1.30)
0.61
0.539
1.000
88.2
0.004
Prostate cancer
3
0.94 (0.79, 1.12)
0.66
0.509
1.000
30.5
0.237
Lung cancer
1
0.72 (0.52, 1.01)
1.92
0.055
0.385
-
-
Breast cancer
2
1.01 (0.88, 1.15)
0.11
0.914
1.000
0
0.992
Thyroid carcinoma
2
0.82 (0.58, 1.16)
1.12
0.261
1.000
26.6
0.243
Esophageal squamous cell carcinoma
1
1.34 (1.04, 1.74)
2.27
0.023
0.161
-
-
GG vs. AA+AG
Overall
9
1.06 (0.96, 1.16)
1.13
0.260
1.000
18.1
0.282
Caucasian
6
1.05 (0.94, 1.17)
0.89
0.371
1.000
45.7
0.101
African
1
1.29 (0.60, 2.79)
0.66
0.512
1.000
-
-
Asian
2
1.06 (0.86, 1.31)
0.56
0.579
1.000
0
0.592
Prostate cancer
3
1.20 (1.00, 1.44)
1.93
0.054
0.378
0
0.923
Lung cancer
1
1.13 (0.83, 1.52)
0.77
0.440
1.000
-
--
Breast cancer
3
0.93 (0.80, 1.08)
0.92
0.355
1.000
0
0.607
Thyroid carcinoma
2
1.37 (0.95, 1.96)
1.70
0.089
0.623
57.5
0.125
Esophageal squamous cell carcinoma
1
1.00 (0.75, 1.34)
0.03
0.979
1.000
-
-
AA vs. GG
Overall
9
0.94 (0.84, 1.06)
1.00
0.317
1.000
38.5
0.112
Caucasian
6
0.93 (0.82, 1.06)
1.07
0.285
1.000
40.1
0.138
African
1
1.18 (0.48, 2.95)
0.36
0.717
1.000
0
-
Asian
2
0.97 (0.75, 1.25)
0.23
0.820
1.000
76.9
0.037
Prostate cancer
3
0.83 (0.67, 1.03)
1.67
0.096
0.672
0
0.682
Lung cancer
1
0.71 (0.48, 1.05)
1.72
0.085
0.595
-
-
Breast cancer
2
1.06 (0.89, 1.26)
0.67
0.501
1.000
0
0.735
Thyroid carcinoma
2
0.68 (0.44, 1.05)
1.74
0.082
0.574
61.7
0.106
Esophageal squamous cell carcinoma
1
1.23 (0.88, 1.71)
1.19
0.235
1.000
-
-
AG vs. GG
Overall
9
0.95 (0.85, 1.05)
1.05
0.292
1.000
1.7
0.420
Caucasian
6
0.96 (0.86, 1.08)
0.64
0.521
1.000
25.6
0.243
African
1
0.62 (0.27, 1.38)
1.18
0.238
1.000
-
-
Asian
2
0.92 (0.74, 1.15)
0.72
0.469
1.000
0
0.653
Prostate cancer
3
0.84 (0.69, 1.01)
1.81
0.070
0.490
0
0.718
Lung cancer
1
0.97 (0.71, 1.33)
0.19
0.853
1.000
-
-
Breast cancer
2
1.08 (0.92, 1.26)
0.94
0.346
1.000
0
0.581
Thyroid carcinoma
2
0.76 (0.52, 1.12)
1.39
0.164
1.000
29.7
0.233
Esophageal squamous cell carcinoma
1
0.88 (0.64, 1.19)
0.83
0.405
1.000
-
-
A vs. G
Overall
13
0.96 (0.91, 1.01)
1.49
0.137
0.959
38.9
0.074
Caucasian
8
0.97 (0.91, 1.03)
1.13
0.257
1.000
18.2
0.286
African
2
0.95 (0.70, 1.27)
0.37
0.714
1.000
20.1
0.263
Asian
3
0.95 (0.84, 1.06)
0.96
0.339
1.000
79.4
0.008
Prostate cancer
7
0.91 (0.84, 0.99)
2.29
0.022
0.154
0
0.461
Lung cancer
1
0.86 (0.71, 1.04)
1.59
0.112
0.784
-
-
Breast cancer
2
1.03 (0.94, 1.12)
0.61
0.543
1.000
0
0.762
Thyroid carcinoma
2
0.83 (0.66, 1.03)
1.72
0.085
0.595
65.0
0.091
Esophageal squamous cell carcinoma
1
1.13 (0.96, 1.34)
1.47
0.141
0.987
-
-
OR Odds ratio, CI Confidence interval
Significant heterogeneity was found under the recessive, homozygous, and allelic models. Sensitivity analysis showed that the initial result was not changed by removing each study respectively. No visual publication bias was detected under the allelic genetic model (Fig. 4). In addition, Egger’s test showed that there was no publication bias under the allelic genetic model (P=0.066).

Meta-analysis of rs4809957, rs2762939 and rs6068816

Four publications [18, 20, 27, 28] (1851 cancer patients and 2570 controls) about rs4809957 polymorphism, four publications including five studies [15, 21, 22, 26] (2731 cancer patients and 2736 controls) about rs2762939 polymorphism and six publications [21, 26, 2931, 33] (4095 cancer patients and 4829 controls) about rs6068816 polymorphism. As shown in Table 4, subgroup analyses revealed that rs4809957 polymorphism was significantly associated with Caucasian, especially pancreas cancer patients (GG vs. GA+AA: OR 0.80, 95%CI 0.66, 0.98, P=0.029; GA vs. GG: OR 1.27, 95%CI 1.04, 1.56, P=0.022). Furthermore, a significant association was found in breast cancer (AA vs. GG+GA: OR 1.70, 95%CI 1.22~2.58, P=0.012; AA vs. GG, OR 1.80, 95%CI 1.15~2.82, P=0.010; A vs. G: OR 1.27, 95%CI 1.03~1.55, P=0.024) (Fig. 5). In addition, there was no association between rs2762939 polymorphism with cancer risk (Table 5). For rs6068816, we found that rs6068816 polymorphism significantly decreased lung cancer (CC vs. CT+TT: OR 1.45, 95%CI 1.07~1.97, P = 0.016; TT vs. CC: OR 0.58, 95%CI 0.35~0.99, P = 0.044; CT vs. CC: OR 0.71, 95%CI 0.52~0.98, P = 0.036; T vs. C: OR 0.76, 95%CI 0.61~0.95, P = 0.016) and breast cancer risk (TT vs. CC+CT: OR 0.52, 95%CI 0.27~0.98, P = 0.043; TT vs. CC: OR 0.52, 95%CI 0.25~0.97, P = 0.039) (Fig. 6) (Table 6). However, these associations were no longer significant after the Bonferroni correction.
Table 4
Summary of meta-analysis of association of rs4809957 polymorphism and cancer risk
Comparison
 
Studies
Overall effect
Heterogeneity
OR (95% CI)
Z score
p value
padjust
I2 (%)
p value
AA vs. GG+GA
Overall
4
1.11 (0.90, 1.36)
0.99
0.323
1.000
45.7
0.137
Caucasian
1
0.99 (0.64, 1.53)
0.03
0.974
1.000
-
-
Asian
3
1.14 (0.91, 1.44)
1.13
0.257
1.000
61.7
0.073
Pancreas cancer
1
0.99 (0.64, 1.53)
0.03
0.974
1.000
-
-
Lung cancer
1
0.98 (0.64, 1.49)
0.11
0.911
1.000
-
-
Colorectal cancer
1
0.93 (0.64, 1.35)
0.36
0.715
1.000
-
-
Breast cancer
1
1.70 (1.12, 2.58)
2.51
0.012
0.084
-
-
GG vs. GA+AA
Overall
4
0.90 (0.79, 1.02)
1.70
0.089
0.623
24.6
0.264
Caucasian
1
0.80 (0.66, 0.98)
2.18
0.029
0.203
-
-
Asian
3
0.97 (0.82, 1.13)
0.44
0.663
1.000
0
0.382
Pancreas cancer
1
0.80 (0.66, 0.98)
2.18
0.029
0.203
-
-
Lung cancer
1
1.06 (0.78, 1.43)
0.35
0.729
1.000
-
-
Colorectal cancer
1
1.03 (0.81, 1.31)
0.23
0.822
1.000
-
-
Breast cancer
1
0.81 (0.61, 1.09)
1.39
0.163
1.000
-
-
AA vs. GG
Overall
4
1.13 (0.91, 1.40)
1.11
0.265
1.000
47.4
0.127
Caucasian
1
1.08 (0.70, 1.68)
0.36
0.720
1.000
-
-
Asian
3
1.15 (0.89, 1.47)
1.08
0.282
1.000
64.7
0.059
Pancreas cancer
1
1.08 (0.70, 1.68)
0.36
0.720
1.000
-
-
Lung cancer
1
0.95 (0.60, 1.50)
0.23
0.817
1.000
-
-
Colorectal cancer
1
0.93 (0.62, 1.37)
0.39
0.700
1.000
-
-
Breast cancer
1
1.80 (1.15, 2.82)
2.56
0.010
0.070
-
-
GA vs. GG
Overall
4
1.10 (0.97, 1.26)
1.51
0.132
0.924
14.5
0.320
Caucasian
1
1.27 (1.04, 1.56)
2.30
0.022
0.154
-
-
Asian
3
1.01 (0.85, 1.19)
0.10
0.924
1.000
0
0.770
Pancreas cancer
1
1.27 (1.04, 1.56)
2.30
0.022
0.154
-
-
Lung cancer
1
0.95 (0.69, 1.31)
0.33
0.743
1.000
-
-
Colorectal cancer
1
0.98 (0.77, 1.27)
0.13
0.900
1.000
-
-
Breast cancer
1
1.10 (0.81, 1.50)
0.64
0.523
1.000
-
-
A vs. G
Overall
4
1.09 (0.99, 1.19)
1.73
0.084
0.588
45.7
0.137
Caucasian
1
1.16 (0.89, 1.37)
1.80
0.071
0.497
-
-
Asian
3
1.05 (0.94, 1.18)
0.87
0.387
1.000
55.9
0.104
Pancreas cancer
1
1.16 (0.89, 1.37)
1.80
0.071
0.497
-
-
Lung cancer
1
0.97 (0.78, 1.20)
0.30
0.763
1.000
-
-
Colorectal cancer
1
0.97 (0.82, 1.15)
0.33
0.320
1.000
-
-
Breast cancer
1
1.27 (1.03, 1.55)
2.25
0.024
0.168
-
-
OR Odds ratio, CI Confidence interval
Table 5
Summary of meta-analysis of association of rs2762939 polymorphism and cancer risk
Comparison
 
Studies
Overall effect
Heterogeneity
OR (95% CI)
Z score
p value
padjust
I2 (%)
p value
CC vs. GG+GC
Overall
5
1.05 (0.87, 1.27)
0.51
0.609
1.000
0
0.774
Caucasian
3
1.02 (0.80, 1.29)
0.17
0.866
1.000
0
0.479
African
1
0.98 (0.52, 1.87)
0.05
0.958
1.000
-
-
Asian
1
1.15 (0.80, 1.64)
0.74
0.458
1.000
-
-
Prostate cancer
3
0.97 (0.74, 1.29)
0.18
0.857
1.000
0
0.538
Lung cancer
1
1.15 (0.80, 1.64)
0.74
0.458
1.000
-
-
Breast cancer
1
1.10 (0.75, 1.60)
0.48
0.631
1.000
  
GG vs. CC+GC
Overall
4
1.02 (0.91, 1.13)
0.32
0.751
1.000
0
0.657
Caucasian
3
0.99 (0.88, 1.12)
0.13
0.893
1.000
0
0.588
African
1
1.42 (0.68, 2.96)
0.93
0.354
1.000
-
-
Asian
1
1.11 (0.85, 1.47)
0.77
0.443
1.000
-
-
Prostate cancer
3
1.06 (0.91, 1.23)
0.74
0.462
1.000
0
0.707
Lung cancer
1
1.11 (0.85, 1.47)
0.77
0.443
1.000
-
-
Breast cancer
1
0.92 (0.77, 1.11)
0.84
0.399
1.000
  
CC vs. GG
Overall
4
1.01 (0.83, 1.23)
0.10
0.923
1.000
0
0.767
Caucasian
3
1.02 (0.80, 1.0)
0.17
0.862
1.000
0
0.515
African
1
0.75 (0.33, 1.75)
0.66
0.510
1.000
-
-
Asian
1
1.05 (0.70, 1.55)
0.22
0.825
1.000
-
-
Prostate cancer
3
0.93 (0.69, 1.25)
0.50
0.620
1.000
0
0.557
Lung cancer
1
1.05 (0.70, 1.55)
0.22
0.825
1.000
-
-
Breast cancer
1
1.13 (0.77, 1.65)
0.61
0.539
1.000
  
GC vs. GG
Overall
4
0.97 (0.87, 1.09)
0.48
0.634
1.000
0
0.543
Caucasian
2
1.01 (0.89, 1.14)
0.09
0.926
1.000
0
0.554
African
1
0.67 (0.30, 1.49)
1.08
0.326
1.000
-
-
Asian
1
0.85 (0.63, 1.14)
6.36
0.281
1.000
-
-
Prostate cancer
3
0.94 (0.80, 1.11)
0.70
0.481
1.000
0
0.570
Lung cancer
1
0.85 (0.63, 1.14)
1.08
0.281
1.000
-
-
Breast cancer
 
1.07 (0.89, 1.30)
0.74
0.462
1.000
-
-
C vs. G
Overall
4
1.00 (0.92, 1.09)
0.02
0.984
1.000
0
0.834
Caucasian
2
1.01 (0.92, 1.11)
0.18
0.860
1.000
0
0.589
African
1
0.88 (0.57, 1.36)
0.59
0.554
1.000
-
-
Asian
1
0.99 (0.81, 1.20)
0.14
0.892
1.000
-
-
Prostate cancer
3
0.96 (0.85, 1.08)
0.66
0.512
1.000
0
0.884
Lung cancer
1
0.99 (0.81, 1.20)
0.14
0.892
1.000
-
-
Breast cancer
1
1.07 (0.92, 1.09)
0.87
0.382
1.000
-
-
OR Odds ratio, CI Confidence interval
Table 6
Summary of meta-analysis of association of rs6068816 polymorphism and cancer risk
Comparison
 
Studies
Overall effect
Heterogeneity
OR (95% CI)
Z score
p value
padjust
I2 (%)
p value
TT vs. CC+CT
Overall
6
0.88 (0.70, 1.10)
1.13
0.259
1.000
22
0.268
Caucasian
4
0.75 (0.47, 1.19)
1.23
0.219
1.000
30
0.232
Asian
2
0.92 (0.71, 1.20)
0.59
0.553
1.000
40.8
0.194
Prostate cancer
2
1.26 (0.61, 2.62)
0.63
0.527
1.000
0
0.947
Breast cancer
2
0.52 (0.27, 0.98)
2.03
0.043
0.301
7.2
0.299
Colorectal cancer
1
1.03 (0.76, 1.41)
0.20
0.845
1.000
-
-
Lung cancer
1
0.70 (0.43, 1.15)
1.41
0.158
1.000
-
-
CC vs. CT+TT
Overall
6
1.03 (0.88, 1.20)
0.32
0.748
1.000
56.8
0.041
Caucasian
4
0.99 (0.76, 1.13)
0.17
0.865
1.000
44.1
0.147
Asian
2
1.45 (0.74, 1.77)
0.61
0.544
1.000
82.9
0.016
Prostate cancer
2
0.85 (0.70, 1.04)
1.57
0.117
0.819
0
0.565
Breast cancer
2
1.10 (0.94, 1.30)
1.18
0.236
1.000
6.9
0.300
Colorectal cancer
1
0.93 (0.76, 1.13)
0.72
0.472
1.000
-
-
Lung cancer
1
1.45 (1.07, 1.97)
2.42
0.016
0.112
-
-
TT vs. CC
Overall
6
0.86 (0.68, 1.09)
1.26
0.209
1.000
42.3
0.123
Caucasian
4
0.75 (0.47, 1.20)
1.20
0.230
1.000
35.9
0.197
Asian
2
0.90 (0.68, 1.19)
0.74
0.461
1.000
72.9
0.055
Prostate cancer
2
1.31 (0.63, 2.71)
0.72
0.473
1.000
0
0.924
Breast cancer
2
0.52 (0.27, 0.97)
2.06
0.039
0.273
13.6
0.282
Colorectal cancer
1
1.07 (0.77, 1.48)
0.41
0.684
1.000
-
-
Lung cancer
1
0.58 (0.35, 0.99)
2.01
0.044
0.308
-
-
CT vs. CC
Overall
6
1.00 (0.90, 1.10)
0.09
0.932
1.000
42.1
0.125
Caucasian
4
1.02 (0.90, 1.16)
0.32
0.748
1.000
17.7
0.302
Asian
2
0.95 (0.80, 1.13)
0.59
0.558
1.000
78
0.033
Prostate cancer
2
1.16 (0.95, 1.42)
1.47
0.142
0.994
0
0.581
Breast cancer
2
0.94 (0.80, 1.10)
0.78
0.435
1.000
0
0.409
Colorectal cancer
1
1.08 (0.87, 1.33)
0.69
0.488
1.000
-
-
Lung cancer
1
0.71 (0.52, 0.98)
2.10
0.036
0.252
-
-
T vs. C
Overall
6
0.97 (0.84, 1.11)
0.49
0.625
1.000
60.8
0.026
Caucasian
4
1.00 (0.84, 1.19)
0.00
0.997
1.000
57.2
0.072
Asian
2
0.90 (0.66, 1.24)
0.64
0.524
1.000
82.1
0.018
Prostate cancer
2
1.16 (0.97, 1.39)
1.60
0.110
0.770
0
0.571
Breast cancer
2
0.88 (0.74, 1.06)
1.36
0.173
1.000
32.1
0.225
Colorectal cancer
1
1.05 (0.90, 1.21)
0.63
0.539
1.000
-
-
Lung cancer
1
0.76 (0.61, 0.95)
2.42
0.016
0.112
-
-
OR Odds ratio, CI Confidence interval
Sensitivity analysis showed that removing each study respectively from the meta-analysis did not change the initial result. No publication bias was detected in the studies about rs4809957 and rs2762939 polymorphism meta-analysis.

Discussion

CYP24A1, a member of the cytochrome P450 enzyme family, is located on the long arm of chromosome 20 (20q13.2). It is a key gene that converted 1,25(OH)2D3 to 1,24,25(OH)2D3 by 24-hydroxylation25-hydroxyvitamin D 24-hydrolase [34]. Albertson et al. [35] first identified the 20q13 gene amplification in breast cancer and identified the CYP24A1 gene as a candidate oncogene using array comparative genomic hybridization. CYP24A1 has been identified as a potential biomarker for cancer [36]. Numerous studies have suggested the expression level of the CYP24A1 was abnormally increased in several cancers, such as breast cancer, ovarian cancer, cervix carcinoma, lung cancer, and colon cancer [7, 37, 38]. Kong et al. [39] revealed that the rs6068816 and rs4809957 polymorphisms were associated with NSCLC risk. For breast cancer, Wei et al. [27] reported a significant association between the rs4809957 and breast cancer risk. Anderson et al. [18] revealed no significant correlation between rs4809957 with pancreas cancer. Among these publications reported the associations of CYP24A1 polymorphisms with cancer susceptibility, while the results remain controversial. The previous meta-analysis was performed by Zhu et al. [40], but they had not controlled the type I error rate through Bonferroni correction and had a smaller sample size. Therefore, the present meta-analysis aimed to re-evaluate the associations of CYP24A1 polymorphisms with cancer risk.
The present study indicated that there was no association between CYP24A1 polymorphisms (rs4809960, rs2296241, rs4809957, rs2762939, rs6068816) and overall cancer risk. For rs4809960 polymorphism, it was related to the Caucasian and Asian populations and decreased breast cancer risk. Moreover, our results suggested that rs2296241 polymorphism increased esophageal squamous cell carcinoma risk and decreased prostate cancer risk. For rs4809957 polymorphism, it was associated with pancreas cancer and breast cancer risk. In addition, we found that rs6068816 polymorphism significantly decreased lung cancer and breast cancer risk. However, rs4809960 polymorphism was associated with a decreased breast cancer risk after Bonferroni correction. A previous meta-analysis also reported CYP24A1 rs2296241 polymorphism was associated with prostate cancer risk [41]. Although our work found rs2296241 polymorphism was associated with an increased esophageal squamous cell carcinoma risk and decreased prostate cancer risk, these results could not withstand the Bonferroni correction.
The improvements of our meta-analysis are as follows: Firstly, more case-control studies about rs4809960, rs6068816, and rs2296241 polymorphism were included in the meta-analysis. Secondly, this is the first meta-analysis to assess the relationship between CYP24A1 (rs4809957, rs2762939) polymorphism and cancer risk. Thirdly, all included studies conform to the HWE, which may improve the reliability and stability of our study. In addition, all CYP24A1 polymorphisms were considered at the beginning. Ultimately, due to a lack of eligible articles and overlapping studies, our further evaluation of other CYP24A1 polymorphisms was limited. Therefore, in this meta-analysis, we only focused on five polymorphisms.
There are several limitations should be noted in the present study. First, the sample size of the included studies was relatively small, which might weaken the strength of the results. Second, the number of included studies in the subgroup analysis was also relatively small, which might lead to statistical bias. Third, not sufficient data to analyze whether environmental factors may influence the statistical result. Four, the association of CYP24A1 polymorphism with different types or stages, drinking, smoking, age, gender, exposure factors, or other risk factors was not considered in this study. Five, the patients of included studies mainly come from Caucasians. The African and Asian populations were relatively small.
In conclusion, this meta-analysis indicated that rs4809960 polymorphism was associated with a decreased breast cancer risk. No association between rs4809957, rs2296241, rs2762939, rs4809957 polymorphism, and overall cancer risk was found after Bonferroni correction. Considering the above limitations, more large-scale and large-sample studies are necessary to confirm these results.

Declarations

Not applicable since our study is a meta-analysis.
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
Zurück zum Zitat Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed
3.
Zurück zum Zitat Decker B, Allen J, Luccarini C, et al. Targeted resequencing of the coding sequence of 38 genes near breast cancer GWAS loci in a large case-control study. Cancer Epidemiol Biomarkers Prev. 2019;28(4):822–5.CrossRefPubMed Decker B, Allen J, Luccarini C, et al. Targeted resequencing of the coding sequence of 38 genes near breast cancer GWAS loci in a large case-control study. Cancer Epidemiol Biomarkers Prev. 2019;28(4):822–5.CrossRefPubMed
4.
Zurück zum Zitat Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42(11):973–7.CrossRefPubMedPubMedCentral Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42(11):973–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol. 2006;92(1):49–59.CrossRefPubMed Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol. 2006;92(1):49–59.CrossRefPubMed
6.
Zurück zum Zitat Masuda S, Byford V, Arabian A, et al. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology. 2005;146(2):825–34.CrossRefPubMed Masuda S, Byford V, Arabian A, et al. Altered pharmacokinetics of 1alpha,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (Cyp24a1) null mouse. Endocrinology. 2005;146(2):825–34.CrossRefPubMed
7.
Zurück zum Zitat Sakaki T, Yasuda K, Kittaka A, Yamamoto K, Chen TC. CYP24A1 as a potential target for cancer therapy. Anticancer Agents Med Chem. 2014;14(1):97–108.CrossRefPubMed Sakaki T, Yasuda K, Kittaka A, Yamamoto K, Chen TC. CYP24A1 as a potential target for cancer therapy. Anticancer Agents Med Chem. 2014;14(1):97–108.CrossRefPubMed
8.
Zurück zum Zitat Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9–18.CrossRefPubMed Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9–18.CrossRefPubMed
9.
Zurück zum Zitat Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57.CrossRefPubMed Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57.CrossRefPubMed
10.
Zurück zum Zitat Sun H, Wang C, Hao M, et al. CYP24A1 is a potential biomarker for the progression and prognosis of human colorectal cancer. Hum Pathol. 2016;50:101–8.CrossRefPubMed Sun H, Wang C, Hao M, et al. CYP24A1 is a potential biomarker for the progression and prognosis of human colorectal cancer. Hum Pathol. 2016;50:101–8.CrossRefPubMed
11.
Zurück zum Zitat Koberle B, Koch B, Fischer BM, Hartwig A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol. 2016;90(10):2369–88.CrossRefPubMed Koberle B, Koch B, Fischer BM, Hartwig A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol. 2016;90(10):2369–88.CrossRefPubMed
12.
Zurück zum Zitat Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-target genes interaction perturbing the cancer risk in the post-GWAS. Cancers (Basel). 2022;14(22):5636. Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-target genes interaction perturbing the cancer risk in the post-GWAS. Cancers (Basel). 2022;14(22):5636.
13.
Zurück zum Zitat Yao L, Tak YG, Berman BP, Farnham PJ. Functional annotation of colon cancer risk SNPs. Nat Commun. 2014;5:5114.CrossRefPubMed Yao L, Tak YG, Berman BP, Farnham PJ. Functional annotation of colon cancer risk SNPs. Nat Commun. 2014;5:5114.CrossRefPubMed
14.
Zurück zum Zitat Yang J, Wang H, Ji A, et al. Vitamin D signaling pathways confer the susceptibility of esophageal squamous cell carcinoma in a Northern Chinese population. Nutr Cancer. 2017;69(4):593–600.CrossRefPubMed Yang J, Wang H, Ji A, et al. Vitamin D signaling pathways confer the susceptibility of esophageal squamous cell carcinoma in a Northern Chinese population. Nutr Cancer. 2017;69(4):593–600.CrossRefPubMed
15.
Zurück zum Zitat Wu X, Cheng J, Yang K. Vitamin D-related gene polymorphisms, plasma 25-hydroxy-vitamin D, cigarette smoke and Non-Small Cell Lung Cancer (NSCLC) risk. Int J Mol Sci. 2016;17(10):1597. Wu X, Cheng J, Yang K. Vitamin D-related gene polymorphisms, plasma 25-hydroxy-vitamin D, cigarette smoke and Non-Small Cell Lung Cancer (NSCLC) risk. Int J Mol Sci. 2016;17(10):1597.
16.
Zurück zum Zitat Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRefPubMed Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014;34(5):502–8.CrossRefPubMed
17.
Zurück zum Zitat Anderson LN, Cotterchio M, Cole DE, Knight JA. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1708–17.CrossRefPubMed Anderson LN, Cotterchio M, Cole DE, Knight JA. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1708–17.CrossRefPubMed
18.
Zurück zum Zitat Anderson LN, Cotterchio M, Knight JA, Borgida A, Gallinger S, Cleary SP. Genetic variants in vitamin d pathway genes and risk of pancreas cancer; results from a population-based case-control study in ontario, Canada. PLoS One. 2013;8(6):e66768.CrossRefPubMedPubMedCentral Anderson LN, Cotterchio M, Knight JA, Borgida A, Gallinger S, Cleary SP. Genetic variants in vitamin d pathway genes and risk of pancreas cancer; results from a population-based case-control study in ontario, Canada. PLoS One. 2013;8(6):e66768.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Beuten J, Gelfond JA, Franke JL, et al. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1869–80.CrossRefPubMed Beuten J, Gelfond JA, Franke JL, et al. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1869–80.CrossRefPubMed
20.
Zurück zum Zitat Gong C, Long Z, Yu Y, et al. Dietary factors and polymorphisms in vitamin D metabolism genes: the risk and prognosis of colorectal cancer in northeast China. Sci Rep. 2017;7(1):8827.CrossRefPubMedPubMedCentral Gong C, Long Z, Yu Y, et al. Dietary factors and polymorphisms in vitamin D metabolism genes: the risk and prognosis of colorectal cancer in northeast China. Sci Rep. 2017;7(1):8827.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S, Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1990–9.CrossRefPubMed Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S, Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1990–9.CrossRefPubMed
22.
Zurück zum Zitat Holt SK, Kwon EM, Peters U, Ostrander EA, Stanford JL. Vitamin D pathway gene variants and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1929–33.CrossRefPubMedPubMedCentral Holt SK, Kwon EM, Peters U, Ostrander EA, Stanford JL. Vitamin D pathway gene variants and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1929–33.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat McCullough ML, Stevens VL, Diver WR, et al. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study. Breast Cancer Res. 2007;9(1):R9.CrossRefPubMedPubMedCentral McCullough ML, Stevens VL, Diver WR, et al. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study. Breast Cancer Res. 2007;9(1):R9.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Oh JJ, Byun SS, Lee SE, et al. Genetic variants in the CYP24A1 gene are associated with prostate cancer risk and aggressiveness in a Korean study population. Prostate Cancer Prostatic Dis. 2014;17(2):149–56.CrossRefPubMed Oh JJ, Byun SS, Lee SE, et al. Genetic variants in the CYP24A1 gene are associated with prostate cancer risk and aggressiveness in a Korean study population. Prostate Cancer Prostatic Dis. 2014;17(2):149–56.CrossRefPubMed
25.
Zurück zum Zitat Penna-Martinez M, Ramos-Lopez E, Stern J, et al. Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma. Thyroid. 2012;22(7):709–16.CrossRefPubMedPubMedCentral Penna-Martinez M, Ramos-Lopez E, Stern J, et al. Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma. Thyroid. 2012;22(7):709–16.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Reimers LL, Crew KD, Bradshaw PT, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control. 2015;26(2):187–203.CrossRefPubMed Reimers LL, Crew KD, Bradshaw PT, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control. 2015;26(2):187–203.CrossRefPubMed
27.
Zurück zum Zitat Wei Y, Wang X, Zhang Z, et al. Role of Polymorphisms of FAM13A, PHLDB1, and CYP24A1 in Breast Cancer Risk. Curr Mol Med. 2019;19(8):579–88.CrossRefPubMed Wei Y, Wang X, Zhang Z, et al. Role of Polymorphisms of FAM13A, PHLDB1, and CYP24A1 in Breast Cancer Risk. Curr Mol Med. 2019;19(8):579–88.CrossRefPubMed
28.
Zurück zum Zitat Zhuo M, Zhuang X, Tang W, et al. The impact of IL-16 3’UTR polymorphism rs859 on lung carcinoma susceptibility among Chinese Han individuals. Biomed Res Int. 2018;2018:8305745.CrossRefPubMedPubMedCentral Zhuo M, Zhuang X, Tang W, et al. The impact of IL-16 3’UTR polymorphism rs859 on lung carcinoma susceptibility among Chinese Han individuals. Biomed Res Int. 2018;2018:8305745.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Qu R, Li X, Quan X, et al. Polymorphism in CYP24A1 is associated with lung cancer risk: a case-control study in Chinese female nonsmokers. DNA Cell Biol. 2019;38(3):243–9.CrossRefPubMed Qu R, Li X, Quan X, et al. Polymorphism in CYP24A1 is associated with lung cancer risk: a case-control study in Chinese female nonsmokers. DNA Cell Biol. 2019;38(3):243–9.CrossRefPubMed
30.
Zurück zum Zitat Yi C, Huang C, Wang H, et al. Association study between CYP24A1 gene polymorphisms and cancer risk. Pathol Res Pract. 2020;216(1): 152735.CrossRefPubMed Yi C, Huang C, Wang H, et al. Association study between CYP24A1 gene polymorphisms and cancer risk. Pathol Res Pract. 2020;216(1): 152735.CrossRefPubMed
31.
Zurück zum Zitat Clendenen TV, Ge W, Koenig KL, et al. Genetic polymorphisms in vitamin D metabolism and signaling genes and risk of breast cancer: a nested case-control study. PLoS One. 2015;10(10): e0140478.CrossRefPubMedPubMedCentral Clendenen TV, Ge W, Koenig KL, et al. Genetic polymorphisms in vitamin D metabolism and signaling genes and risk of breast cancer: a nested case-control study. PLoS One. 2015;10(10): e0140478.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Sadeghi H, Nazemalhosseini-Mojarad E, Piltan S, et al. A candidate intronic CYP24A1 gene variant affects the risk of colorectal cancer. Biomark Med. 2020;14(1):23–9.CrossRefPubMed Sadeghi H, Nazemalhosseini-Mojarad E, Piltan S, et al. A candidate intronic CYP24A1 gene variant affects the risk of colorectal cancer. Biomark Med. 2020;14(1):23–9.CrossRefPubMed
33.
34.
Zurück zum Zitat Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.CrossRefPubMed Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.CrossRefPubMed
35.
Zurück zum Zitat Albertson DG, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25(2):144–6.CrossRefPubMed Albertson DG, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25(2):144–6.CrossRefPubMed
36.
Zurück zum Zitat Shiratsuchi H, Wang Z, Chen G, et al. Oncogenic potential of CYP24A1 in lung adenocarcinoma. J Thorac Oncol. 2017;12(2):269–80.CrossRefPubMed Shiratsuchi H, Wang Z, Chen G, et al. Oncogenic potential of CYP24A1 in lung adenocarcinoma. J Thorac Oncol. 2017;12(2):269–80.CrossRefPubMed
37.
Zurück zum Zitat Chen XQ, Mao JY, Li WB, et al. Association between CYP24A1 polymorphisms and the risk of colonic polyps and colon cancer in a Chinese population. World J Gastroenterol. 2017;23(28):5179–86.CrossRefPubMedPubMedCentral Chen XQ, Mao JY, Li WB, et al. Association between CYP24A1 polymorphisms and the risk of colonic polyps and colon cancer in a Chinese population. World J Gastroenterol. 2017;23(28):5179–86.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Parise RA, Egorin MJ, Kanterewicz B, et al. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int J Cancer. 2006;119(8):1819–28.CrossRefPubMed Parise RA, Egorin MJ, Kanterewicz B, et al. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int J Cancer. 2006;119(8):1819–28.CrossRefPubMed
39.
Zurück zum Zitat Kong J, Xu F, Qu J, et al. Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival. Oncotarget. 2015;6(4):2573–82.CrossRefPubMed Kong J, Xu F, Qu J, et al. Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival. Oncotarget. 2015;6(4):2573–82.CrossRefPubMed
40.
Zurück zum Zitat Zhu M, Qiu S, Zhang X, et al. The associations between CYP24A1 polymorphisms and cancer susceptibility: a meta-analysis and trial sequential analysis. Pathol Res Pract. 2018;214(1):53–63.CrossRefPubMed Zhu M, Qiu S, Zhang X, et al. The associations between CYP24A1 polymorphisms and cancer susceptibility: a meta-analysis and trial sequential analysis. Pathol Res Pract. 2018;214(1):53–63.CrossRefPubMed
41.
Zurück zum Zitat Wang P, Zhang H, Zhang Z, Qin L, Li B. Association of the CYP24A1-rs2296241 polymorphism of the vitamin D catabolism enzyme with hormone-related cancer risk: a meta-analysis. Onco Targets Ther. 2015;8:1175–83.PubMedPubMedCentral Wang P, Zhang H, Zhang Z, Qin L, Li B. Association of the CYP24A1-rs2296241 polymorphism of the vitamin D catabolism enzyme with hormone-related cancer risk: a meta-analysis. Onco Targets Ther. 2015;8:1175–83.PubMedPubMedCentral
Metadaten
Titel
Genetic polymorphisms of CYP24A1 gene and cancer susceptibility: a meta-analysis including 40640 subjects
verfasst von
Yubin Wang
Ruiwen Wang
Shaofei Yuan
Xiaotang Liu
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2023
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-023-03156-w

Weitere Artikel der Ausgabe 1/2023

World Journal of Surgical Oncology 1/2023 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.