Skip to main content
Erschienen in: BMC Cancer 1/2023

Open Access 01.12.2023 | Research

Genomic landscapes of ovarian clear cell carcinoma from latin countries reveal aberrations linked to survival and progression

verfasst von: Mariana de Paiva Batista, Martín Roffé, Ignacio Romero, José Antonio López-Guerrero, Carmen Illueca, Raquel Lopez, Alexandre André Balieiro Anastácio da Costa, Louise De Brot, Juan Pablo Molina, Laura Barboza, Fernanda Maris Peria, Fernando Chaud, Ana Silvia Gouvêa Yamada, Andres Poveda, Eduardo Magalhães Rego

Erschienen in: BMC Cancer | Ausgabe 1/2023

Abstract

Background

Ovarian clear cell carcinomas (OCCCs) are rare, aggressive and chemoresistant tumors. Geographical and ethnic differences in the incidence of OCCC have been reported with a higher incidence in Asiatic countries. There is a paucity of information regarding OCCC in Latin America (LA) and other countries.

Methods

Here, we characterized two cohorts of 33 patients with OCCC from LA (24 from Brazil and 9 from Costa Rica) and a cohort of 27 patients from Spain. Genomic analysis was performed for 26 OCCC using the OncoScan platform. Tumors were classified according to their genomic landscapes into subgroups. Clinical parameters were related to the frequency of genomic aberrations.

Results

The median overall survival (OS) was not significantly different between the cohorts. Genomic landscapes were characterized by different homologous recombination deficiency (HRD) levels. No difference in the distribution of genomic landscapes profiles was detected between patients from the different cohorts. OCCCs with MYC-amplified tumors harboring a concomitant loss of a region in chromosome 13q12-q13 that includes the BRCA2 gene had the longest OS. In contrast, patients carrying a high number (> 30) of total copy number (CN) aberrations with no concomitant alterations in MYC and BRCA2 genes presented the shortest OS. Furthermore, amplification of the ASH1L gene was also associated with a shorter OS. Initial-stage OCCCs with early progression were characterized by gains in the JNK1 and MKL1 genes.

Conclusions

Our results provide new data from understudied OCCC populations and reveal new potential markers for OCCCs.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12885-023-11095-8.
Mariana de Paiva Batista, Martín Roffé contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Ovarian clear cell carcinoma (OCCC) accounts for 5–25% of all epithelial ovarian cancer (EOC) cases [1, 2]. Reported objective response rates to conventional platinum chemotherapy in OCCC are 11.1% compared to 72.5% in high-grade serous ovarian carcinoma (HGSC) [2, 3], representing an EOC of poorer prognosis, which is especially evident at advanced stages [1, 4]. Clinically, OCCCs are commonly associated with endometriosis [5], which is considered a direct precursor of clear cell carcinoma [6] and shows a higher incidence of thromboembolic events (TEEs) [6].
The overall frequency of OCCC in Asiatic populations (10.3–25%) [710] is higher than that in North America (12.2%) [11] and Europe (2–8%) [12, 13]. The reasons for this disparity remain unknown; however, some reports suggest genetic determinants [14]. The most frequent gene alterations in OCCC are in the AT-rich interaction domain 1 A (ARID1A) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) genes [15]. Both alterations frequently coexist and occur as an early event in OCCC development [16, 17]. Other molecular markers are used to distinguish OCCC from other EOC histotypes and include the expression of hepatocyte nuclear factor 1 homeobox B (HNF1B) and the absence of Wilms tumor protein 1 (WT1), estrogen receptor (ER) and progesterone receptor (PR) [18]. Unlike HGSC, OCCCs usually express wild-type TP53 protein and have a much lower frequency of BRCA1 and BRCA2 mutations [19].
The scarce information about genome-wide patterns of aberrations in OCCCs was obtained from studies focusing on individual cohorts with different geographical and ethnic origins [2024]. Remarkably, two of the most frequent copy number (CN) alterations found in OCCCs, i.e., amplification of chromosomes 8q and 20q13.2 (including the ZNF217 oncogene), showed different prevalence in OCCCs with different geographical origins [21]. To date, genome-wide CN alteration profiles of OCCCs have not been obtained for Latin American countries.
In this study, we sought to provide a comprehensive description of the molecular characteristics of ovarian clear cell carcinomas (OCCCs) from Brazil, Costa Rica, and Spain, a European country with strong cultural ties to Latin America. By integrating clinical, molecular markers, and genomic aberration data, we aim to highlight the unique features of OCCCs from under-represented geographical regions. Overall, our findings may contribute to improving outcomes for patients with OCCC and inform personalized treatment strategies.

Materials and methods

Selection of patients

Sixty patients older than 18 years old with a histological diagnosis of OCCC between 2000 and 2015 were recruited from institutions in three different countries: 7 patients from Hospital das Clínicas de Ribeirão Preto (HCRP) - Brazil; 17 patients from A.C.Camargo Cancer Center (ACCCC) - Brazil; 9 patients from Hospital México (HM) – Costa Rica; and 27 patients from Instituto Valenciano de Oncología (IVO) – Spain. Since Brazil has been home to the largest Japanese population outside of Japan for over 100 years, particularly in the state of São Paulo where HCRP and ACCCC are located, three out of 24 patients from Brazil had Asian ancestry [25]. Fifty-seven samples were obtained from the primary tumor, and 4 corresponded to metastatic tissue after recurrence; matching primary and recurrence samples were available for one of the cases (Occ53). The samples were reviewed by two pathologists to confirm the diagnosis of pure OCCC histology.

Clinical data

Tumor stage was defined according to the 2014 Ovarian Cancer FIGO staging [26]. Clinical data included date of diagnosis, progression, outcome and last follow-up, the occurrence of endometriosis and TEEs (Supplementary File S1). Overall survival (OS) and progression-free survival (PFS) were defined as the time interval from the date of diagnosis to the date of death or recurrence, respectively. Sensitivity to adjuvant treatment with platinum was established according to historical criteria supported by the statement of the Fourth Ovarian Cancer Consensus Conference (platinum sensitive: relapse ≥ 6 months after first-line platinum-based chemotherapy; platinum resistant: relapse < 6 months after first-line platinum-based chemotherapy) [27].

Immunohistochemistry

Immunohistochemistry (IHC) was performed in tissue microarrays (TMAs) for the detection of ARID1A, HNF1B, PTEN, TP53, WT1, estrogen receptor (ER), progesterone receptor (PR) and mismatch repair proteins (MMR: MLH1, MSH2, MSH6, PMS2). Detailed information is provided in Supplementary Material and Methods.

Microsatellite instability analysis

Microsatellite Instability (MSI) analysis was investigated using a PCR-based approach [28]. Detailed information is provided in Supplementary Material and Methods.

Detection of PIK3CA gene mutations by real-time PCR

The cobas® PIK3CA Mutation Test (Roche Molecular Systems Inc.) and platform were used following the manufacturer’s instructions.

OncoScan assay

DNA extracted from 26 primary tumors and one recurrent tumor was subjected to the SNP array OncoScan® FFPE (Thermo) following the manufacturer’s instructions. Detailed information is provided in Supplementary Material and Methods.

OncoScan data processing

CEL files containing the raw data were processed via the Affymetrix OncoScan Console (Thermo) (summarized in Supplementary File S2). The ASCAT algorithm was used to infer tumor ploidy, allele-specific copy numbers and segmentation [29]. The ASCAT package for R[30] used the following parameters: ascat.predictGermlineGenotypes(platform = “AffyOncoScan”) and ascat.runAscat(gamma = 0.9). Individual LRR are presented in Fig. 1, Supplementary Fig.S1 and S8. CN gains/amplifications were considered when the log R ratio (LRR) was > 0.1, and CN loss/deletions were considered when the LRR was < -0.1. The CNTools package for R and Fisher’s exact test were used to define differentially aberrant segments (P-value < 0.05). Integrative Genome Viewer (IGV) was used to inspect the genomic profiles [31].

Estimation of the levels of homologous recombination deficiency

The estimation of the homology recombination deficiency (HRD)-associated genomic scars (loss-of-heterozygosity: HRD-LOH; large-scale transitions: HRD-LST; number of telomeric allelic imbalances: HRD-TAI; and a combined score: HRD-sum) was determined on the ASCAT output using the scarHRD package for R [32]. HRD-LST was defined as chromosomal breaks between adjacent regions of at least 10 Mb, with a distance between them not larger than 3 Mb [33]; HRD-TAI was defined as chromosomal breaks extending to the telomeric end of a chromosome [34]; and HRD-LOH was defined as regions of LOH exceeding 15 Mb that did not cover the whole chromosome [35].

Statistical analyses

Univariate and multivariate Cox regression analyses were performed with the survival package for R. GraphPad Prism 9.0.1 software was used to apply the Kruskal–Wallis test followed by Dunn’s multiple comparisons. Contingency tables were analyzed by Fisher’s exact or χ2 tests, and P-values < 0.05 were considered statistically significant. Due to the reduced sample size, we were not able to apply a multiple comparison test without compromising the statistical power.

Results

Clinical characteristics of the OCCC cohorts

Patients of three different countries (Brazil, Costa Rica and Spain) were included in this study. There was no significant different in OS or PSF between the cohorts of the different countries (Supplementary Fig.S2). Overall, more than 60% of the patients in our cohorts were diagnosed at an initial FIGO stage (I and II). While 88% of the patients with endometriosis were diagnosed at the initial stage, only 57% of the patients without endometriosis were at an initial stage (P-value = 0.0342; Fisher’s exact test). At least 60% of the patients who received platinum-based chemotherapy displayed sensitivity to the treatment (Table 1). Univariate analysis of OS indicated that advanced (III or IV) Figo stage, platinum resistance or TEEs increased the risk for a deadly outcome (Supplementary TableS2). In a multivariate analysis, resistance to platinum treatment was the main variable associated with increased risk, followed by TEEs (Supplementary Fig.S3A). Regarding PFS, advanced-stage disease was associated with an increased risk for recurrence, but it was not an independent prognostic factor. The occurrence of TEEs showed a marginal association with an increased risk for progression (Supplementary TableS2 and Fig. S3B).
Table 1
Clinicopathological features
  
Cohort
Parameter
All patients
Brazil
Costa Rica
Spain
Number of cases
60
24
9
27
Age at diagnosis, y (range)
50 (29–75)
53 (29–75)
48 (36–70)
48 (31–74)
Asian ancestry, n (%)
3 (5)
3 (13)
0 (0)
0 (0)
FIGO stage, n (%)
    
Initial (I/II)
39 (65)
15 (63)
6 (67)
18 (67)
III
17 (28)
8 (33)
2 (22)
7 (26)
IV
4 (7)
1 (4)
1 (11)
2 (7)
Endometriosis, n (%)
16 (27)
7 (29)
1 (11)
8 (30)
TEEs, n (%)
14 (23)
8 (33)
1 (11)
5 (19)
Sensitivity to platinum, n (%)
    
sensitive
35 (66)
12 (60)
6 (75)
17 (68)
resistant
18 (34)
8 (40)
2 (25)
8 (32)
unknown
7
4
1
2
Progression, n (%)
36 (60)
15 (63)
3 (33)
18 (67)
Outcome, n (%)
    
Alive
32 (53)
11 (46)
6 (67)
15 (56)
Dead
28 (47)
13 (54)
3 (33)
12 (44)
Median follow-up, m
36.3
39.7
15.6
36.3
(range)
(0.43–210.6)
(0.43–123.7)
(3.1–41.0)
(1.1-210.6)
FIGO International Federation of Gynecology and Obstetrics, TEE thromboembolic event

Molecular characterization of the OCCC cohorts

HNF1B expression was observed in 90% of the patients with no significant differences between the cohorts (Table 2). ARID1A and WT1 showed no protein expression in approximately 29% and 91% of the patients, respectively. Furthermore, ER and PR protein expression was observed in 7% and 2% of the tumors, respectively. Incidence of abnormal TP53 protein expression (20%) in the entire cohort is compatible with the characteristic lower incidence of this alteration in OCCC when compared to HGSC [36]. The results obtained with the aforementioned molecular markers and morphological characteristics were as expected for the histopathological diagnosis of OCCC.
PIK3CA gene mutations were detected in 29% of our patients with predominant mutations in residue p.H1047, followed by mutation p.E543K. PI3KCA mutations were less frequent in cases detected in advanced stages III and IV (Supplementary TableS3). Interestingly, 61.5% of patients harboring PIK3CA mutations showed a concomitant loss of ARID1A expression, while negative ARID1A expression was observed only in 18.5% of patients with wild-type PIK3CA tumors (Supplementary TableS3). MSI was detected by PCR in 10 of 44 of the cases (22.7%), 8 of which were classified as MSI-high (Supplementary File S1). However, we did not detect a concomitant deficiency of MMR proteins by IHC (Supplementary File S1).
Table 2
Molecular markers in OCCC primary tumor samples
   
Cohort
Molecular marker
Method
All patients
Brazil
Costa Rica
Spain
HNF1B expression, n (%)
IHC
    
positive
 
43 (90)
16 (80)
7 (100)
20 (95)
negative
 
5 (10)
4 (20)
0 (0)
1 (5)
unknown
 
9
1
2
6
WT1 expression, n (%)
IHC
    
positive
 
5 (9)
3 (14)
1 (12)
1 (4)
negative
 
51 (91)
18 (86)
7 (88)
26 (96)
unknown
 
1
0
1
0
ER expression, n (%)
IHC
    
positive
 
4 (7)
2 (10)
0 (0)
2 (7)
negative
 
53 (93)
19 (90)
9 (100)
25 (93)
PR expression, n (%)
IHC
    
positive
 
1 (2)
0 (0)
0 (0)
1 (4)
negative
 
56 (98)
21 (100)
9 (100)
26 (96)
TP53 expression, n (%)
IHC
    
aberrant
 
10 (20)
3 (17)
3 (37)
4 (15)
normal
 
42 (80)
14 (82)
5 (63)
23 (85)
unknown
 
5
4
1
0
ARID1A expression, n (%)
IHC
    
positive
 
35 (71)
14 (74)
7 (87)
14 (64)
negative
 
14 (29)
5 (26)
1 (13)
8 (36)
unknown
 
8
2
1
5
PIK3CA mutation, n (%)
real-time PCR
    
mutant
 
14 (30)
4 (25)
3 (37)
7 (32)
wild-type
 
32 (70)
12 (75)
5 (63)
15 (68)
unknown
 
11
5
1
5
IHC Immunohistochemistry

Whole-genome copy number analysis of OCCC

The OncoScan platform showed that the most frequent alteration (> 50% of the 26 samples) corresponded to the arm-level amplification of chromosome 8q, which includes the oncogene MYC (Supplementary Fig.S4A and Files S3 and S4), followed by the focally amplified region 20q13.2, which harbors the putative oncogene ZNF217 (Supplementary Fig.S4A). Recurrent gains (41% of the cases) were observed in 3q1.2-q13.12 and 3q26.2, with the latter containing several genes for kinases, such as PIK3CA [37]. Amplification of 17q12, containing HNF1B and 1q22, was observed in 38% of the patients, however, both focal- and broad-level amplification events were noticed. Loss of the 13q arm occurred in 44% of the OCCC patients (Supplementary Fig.S4A and File S4). The GISTIC algorithm defined significantly amplified peaks in HNF1B in cytoband 17q12 and MECOM in 3q26.2. A significantly deleted peak at cytoband 1p36.11 contains ARID1A (Supplementary Fig.S4B and File S5).

Genomic alteration patterns in OCCC

OCCC samples showed remarkable heterogeneity of genomic alterations, ranging from cases with very few CN aberrations to samples with genomic changes in more than half of the genome (Supplementary File S3). Unsupervised hierarchical clustering using the LRRs of the segments as input was performed (Fig. 1A), and each cluster resembled the genomic patterns first described in breast cancer [38] and later defined for OCCCs. Tan et al. defined three genomic patterns: Firestorm (FS), Sawtooth (ST) and Simplex (Sx) [24]. The FS pattern is characterized by broad segments of duplication and deletion, usually comprising entire chromosomes or chromosome arms, with occasional isolated narrow peaks of amplifications. The ST pattern displays segments of duplication and deletion, often alternating and affecting all chromosomes characterizing a more complex pattern. The Sx pattern was characterized by occasional isolated narrow peaks of gains and deletions and essentially diploid genomes. In accordance, we named the clusters FS-like (FSl), ST-like (STl) and Sx-like (Sxl) (Fig. 1A-D). Twelve samples were classified as Sxl as they represented a reduced number of CN aberrations and a low percentage of the genome with changes (Fig. 1E and F). Only two samples (7.7%) clustered in the STl cluster, and they were the only samples showing deletions in chromosome 10q23.2-q25.2, which includes the tumor suppressor gene PTEN. One of the samples (Occ36) clustered in STl or FSl depending on the parameters used; due to this ambiguity, it was not classified (Fig. 1A). Eleven samples were classified as FSl, and, remarkably, 9 of them showed amplification of the ZNF217 gene (Supplementary Fig.S5A-C). Moreover, of the 8 polyploid samples in our analysis, 7 were FSl (Fig. 1G and Supplementary File S3). Even with such different characteristics of the clusters, no difference in OS or PFS was observed (Supplementary Fig.S5D and E).
To gain insight into the mechanisms underlying the distinct genomic patterns observed in OCCC, three HRD-associated genomic scars were estimated (Fig. 2A): HRD-LST [33]; HRD-TAI [34]; and HRD-LOH [35]. A combined score (HRD-sum) including the three signatures was then obtained [39]. As expected, genomic scars were practically absent in the Sxl cluster (Fig. 2B-D). The FSl cluster showed higher levels of HRD-TAI and HRD-LST and, to a lesser extent, HRD-LOH than the Sxl cluster. The two STl samples showed higher levels of all genomic scars, when compared to the FSl cluster, ranging from almost a 2-fold increase for HRD-TAI to 7-fold in HRD-LOH; however, due to the reduced number of samples, this difference was not statistically significant. The combined score, HRD-sum, perfectly matched the clustering based on genomic patterns, strongly pointing to HRD as one of the mechanisms involved (Fig. 2E). To investigate the genomic determinants associated with HRD, we divided the samples into two groups based on their HRD-sum levels: the HRD-sum high group, composed of the top eleven samples (HRD-sum levels ≥ 20, except for Occ36); and the HRD-sum low group, composed of the nine samples with the lowest HRD-sum levels (≤ 6; Supplementary File S3 and Supplementary Fig.S6A). Nine of 11 samples (82%) of the group with higher HRD-sum levels showed gains in the PIK3CB gene (cytoband 3q22.3) and in the recurrently amplified region 3q26.2 (Fig. 2F-G). Additionally, 82% of HRD-sum high samples showed losses of 13q12.12-q21.33, which includes the BRCA2 gene, and 19p13.3. No difference in OS or PFS was identified for the HRD-sum high and HRD-sum low groups (Supplementary Fig.S6B and C). Remarkably, 8 of the 13 samples with the highest HRD-sum from the whole cohort showed concomitant loss of BRCA2 and gain of PIK3CB (P-value = 0.0016 for Fisher’s exact test) (Fig. 2H).

Genomic alterations associated with different OS outcomes

Neither genomic patterns nor HRD levels were associated with OS outcome in OCCC. In this manner, we carried out comparisons between long- and short- survivors. The frequency of CN alterations in those two groups indicated that gain/amplification of the MYC gene was associated with better survival (Fig. 3A). Survival was even better in a subgroup of MYC-amplified tumors harboring a concomitant loss of a region in chromosome 13q12-q13, which includes the BRCA2 gene; thus, this OS group of long-term survivors was named MB (“MYC-BRCA2”; Fig. 3B, D and F). A further comparison of OS was performed in the non-MB OCCCs, and better survival was observed in a subgroup carrying few (< 30) total CN aberrations (“few CN alterations” group; FC; Fig. 3C, E and G). The genomic pattern of all FC samples was Sxl, accordingly with lower percentages of genome changed and LOH (Supplementary Fig.S7A and B). The remaining samples showed the poorest survival (“poor survival” group; PS). Strikingly, amplification of the ASH1L gene was found in 8 (80%) of 10 PS samples, while ASH1L was amplified in only 3 (19%) of 16 non-PS samples (Fig. 3C and H and Supplementary File S6). The median OS of amplified ASH1L samples was 34.3 months versus 87.3 months for the remaining samples (P-value = 0.0407 and 0.0884 for Gehan-Breslow-Wilcoxon and log-rank tests, respectively; Supplementary Fig.S7C). Using the mentioned approach, the samples were classified into three OS groups (Fig. 3I) with different median OS times: 25 months for PS; 87.3 months for FC; and for the MB group, there was only one death event (Fig. 3J). All patients in the MB group were sensitive to platinum, and most of the patients in the PS group were diagnosed at stage III or IV (Fig. 3K). However, it is worth noting that patients with PS-OCCCs diagnosed at initial stages showed poor survival (Fig.S7D) and that patients with non-PS-OCCCs diagnosed at stage III showed a better prognosis (Fig.S7E).

Genomic alterations associated with early progression of initial-stage OCCC

To identify the association between genetic alterations and PFS, a comparison between four initial-stage samples that recurred before 17 months and 8 samples that did not progress in at least 39 months was performed. We found amplifications in the MAPK8 (cytoband 10q11.22), MKL1 and MCHR1 genes (cytoband 22q13.1-q13.2) in the group that recurred (Fig. 4A and B, and Supplementary File S7). A survival analysis on the basis of amplified MAPK8 (Fig. 4C) or MKL1 (Fig. 4D) status showed that one sample with delayed recurrence at 46.6 months did not show amplification of either gene. Interestingly, Occ53 showed MAPK8 amplification on recurrence (Supplementary File S3).

Discussion

In the present study, the median age of diagnosis was 50 years, consistent with the earlier diagnoses of OCCCs compared to HGSC in the United States (median 55 vs. 64 years) [3]. Moreover, OCCC was detected earlier in women with endometriosis (median = 38 years, range 31–59), which is probably connected with the fact that most of those patients were diagnosed at the initial stage [40, 41]. To date, the most important prognostic factor for overall survival is the sensitivity to platinum-based chemotherapy, regardless of the stage of the tumor [2]. However, for predicting progression-free survival (PFS), an advanced stage of cancer has been identified as the main prognostic factor, with the occurrence of thromboembolic events (TEEs) also contributing to the prognosis. In our cohort, we found that endometriosis did not significantly impact either OS or PFS. This is in contrast to a previous report, which suggested that endometriosis could be a prognostic factor [42].
PIK3CA mutations are common in OCCC; accordingly, they were detected in 30% of our samples with a relatively lower frequency than reported in other populations [37, 4350]. Our cohort also showed the concomitant loss of ARID1A expression associated with PI3KCA mutation, as previously observed [16]; those alterations are thought to occur at an early stage in the development of OCCC due to its presence in endometriosis precursor lesions [6]. In fact, we observed that endometriosis was more frequent in the presence of PIK3CA mutations and that both were associated with diagnosis at the initial stage. The cohort displayed an incidence of abnormal TP53 which is consistent with previously reported incidences in other populations [51, 52].
The genome-wide analysis of alterations by OncoScan was never used to detect CN alterations for this particular ovarian tumor type; the first studies of OCCCs were performed with aCGH, and currently, whole-exome sequencing is being performed. Despite the different reported techniques, the most common CN alterations were easily detected in our samples, including chromosome 8q and 20q13.2 amplification. The latter contains the ZNF217 oncogene that was not associated with shorter PFS or OS (log-rank P-value = 0.3125 and 0.5571, respectively), as suggested before [53]. The OCCC samples were clearly separated into clusters depending on their genomic architecture (FSl, STl and Sxl) rather than on individual CN alterations. The finding that most of the polyploid samples were inside the FSl cluster and none were classified as Sxl suggests that the genomic instability associated with the FSl pattern can be related to the loss of the diploid state [54]. Interestingly, ploidy alterations are associated with outcome in ovarian cancer, including OCCC [55].
Amplification of MYC was identified in 57.7% of the samples, which is consistent with previous reports (40–64%) [20, 44, 46] and was associated with better survival. However, a concomitant loss of the chromosome 13 region containing BRCA2, in the MB group, was associated with outstanding good OS prognosis, suggesting that a synergistic interaction might exist. In fact, loss of BRCA2 was a recurrent alteration in the samples within our cohort with high levels of HRD. A recent article by Wang et al. proposed a classification of ovarian tumors based on genomic signatures of aberrant DNA repair mechanisms rather than on histology [49]. In Wang et al., the subgroup H-HRD (high-HRD), characterized by enrichment of HRD signatures, showed better survival even in ovarian tumors without BRCA1/BRCA2 mutations. Importantly, the H-HRD subgroup showed amplification of MYC and MECOM genes (3q26.2) [49], the latter being within a region we identified as recurrently amplified in the HRD-sum high group of OCCC patients. In this manner, the MB OS group of OCCCs we defined is reminiscent of the H-HRD; however, in the combined study of Wang et al., most H-HRD samples were HSGC, and no OCCC was present [49]. Our hypothesis for this observation is that when the different histotypes are studied together, the greater levels of alterations found in HGSC mask similar alterations at lower levels in the other histotypes. This is clear from the differences observed in genomic scar levels between the FSl and STl clusters, where the latter showed exaggerated levels of all HRD signatures, in particular of HRD-LOH, relative to the FSl cluster. A recent study by Pesenti et al. classified a cohort of Italian-origin stage I epithelial ovarian cancer, including OCCCs, based on their genomic instability patterns, regardless of histological subtype [56]. The three genomic instability patterns defined by Pesenti et al. - “stable”, “unstable”, and “highly unstable” - are analogous to the Sx, FS, and ST genomic patterns, respectively, previously defined by Tan et al. [24]. OCCCs with lower levels of genomic alterations in our cohort were more prevalent than in the study by Pesenti et al. However, differences in sample classification between the two studies may have contributed to this discrepancy.
Synthetic lethality induced by PARP inhibitors in tumor cells with HRD is supposed to be a groundbreaking therapeutic strategy [57] in particular, for HGSC where ~ 50% of the cases have HRD [36]. Recently, mutations in 16 HR-associated genes were tested in a Japanese cohort, and 28% of the OCCCs showed alterations, which suggests that more patients could be selected for treatment with PARP inhibitors [58]. We observed that loss of BRCA2 and gain of PIK3CB genes were present in OCCCs with higher HRD-sum levels, which includes most of the cases in the FSl and STI clusters. In this manner, it would be interesting to verify what level of HRD-sum is necessary for the use of PARP inhibitors in OCCCs and to verify whether CN loss of BRCA2 is associated with that. Furthermore, the observed CN gain of the PIK3CB gene in HRD-sum high OCCCs might be linked to the promising results observed with the combination of inhibitors for the PI3K pathway and PARP [59, 60]. It has been reported that ovarian cancer patients with mutations in HR-associated genes have higher platinum sensitivity and prolonged overall survival [61]. In our cohorts, HRD-sum and CN loss of BRCA2 were not necessarily associated with longer OS or platinum sensitivity. In fact, all the patients with concomitant gain in MYC and loss of BRCA2 were sensitive to platinum-based treatment, and all of them showed a better prognosis.
The majority of the cases of the poorest OS group (PS group) showed amplification of the ASH1L gene on chromosome 1q22. This gene codes for a histone lysine methyltransferase that can mono- or di-methylate histone H3 lysine 36 (H3K36) [62] and is part of the Trithorax group of chromatin proteins that act as epigenetic regulators [63]. Recently, ASH1L function has been linked to leukemogenesis in mixed-lineage leukemia [57] and acute myelogenous leukemia [64]. Furthermore, ASH1L gene was identified as a driver gene liver cancer [65]. Also, congruent ASH1L gene amplification and mRNA up-regulation was reported in hepatocellular carcinoma [66]. Additionally, ASH1L is overexpressed in anaplastic thyroid cancer (ATC), contributing to its aggressiveness [67]. As in other tumor types, ASH1L might be associated with OCCC biology, and since epigenetic regulators are considered important targets for cancer treatment, our observation opens a new research opportunity to define the role of ASH1L in OCCC [68].
An important challenge in OCCC is to predict recurrence in patients diagnosed at initial stages. We identified that gains in MAPK8 and MKL1 genes were associated with fast progression. The MAPK8 gene encodes the stress-activated kinase JNK1, and its activated form is associated with shorter PFS in epithelial ovarian cancer [69]. The importance of our finding is linked to the use of JNK1 inhibitors in clinical trials for other cancers [70] and to the eventual use of these inhibitors to control progression in OCCC. Interestingly, MAPK8 gene gain was observed after progression of the Occ53 OCCC. At recurrence of Occ53, few alterations were conserved compared to the primary tumor, including amplification of WNT7B and MAPK1 oncogenes (Supplementary Fig.S8).

Conclusions

The low incidence of OCCC presents significant challenges to accumulate sufficient evidence to support the development of better treatments for the patients. Furthermore, the existence of geographical differences in the molecular determinants of OCCC demand collaborative efforts between research groups worldwide. Our study provides new molecular data for a geographical population barely studied in this scenery.

Acknowledgements

Not applicable.

Declarations

All methods were carried out in accordance with relevant guidelines and regulations and were approved by the Research Ethics Committee of the Clinical Hospital of Ribeirão Preto (2.485.363), Research Ethics Committee of the A.C.Camargo Cancer Center (2.630.745), Scientific Ethics Committee of the Mexico Hospital (HM-CLOBI-15-0118) and Drug Research Ethics Committee of Valencian Institute of Oncology Foundation (Dictamen Favorable, May 27th 2015). Informed consent was obtained from all subjects and/or their legal guardian(s).
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Anglesio MS, Carey MS, Köbel M, MacKay H, Huntsman DG. Clear cell carcinoma of the ovary: A report from the first Ovarian Clear Cell Symposium, June 24th, 2010. Gynecol Oncol. 2011;121:407–15. Anglesio MS, Carey MS, Köbel M, MacKay H, Huntsman DG. Clear cell carcinoma of the ovary: A report from the first Ovarian Clear Cell Symposium, June 24th, 2010. Gynecol Oncol. 2011;121:407–15.
2.
Zurück zum Zitat Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000;88:2584–9.PubMedCrossRef Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000;88:2584–9.PubMedCrossRef
3.
Zurück zum Zitat Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.PubMedCrossRef Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol. 2008;109:370–6.PubMedCrossRef
4.
Zurück zum Zitat Lee YY, Kim TJ, Kim MJ, Kim HJ, Song T, Kim MK, et al. Prognosis of ovarian clear cell carcinoma compared to other histological subtypes: a meta-analysis. Gynecol Oncol. 2011;122:541–7.PubMedCrossRef Lee YY, Kim TJ, Kim MJ, Kim HJ, Song T, Kim MK, et al. Prognosis of ovarian clear cell carcinoma compared to other histological subtypes: a meta-analysis. Gynecol Oncol. 2011;122:541–7.PubMedCrossRef
5.
Zurück zum Zitat Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 2012;13:385–94.PubMedPubMedCentralCrossRef Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 2012;13:385–94.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Anglesio MS, Bashashati A, Wang YK, Senz J, Ha G, Yang W, et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J Pathol. 2015;236:201–9.PubMedPubMedCentralCrossRef Anglesio MS, Bashashati A, Wang YK, Senz J, Ha G, Yang W, et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J Pathol. 2015;236:201–9.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Kim SI, Lim MC, Lim J, Won YJ, Seo SS, Kang S, et al. Incidence of epithelial ovarian cancer according to histologic subtypes in Korea, 1999 to 2012. J Gynecol Oncol. 2016;27:1–10.CrossRef Kim SI, Lim MC, Lim J, Won YJ, Seo SS, Kang S, et al. Incidence of epithelial ovarian cancer according to histologic subtypes in Korea, 1999 to 2012. J Gynecol Oncol. 2016;27:1–10.CrossRef
8.
Zurück zum Zitat Chiang YC, Chen CA, Chiang CJ, Hsu TH, Lin MC, You SL, et al. Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol. 2013;24:342–51.PubMedPubMedCentralCrossRef Chiang YC, Chen CA, Chiang CJ, Hsu TH, Lin MC, You SL, et al. Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol. 2013;24:342–51.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Okamoto A, Glasspool RM, Mabuchi S, Matsumura N, Nomura H, Itamochi H, et al. Gynecologic cancer intergroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24:20–5.CrossRef Okamoto A, Glasspool RM, Mabuchi S, Matsumura N, Nomura H, Itamochi H, et al. Gynecologic cancer intergroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24:20–5.CrossRef
10.
Zurück zum Zitat Yahata T, Banzai C, Tanaka K, Gynecological N. Histology-specific long-term trends in the incidence of ovarian cancer and borderline tumor in japanese females: a population-based study from 1983 to 2007 in Niigata. J Obstet Gynecol Res. 2012;38:645–50.CrossRef Yahata T, Banzai C, Tanaka K, Gynecological N. Histology-specific long-term trends in the incidence of ovarian cancer and borderline tumor in japanese females: a population-based study from 1983 to 2007 in Niigata. J Obstet Gynecol Res. 2012;38:645–50.CrossRef
11.
Zurück zum Zitat Köbel M, Kalloger SE, Huntsman DG, Santos JL, Swenerton KD, Seidman JD, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol. 2010;29:203–11.PubMedCrossRef Köbel M, Kalloger SE, Huntsman DG, Santos JL, Swenerton KD, Seidman JD, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol. 2010;29:203–11.PubMedCrossRef
12.
Zurück zum Zitat Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140:2451–60.PubMedPubMedCentralCrossRef Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140:2451–60.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol Oncol. 2014;133:147–54.PubMedCrossRef Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol Oncol. 2014;133:147–54.PubMedCrossRef
14.
Zurück zum Zitat Korenaga TR, Ward KK, Saenz C, McHale MT, Plaxe S. The elevated risk of ovarian clear cell carcinoma among Asian Pacific Islander women in the United States is not affected by birthplace. Gynecol Oncol. 2020;157:62–6.PubMedCrossRef Korenaga TR, Ward KK, Saenz C, McHale MT, Plaxe S. The elevated risk of ovarian clear cell carcinoma among Asian Pacific Islander women in the United States is not affected by birthplace. Gynecol Oncol. 2020;157:62–6.PubMedCrossRef
15.
Zurück zum Zitat Iida Y, Okamoto A, Hollis R, Gourley C, Herrington CS. Clear cell carcinoma of the ovary: a clinical and molecular perspective. Int J Gynecol Cancer. 2020;:1–12. Iida Y, Okamoto A, Hollis R, Gourley C, Herrington CS. Clear cell carcinoma of the ovary: a clinical and molecular perspective. Int J Gynecol Cancer. 2020;:1–12.
16.
Zurück zum Zitat Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25:615–24.PubMedCrossRef Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25:615–24.PubMedCrossRef
17.
Zurück zum Zitat Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6 May 2014. Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6 May 2014.
18.
Zurück zum Zitat Marks EI, Brown VS, Dizon DS. Genomic and molecular abnormalities in Gynecologic Clear Cell Carcinoma. Am J Clin Oncology: Cancer Clin Trials. 2020;43:139–45.CrossRef Marks EI, Brown VS, Dizon DS. Genomic and molecular abnormalities in Gynecologic Clear Cell Carcinoma. Am J Clin Oncology: Cancer Clin Trials. 2020;43:139–45.CrossRef
19.
Zurück zum Zitat Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Semin Cancer Biol. 2020;61:121–31. October 2019.PubMedCrossRef Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Semin Cancer Biol. 2020;61:121–31. October 2019.PubMedCrossRef
20.
Zurück zum Zitat Uehara Y, Oda K, Ikeda Y, Koso T, Tsuji S, Yamamoto S, et al. Integrated copy number and expression analysis identifies profiles of whole-arm chromosomal alterations and subgroups with favorable outcome in ovarian clear cell carcinomas. PLoS ONE. 2015;10:1–18. Uehara Y, Oda K, Ikeda Y, Koso T, Tsuji S, Yamamoto S, et al. Integrated copy number and expression analysis identifies profiles of whole-arm chromosomal alterations and subgroups with favorable outcome in ovarian clear cell carcinomas. PLoS ONE. 2015;10:1–18.
21.
Zurück zum Zitat Okamoto A, Sehouli J, Yanaihara N, Hirata Y, Braicu I, Kim BG, et al. Somatic copy number alterations associated with japanese or endometriosis in ovarian clear cell adenocarcinoma. PLoS ONE. 2015;10:1–13.CrossRef Okamoto A, Sehouli J, Yanaihara N, Hirata Y, Braicu I, Kim BG, et al. Somatic copy number alterations associated with japanese or endometriosis in ovarian clear cell adenocarcinoma. PLoS ONE. 2015;10:1–13.CrossRef
22.
Zurück zum Zitat Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C, et al. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011;17:2538–48.PubMedCrossRef Anglesio MS, George J, Kulbe H, Friedlander M, Rischin D, Lemech C, et al. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clin Cancer Res. 2011;17:2538–48.PubMedCrossRef
23.
Zurück zum Zitat Kuo KT, Mao TL, Chen X, Feng Y, Nakayama K, Wang Y, et al. DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma. Clin Cancer Res. 2010;16:1997–2008.PubMedPubMedCentralCrossRef Kuo KT, Mao TL, Chen X, Feng Y, Nakayama K, Wang Y, et al. DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma. Clin Cancer Res. 2010;16:1997–2008.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Tan DSP, Iravani M, McCluggage WG, Lambros MBK, Milanezi F, Mackay A, et al. Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin Cancer Res. 2011;17:1521–34.PubMedCrossRef Tan DSP, Iravani M, McCluggage WG, Lambros MBK, Milanezi F, Mackay A, et al. Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin Cancer Res. 2011;17:1521–34.PubMedCrossRef
25.
Zurück zum Zitat Iwasaki M, Mameri CP, Hamada GS, Tsugane S. Secular trends in cancer mortality among japanese immigrants in the state of São Paulo, Brazil, 1979–2001. Eur J Cancer Prev. 2008;17:1–8.PubMedCrossRef Iwasaki M, Mameri CP, Hamada GS, Tsugane S. Secular trends in cancer mortality among japanese immigrants in the state of São Paulo, Brazil, 1979–2001. Eur J Cancer Prev. 2008;17:1–8.PubMedCrossRef
26.
Zurück zum Zitat Mutch DG, Prat J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol Oncol. 2014;133:401–4.PubMedCrossRef Mutch DG, Prat J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol Oncol. 2014;133:401–4.PubMedCrossRef
27.
Zurück zum Zitat Stuart GCE, Kitchener H, Bacon M, DuBois A, Friedlander M, Ledermann J et al. 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: Report from the fourth ovarian cancer consensus conference. International Journal of Gynecological Cancer. 2011;21:750–5. Stuart GCE, Kitchener H, Bacon M, DuBois A, Friedlander M, Ledermann J et al. 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: Report from the fourth ovarian cancer consensus conference. International Journal of Gynecological Cancer. 2011;21:750–5.
28.
Zurück zum Zitat Buhard O, Cattaneo F, Yick FW, So FY, Friedman E, Flejou JF, et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol. 2006;24:241–51.PubMedCrossRef Buhard O, Cattaneo F, Yick FW, So FY, Friedman E, Flejou JF, et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol. 2006;24:241–51.PubMedCrossRef
29.
Zurück zum Zitat Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:16910–5.PubMedPubMedCentralCrossRef Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:16910–5.PubMedPubMedCentralCrossRef
30.
31.
Zurück zum Zitat Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.PubMedCrossRef Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.PubMedCrossRef
32.
Zurück zum Zitat Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, et al. Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. NPJ Breast Cancer. 2018;4:8–11.CrossRef Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, et al. Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer. NPJ Breast Cancer. 2018;4:8–11.CrossRef
33.
Zurück zum Zitat Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72:5454–62.PubMedCrossRef Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72:5454–62.PubMedCrossRef
34.
Zurück zum Zitat Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2:366–75.PubMedPubMedCentralCrossRef Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2:366–75.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107:1776–82.PubMedPubMedCentralCrossRef Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107:1776–82.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.CrossRef
37.
Zurück zum Zitat Caumanns JJ, Berns K, Wisman GBA, Fehrmann RSN, Tomar T, Klip H, et al. Integrative kinome profiling identifies mTORC1/2 inhibition as treatment strategy in ovarian clear cell carcinoma. Clin Cancer Res. 2018;24:3928–40.PubMedPubMedCentralCrossRef Caumanns JJ, Berns K, Wisman GBA, Fehrmann RSN, Tomar T, Klip H, et al. Integrative kinome profiling identifies mTORC1/2 inhibition as treatment strategy in ovarian clear cell carcinoma. Clin Cancer Res. 2018;24:3928–40.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16:1465–79.PubMedPubMedCentralCrossRef Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 2006;16:1465–79.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Melinda LT, Kirsten MT, Julia R, Bryan H, Gordon BM, Kristin CJ, et al. Homologous recombination deficiency (hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.CrossRef Melinda LT, Kirsten MT, Julia R, Bryan H, Gordon BM, Kristin CJ, et al. Homologous recombination deficiency (hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.CrossRef
40.
Zurück zum Zitat Bai H, Cao D, Yuan F, Sha G, Yang J, Chen J, et al. Prognostic value of endometriosis in patients with stage I ovarian clear cell carcinoma: experiences at three academic institutions. Gynecol Oncol. 2016;143:526–31.PubMedCrossRef Bai H, Cao D, Yuan F, Sha G, Yang J, Chen J, et al. Prognostic value of endometriosis in patients with stage I ovarian clear cell carcinoma: experiences at three academic institutions. Gynecol Oncol. 2016;143:526–31.PubMedCrossRef
41.
Zurück zum Zitat Park JY, Kim DY, Suh DS, Kim JH, Kim YM, Kim YT, et al. Significance of ovarian endometriosis on the prognosis of ovarian clear cell carcinoma. Int J Gynecol Cancer. 2018;28:11–8.PubMedCrossRef Park JY, Kim DY, Suh DS, Kim JH, Kim YM, Kim YT, et al. Significance of ovarian endometriosis on the prognosis of ovarian clear cell carcinoma. Int J Gynecol Cancer. 2018;28:11–8.PubMedCrossRef
42.
Zurück zum Zitat Orezzoli JP, Russell AH, Oliva E, del Carmen MG, Eichhorn J, Fuller AF. Prognostic implication of endometriosis in clear cell carcinoma of the ovary. Gynecol Oncol. 2008;110:336–44.PubMedCrossRef Orezzoli JP, Russell AH, Oliva E, del Carmen MG, Eichhorn J, Fuller AF. Prognostic implication of endometriosis in clear cell carcinoma of the ovary. Gynecol Oncol. 2008;110:336–44.PubMedCrossRef
43.
Zurück zum Zitat Itamochi H, Oishi T, Oumi N, Takeuchi S, Yoshihara K, Mikami M, et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer. 2017;117:717–24.PubMedPubMedCentralCrossRef Itamochi H, Oishi T, Oumi N, Takeuchi S, Yoshihara K, Mikami M, et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer. 2017;117:717–24.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kim I, Lee JW, Lee M, Kim HS, Chung HH, Kim JW, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. 2018;148:375–82.PubMedCrossRef Kim I, Lee JW, Lee M, Kim HS, Chung HH, Kim JW, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. 2018;148:375–82.PubMedCrossRef
45.
Zurück zum Zitat Takenaka M, Köbel M, Garsed DW, Fereday S, Pandey A, Etemadmoghadam D, et al. Survival following chemotherapy in ovarian clear cell carcinoma is not associated with pathological misclassification of tumor histotype. Clin Cancer Res. 2019;25:3962–73.PubMedCrossRef Takenaka M, Köbel M, Garsed DW, Fereday S, Pandey A, Etemadmoghadam D, et al. Survival following chemotherapy in ovarian clear cell carcinoma is not associated with pathological misclassification of tumor histotype. Clin Cancer Res. 2019;25:3962–73.PubMedCrossRef
46.
Zurück zum Zitat Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, et al. Exome sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key chromosomal regions and mutation gene networks. Am J Pathol. 2017;187:2246–58.PubMedCrossRef Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, et al. Exome sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key chromosomal regions and mutation gene networks. Am J Pathol. 2017;187:2246–58.PubMedCrossRef
47.
Zurück zum Zitat Shibuya Y, Tokunaga H, Saito S, Shimokawa K, Katsuoka F, Bin L, et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer. 2018;57:51–60.PubMedCrossRef Shibuya Y, Tokunaga H, Saito S, Shimokawa K, Katsuoka F, Bin L, et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer. 2018;57:51–60.PubMedCrossRef
48.
Zurück zum Zitat Friedlander ML, Russell K, Millis S, Gatalica Z, Bender R, Voss A. Molecular profiling of clear cell ovarian cancers: identifying potential treatment targets for clinical trials. Int J Gynecol Cancer. 2016;26:648–54.PubMedPubMedCentralCrossRef Friedlander ML, Russell K, Millis S, Gatalica Z, Bender R, Voss A. Molecular profiling of clear cell ovarian cancers: identifying potential treatment targets for clinical trials. Int J Gynecol Cancer. 2016;26:648–54.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856–64.PubMedCrossRef Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet. 2017;49:856–64.PubMedCrossRef
50.
Zurück zum Zitat Yang Q, Zhang C, Ren Y, Yi H, Luo T, Xing F, et al. Genomic characterization of chinese ovarian clear cell carcinoma identifies driver genes by whole exome sequencing. Neoplasia (United States). 2020;22:399–430.CrossRef Yang Q, Zhang C, Ren Y, Yi H, Luo T, Xing F, et al. Genomic characterization of chinese ovarian clear cell carcinoma identifies driver genes by whole exome sequencing. Neoplasia (United States). 2020;22:399–430.CrossRef
51.
Zurück zum Zitat Shih-Chu Ho E, Lai CR, Hsieh YT, Chen JT, Lin AJ, Hung MJ, et al. P53 mutation is infrequent in Clear Cell Carcinoma of the Ovary. Gynecol Oncol. 2001;80:189–93.CrossRef Shih-Chu Ho E, Lai CR, Hsieh YT, Chen JT, Lin AJ, Hung MJ, et al. P53 mutation is infrequent in Clear Cell Carcinoma of the Ovary. Gynecol Oncol. 2001;80:189–93.CrossRef
52.
Zurück zum Zitat Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Sem Cancer Biol. 2020;61:121–31.CrossRef Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Sem Cancer Biol. 2020;61:121–31.CrossRef
53.
Zurück zum Zitat Rahman MT, Nakayama K, Rahman M, Nakayama N, Ishikawa M, Katagiri A, et al. Prognostic and therapeutic impact of the chromosome 20q13.2 ZNF217 locus amplification in ovarian clear cell carcinoma. Cancer. 2012;118:2846–57.PubMedCrossRef Rahman MT, Nakayama K, Rahman M, Nakayama N, Ishikawa M, Katagiri A, et al. Prognostic and therapeutic impact of the chromosome 20q13.2 ZNF217 locus amplification in ovarian clear cell carcinoma. Cancer. 2012;118:2846–57.PubMedCrossRef
54.
Zurück zum Zitat Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54.PubMedCrossRef Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54.PubMedCrossRef
55.
Zurück zum Zitat Kristensen GB, Kildal W, Abeler VM, Kaern J, Vergote I, Tropé CG, et al. Large-scale genomic instability predicts long-term outcome for women with invasive stage I ovarian cancer. Ann Oncol. 2003;14:1494–500.PubMedCrossRef Kristensen GB, Kildal W, Abeler VM, Kaern J, Vergote I, Tropé CG, et al. Large-scale genomic instability predicts long-term outcome for women with invasive stage I ovarian cancer. Ann Oncol. 2003;14:1494–500.PubMedCrossRef
56.
Zurück zum Zitat Pesenti C, Beltrame L, Velle A, Fruscio R, Jaconi M, Borella F, et al. Copy number alterations in stage I epithelial ovarian cancer highlight three genomic patterns associated with prognosis. Eur J Cancer. 2022;171:85–95.PubMedCrossRef Pesenti C, Beltrame L, Velle A, Fruscio R, Jaconi M, Borella F, et al. Copy number alterations in stage I epithelial ovarian cancer highlight three genomic patterns associated with prognosis. Eur J Cancer. 2022;171:85–95.PubMedCrossRef
57.
Zurück zum Zitat Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science (1979). 2017;355:1152–8. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science (1979). 2017;355:1152–8.
58.
Zurück zum Zitat Sugino K, Tamura R, Nakaoka H, Yachida N, Yamaguchi M, Mori Y, et al. Germline and somatic mutations of homologous recombination-associated genes in japanese ovarian cancer patients. Sci Rep. 2019;9:1–9.CrossRef Sugino K, Tamura R, Nakaoka H, Yachida N, Yamaguchi M, Mori Y, et al. Germline and somatic mutations of homologous recombination-associated genes in japanese ovarian cancer patients. Sci Rep. 2019;9:1–9.CrossRef
59.
Zurück zum Zitat Rehman FL, Lord CJ, Ashworth A. The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov. 2012;2:982–4.PubMedCrossRef Rehman FL, Lord CJ, Ashworth A. The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov. 2012;2:982–4.PubMedCrossRef
60.
Zurück zum Zitat Yap TA, Kristeleit R, Michalarea V, Pettitt SJ, Lim JSJ, Carreira S, et al. Phase i trial of the parp inhibitor olaparib and akt inhibitor capivasertib in patients with brca1/2-and non–brca1/2-mutant cancers. Cancer Discov. 2020;10:1528–43.PubMedPubMedCentralCrossRef Yap TA, Kristeleit R, Michalarea V, Pettitt SJ, Lim JSJ, Carreira S, et al. Phase i trial of the parp inhibitor olaparib and akt inhibitor capivasertib in patients with brca1/2-and non–brca1/2-mutant cancers. Cancer Discov. 2020;10:1528–43.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20:764–75.PubMedCrossRef Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20:764–75.PubMedCrossRef
62.
Zurück zum Zitat Tanaka Y, Katagiri Z ichiro, Kawahashi K, Kioussis D, Kitajima S. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene. 2007;397:161–8. Tanaka Y, Katagiri Z ichiro, Kawahashi K, Kioussis D, Kitajima S. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene. 2007;397:161–8.
63.
Zurück zum Zitat Schuettengruber B, Martinez AM, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12:799–814.PubMedCrossRef Schuettengruber B, Martinez AM, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12:799–814.PubMedCrossRef
64.
Zurück zum Zitat Trissal MC, Wong TN, Yao JC, Ramaswamy R, Kuo I, Baty J, et al. MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res. 2018;78:3510–21.PubMedPubMedCentralCrossRef Trissal MC, Wong TN, Yao JC, Ramaswamy R, Kuo I, Baty J, et al. MIR142 loss-of-function mutations derepress ASH1L to increase HOXA gene expression and promote leukemogenesis. Cancer Res. 2018;78:3510–21.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48:500–9.PubMedCrossRef Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48:500–9.PubMedCrossRef
66.
Zurück zum Zitat Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J, et al. Gene expression profiling in hepatocellular carcinoma: Upregulation of genes in amplified chromosome regions. Mod Pathol. 2008;21:505–16.PubMedCrossRef Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J, et al. Gene expression profiling in hepatocellular carcinoma: Upregulation of genes in amplified chromosome regions. Mod Pathol. 2008;21:505–16.PubMedCrossRef
67.
Zurück zum Zitat Xu B, Qin T, Yu J, Giordano TJ, Sartor MA, Koenig RJ. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma. J Biol Chem. 2020;295:8834–45.PubMedPubMedCentralCrossRef Xu B, Qin T, Yu J, Giordano TJ, Sartor MA, Koenig RJ. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma. J Biol Chem. 2020;295:8834–45.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Cheng Y, He C, Wang M, Ma X, Mo F, Yang S et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4.
69.
Zurück zum Zitat Vivas-Mejia P, Benito JM, Fernandez A, Han HD, Mangala L, Rodriguez-Aguayo C, et al. c-Jun-NH2-kinase-1 inhibition leads to antitumor activity in ovarian cancer. Clin Cancer Res. 2010;16:184–94.PubMedCrossRef Vivas-Mejia P, Benito JM, Fernandez A, Han HD, Mangala L, Rodriguez-Aguayo C, et al. c-Jun-NH2-kinase-1 inhibition leads to antitumor activity in ovarian cancer. Clin Cancer Res. 2010;16:184–94.PubMedCrossRef
70.
Zurück zum Zitat Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem. 2020;35:574–83.PubMedPubMedCentralCrossRef Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem. 2020;35:574–83.PubMedPubMedCentralCrossRef
Metadaten
Titel
Genomic landscapes of ovarian clear cell carcinoma from latin countries reveal aberrations linked to survival and progression
verfasst von
Mariana de Paiva Batista
Martín Roffé
Ignacio Romero
José Antonio López-Guerrero
Carmen Illueca
Raquel Lopez
Alexandre André Balieiro Anastácio da Costa
Louise De Brot
Juan Pablo Molina
Laura Barboza
Fernanda Maris Peria
Fernando Chaud
Ana Silvia Gouvêa Yamada
Andres Poveda
Eduardo Magalhães Rego
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2023
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11095-8

Weitere Artikel der Ausgabe 1/2023

BMC Cancer 1/2023 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.