Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2008

01.06.2008 | Original Paper

Growth Factors as Mediators of Exercise Actions on the Brain

verfasst von: M. Llorens-Martín, I. Torres-Alemán, José L. Trejo

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Physical exercise has long been recognized as highly beneficial for brain and body health. The molecular mechanisms responsible for translation of exercise stimuli in the brain have claimed attention due to mounting evidence for the neuroprotective actions of the exercise and its positive effects in preventing both ageing and neurodegenerative disease. These molecular mediators are currently under investigation with new tools able to yield deep insights into the neurobiology of exercise. In the present work we focus on the evidence pertaining to the mediation of exercise effects by insulin-like growth factor 1 (IGF1), as recent reports suggest that this growth factor shows brain area-specific, temporal rank-sensitive, and behavioural task-dependent features in response to exercise.
Literatur
Zurück zum Zitat Aberg, M. A., Aberg, N. D., Hedbacker, H., et al. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903PubMed Aberg, M. A., Aberg, N. D., Hedbacker, H., et al. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903PubMed
Zurück zum Zitat Aberg, N. D., Brywe, K. G., & Isgaard, J. (2006). Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Scientific World Journal, 6, 53–80.PubMed Aberg, N. D., Brywe, K. G., & Isgaard, J. (2006). Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Scientific World Journal, 6, 53–80.PubMed
Zurück zum Zitat Adkins, D. L., Boychuk, J., & Remple, M. S., et al. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101, 1776–1782.PubMedCrossRef Adkins, D. L., Boychuk, J., & Remple, M. S., et al. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101, 1776–1782.PubMedCrossRef
Zurück zum Zitat Aleman, A., Verhaar, H.J., de Haan, E. H., et al. (1999). Insulin-like growth factor-I and cognitive function in healthy older men. Journal of Clinical Endocrinology and Metabolism, 84, 471–475.PubMedCrossRef Aleman, A., Verhaar, H.J., de Haan, E. H., et al. (1999). Insulin-like growth factor-I and cognitive function in healthy older men. Journal of Clinical Endocrinology and Metabolism, 84, 471–475.PubMedCrossRef
Zurück zum Zitat Ang, E. T., Wong, P. T., Moochhala, S., et al. (2003). Neuroprotection associated with running: Is it a result of increased endogenous neurotrophic factors? Neuroscience, 118, 335–345.PubMedCrossRef Ang, E. T., Wong, P. T., Moochhala, S., et al. (2003). Neuroprotection associated with running: Is it a result of increased endogenous neurotrophic factors? Neuroscience, 118, 335–345.PubMedCrossRef
Zurück zum Zitat Arwert, L. I., Deijen, J. B., & Drent, M. L. (2005). The relation between insulin-like growth factor I levels and cognition in healthy elderly: A meta-analysis. Growth Hormone & IGF Research, 15, 416–422.CrossRef Arwert, L. I., Deijen, J. B., & Drent, M. L. (2005). The relation between insulin-like growth factor I levels and cognition in healthy elderly: A meta-analysis. Growth Hormone & IGF Research, 15, 416–422.CrossRef
Zurück zum Zitat Beck, K. D., Powell-Braxton, L., Widmer, H. R., et al. (1995). Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 14, 717–730.PubMedCrossRef Beck, K. D., Powell-Braxton, L., Widmer, H. R., et al. (1995). Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 14, 717–730.PubMedCrossRef
Zurück zum Zitat Bilak, M. M., Corse, A. M., & Kuncl, R. W. (2001). Additivity and potentiation of IGF-I and GDNF in the complete rescue of postnatal motor neurons. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2, 83–91.CrossRefPubMed Bilak, M. M., Corse, A. M., & Kuncl, R. W. (2001). Additivity and potentiation of IGF-I and GDNF in the complete rescue of postnatal motor neurons. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2, 83–91.CrossRefPubMed
Zurück zum Zitat Black, J. E., Isaacs, K. R., Anderson, B. J., et al. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMedCrossRef Black, J. E., Isaacs, K. R., Anderson, B. J., et al. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 5568–5572.PubMedCrossRef
Zurück zum Zitat Breese, C. R., Ingram, R. L., & Sonntag, W. E. (1991). Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. Journal of Gerontology, 46, B180–B187.PubMed Breese, C. R., Ingram, R. L., & Sonntag, W. E. (1991). Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. Journal of Gerontology, 46, B180–B187.PubMed
Zurück zum Zitat Bulow, B., Hagmar, L., Orbaek, P., et al. (2002). High incidence of mental disorders, reduced mental well-being and cognitive function in hypopituitary women with GH deficiency treated for pituitary disease. Clinical Endocrinology, 56, 183–193.PubMedCrossRef Bulow, B., Hagmar, L., Orbaek, P., et al. (2002). High incidence of mental disorders, reduced mental well-being and cognitive function in hypopituitary women with GH deficiency treated for pituitary disease. Clinical Endocrinology, 56, 183–193.PubMedCrossRef
Zurück zum Zitat Busiguina, S., Fernandez, A. M., Barrios, V., et al. (2000). Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiology of Disease, 7, 657–665.PubMedCrossRef Busiguina, S., Fernandez, A. M., Barrios, V., et al. (2000). Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiology of Disease, 7, 657–665.PubMedCrossRef
Zurück zum Zitat Carro, E., Nunez, A., Busiguina, S., et al. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMed Carro, E., Nunez, A., Busiguina, S., et al. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. Journal of Neuroscience, 20, 2926–2933.PubMed
Zurück zum Zitat Carro, E., Spuch, C., Trejo, J. L., et al. (2005). Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. Journal of Neuroscience, 25, 10884–10893.PubMedCrossRef Carro, E., Spuch, C., Trejo, J. L., et al. (2005). Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. Journal of Neuroscience, 25, 10884–10893.PubMedCrossRef
Zurück zum Zitat Carro, E., Trejo, J. L., Busiguina, S., et al. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMed Carro, E., Trejo, J. L., Busiguina, S., et al. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMed
Zurück zum Zitat Carro, E., Trejo, J. L., Gomez-Isla, T., et al. (2002). Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nature Medicine, 8, 1390–1397.PubMedCrossRef Carro, E., Trejo, J. L., Gomez-Isla, T., et al. (2002). Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nature Medicine, 8, 1390–1397.PubMedCrossRef
Zurück zum Zitat Carro, E., Trejo, J. L., Nunez, A., et al. (2003). Brain repair and neuroprotection by serum insulin-like growth factor I. Molecular Neurobiology, 27, 153–162.PubMedCrossRef Carro, E., Trejo, J. L., Nunez, A., et al. (2003). Brain repair and neuroprotection by serum insulin-like growth factor I. Molecular Neurobiology, 27, 153–162.PubMedCrossRef
Zurück zum Zitat Carson, M. J., Behringer, R. R., Brinster, R. L., et al. (1993). Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron, 10, 729–740.PubMedCrossRef Carson, M. J., Behringer, R. R., Brinster, R. L., et al. (1993). Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron, 10, 729–740.PubMedCrossRef
Zurück zum Zitat Castro-Alamancos, M. A., & Torres-Aleman, I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 90, 7386–7390.PubMedCrossRef Castro-Alamancos, M. A., & Torres-Aleman, I. (1993) Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 90, 7386–7390.PubMedCrossRef
Zurück zum Zitat Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25(2), 118-131.PubMedCrossRef Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25(2), 118-131.PubMedCrossRef
Zurück zum Zitat Cheng, H. L., & Feldman, E. L. (1998). Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. The Journal Biological Chemistry, 273, 14560–14565.CrossRef Cheng, H. L., & Feldman, E. L. (1998). Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. The Journal Biological Chemistry, 273, 14560–14565.CrossRef
Zurück zum Zitat Chrysis, D., Calikoglu, A. S., Ye, P., et al. (2001) Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. The Journal of Neuroscience, 21, 1481–1489.PubMed Chrysis, D., Calikoglu, A. S., Ye, P., et al. (2001) Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. The Journal of Neuroscience, 21, 1481–1489.PubMed
Zurück zum Zitat Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.PubMedCrossRef Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.PubMedCrossRef
Zurück zum Zitat Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef
Zurück zum Zitat Davila, D., Piriz, J., Trejo, J. L., et al. (2007). Insulin and insulin-like growth factor I signalling in neurons. Frontiers in Bioscience 12, 3194–3202.PubMedCrossRef Davila, D., Piriz, J., Trejo, J. L., et al. (2007). Insulin and insulin-like growth factor I signalling in neurons. Frontiers in Bioscience 12, 3194–3202.PubMedCrossRef
Zurück zum Zitat Deuschle, M., Blum, W. F., Frystyk, J., et al. (1998). Endurance training and its effect upon the activity of the GH-IGFs system in the elderly. International Journal of Sports Medicine, 19, 250–254.PubMedCrossRef Deuschle, M., Blum, W. F., Frystyk, J., et al. (1998). Endurance training and its effect upon the activity of the GH-IGFs system in the elderly. International Journal of Sports Medicine, 19, 250–254.PubMedCrossRef
Zurück zum Zitat Dik, M. G., Pluijm, S. M., Jonker, C., et al. (2003). Insulin-like growth factor I (IGF-I) and cognitive decline in older persons. Neurobiology of Aging, 24, 573–581.PubMedCrossRef Dik, M. G., Pluijm, S. M., Jonker, C., et al. (2003). Insulin-like growth factor I (IGF-I) and cognitive decline in older persons. Neurobiology of Aging, 24, 573–581.PubMedCrossRef
Zurück zum Zitat Ding, Q., Vaynman, S., Akhavan, M., et al. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140, 823–833.PubMedCrossRef Ding, Q., Vaynman, S., Akhavan, M., et al. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140, 823–833.PubMedCrossRef
Zurück zum Zitat Dishman, R. K., Berthoud, H. R., Booth, F. W., et al. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345–356.CrossRef Dishman, R. K., Berthoud, H. R., Booth, F. W., et al. (2006). Neurobiology of exercise. Obesity (Silver Spring), 14, 345–356.CrossRef
Zurück zum Zitat Dore, S., Kar, S., & Quirion, R. (1997). Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proceedings of the National Academy of Sciences of the United States of America, 94, 4772–4777.PubMedCrossRef Dore, S., Kar, S., & Quirion, R. (1997). Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proceedings of the National Academy of Sciences of the United States of America, 94, 4772–4777.PubMedCrossRef
Zurück zum Zitat Eliakim, A., Brasel, J. A., & Cooper, D. M. (1999). GH response to exercise: assessment of the pituitary refractory period, and relationship with circulating components of the GH-IGF-I axis in adolescent females. Journal of Pediatric Endocrinology & Metabolism, 12, 47–55. Eliakim, A., Brasel, J. A., & Cooper, D. M. (1999). GH response to exercise: assessment of the pituitary refractory period, and relationship with circulating components of the GH-IGF-I axis in adolescent females. Journal of Pediatric Endocrinology & Metabolism, 12, 47–55.
Zurück zum Zitat Eliakim, A., Brasel, J. A., Mohan, S., et al. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. The American Journal of Physiology, 275, R308–R314.PubMed Eliakim, A., Brasel, J. A., Mohan, S., et al. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. The American Journal of Physiology, 275, R308–R314.PubMed
Zurück zum Zitat Fabel, K., Fabel, K., Tam, B., et al. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. The European Journal of Neuroscience, 18, 2803–2812.PubMedCrossRef Fabel, K., Fabel, K., Tam, B., et al. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. The European Journal of Neuroscience, 18, 2803–2812.PubMedCrossRef
Zurück zum Zitat Fernandez, A. M., de la Vega, A. G., & Torres-Aleman, I. (1998). Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proceedings of the National Academy of Sciences of the United States of America, 95, 1253–1258.PubMedCrossRef Fernandez, A. M., de la Vega, A. G., & Torres-Aleman, I. (1998). Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proceedings of the National Academy of Sciences of the United States of America, 95, 1253–1258.PubMedCrossRef
Zurück zum Zitat Fernandez, A. M., Gonzalez de la Vega, A. G., Planas, B., et al. (1999). Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. The European Journal of Neuroscience, 11, 2019–2030.PubMedCrossRef Fernandez, A. M., Gonzalez de la Vega, A. G., Planas, B., et al. (1999). Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. The European Journal of Neuroscience, 11, 2019–2030.PubMedCrossRef
Zurück zum Zitat Garcia-Segura, L. M., Duenas, M., Fernandez-Galaz, M. C., et al. (1996). Interaction of the signalling pathways of insulin-like growth factor-I and sex steroids in the neuroendocrine hypothalamus. Hormone Research, 46, 160–164.PubMedCrossRef Garcia-Segura, L. M., Duenas, M., Fernandez-Galaz, M. C., et al. (1996). Interaction of the signalling pathways of insulin-like growth factor-I and sex steroids in the neuroendocrine hypothalamus. Hormone Research, 46, 160–164.PubMedCrossRef
Zurück zum Zitat Giannakou, M. E., & Partridge, L. (2007). Role of insulin-like signalling in Drosophila lifespan. Trends in Biochemical Sciences, 32, 180–188.PubMedCrossRef Giannakou, M. E., & Partridge, L. (2007). Role of insulin-like signalling in Drosophila lifespan. Trends in Biochemical Sciences, 32, 180–188.PubMedCrossRef
Zurück zum Zitat Guan, J., Bennet, L., George, S., et al. (2001) Insulin-like growth factor-1 reduces postischemic white matter injury in fetal sheep. Journal of Cerebral Blood Flow and Metabolism, 21, 493–502.PubMed Guan, J., Bennet, L., George, S., et al. (2001) Insulin-like growth factor-1 reduces postischemic white matter injury in fetal sheep. Journal of Cerebral Blood Flow and Metabolism, 21, 493–502.PubMed
Zurück zum Zitat Hantai, D., Akaaboune, M., Lagord, C., et al. (1995). Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. Journal of the Neurological Science, 129(Suppl), 122–126.CrossRef Hantai, D., Akaaboune, M., Lagord, C., et al. (1995). Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. Journal of the Neurological Science, 129(Suppl), 122–126.CrossRef
Zurück zum Zitat Holzenberger, M., Dupont, J., Ducos, B., et al. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421, 182–187.PubMedCrossRef Holzenberger, M., Dupont, J., Ducos, B., et al. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421, 182–187.PubMedCrossRef
Zurück zum Zitat Hoshaw, B. A., Malberg, J. E., & Lucki, I. (2005). Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Research, 1037, 204–208.PubMedCrossRef Hoshaw, B. A., Malberg, J. E., & Lucki, I. (2005). Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Research, 1037, 204–208.PubMedCrossRef
Zurück zum Zitat Humbert, S., Bryson, E. A., Cordelieres, F. P., et al. (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Developmental Cell, 2, 831–837.PubMedCrossRef Humbert, S., Bryson, E. A., Cordelieres, F. P., et al. (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Developmental Cell, 2, 831–837.PubMedCrossRef
Zurück zum Zitat Jones, T. A., Chu, C. J., Grande, L. A., et al. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19, 10153–10163.PubMed Jones, T. A., Chu, C. J., Grande, L. A., et al. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19, 10153–10163.PubMed
Zurück zum Zitat Kalmijn, S., Janssen, J. A., Pols, H. A., et al. (2000). A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. Journal of Clinical Endocrinology and Metabolism, 85, 4551–4555.PubMedCrossRef Kalmijn, S., Janssen, J. A., Pols, H. A., et al. (2000). A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. Journal of Clinical Endocrinology and Metabolism, 85, 4551–4555.PubMedCrossRef
Zurück zum Zitat Kenyon, C. (2004). My adventures with genes from the fountain of youth. Harvey Lectures, 100, 29–70.PubMed Kenyon, C. (2004). My adventures with genes from the fountain of youth. Harvey Lectures, 100, 29–70.PubMed
Zurück zum Zitat Koopmans, G. C., Brans, M., Gomez-Pinilla, F., et al. (2006). Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. European Journal of Neurosciences, 23, 1035–1046.CrossRef Koopmans, G. C., Brans, M., Gomez-Pinilla, F., et al. (2006). Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. European Journal of Neurosciences, 23, 1035–1046.CrossRef
Zurück zum Zitat Koponen, E., Rantamaki, T., Voikar, V., et al. (2005). Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cellular and Molecular Neurobiology, 25, 973–980.PubMedCrossRef Koponen, E., Rantamaki, T., Voikar, V., et al. (2005). Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cellular and Molecular Neurobiology, 25, 973–980.PubMedCrossRef
Zurück zum Zitat Landi, F., Capoluongo, E., Russo, A., et al. (2007). Free insulin-like growth factor-I and cognitive function in older persons living in community. Growth Hormone & IGF Research, 17, 58–66.CrossRef Landi, F., Capoluongo, E., Russo, A., et al. (2007). Free insulin-like growth factor-I and cognitive function in older persons living in community. Growth Hormone & IGF Research, 17, 58–66.CrossRef
Zurück zum Zitat Le, G. M., Steensland, P., Le, G. P., et al. (2002). Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male rats. Proceedings of the National Academy of Sciences of the United States of America, 99, 7119–7123.CrossRef Le, G. M., Steensland, P., Le, G. P., et al. (2002). Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male rats. Proceedings of the National Academy of Sciences of the United States of America, 99, 7119–7123.CrossRef
Zurück zum Zitat Leifke, E., Gorenoi, V., Wichers, C., et al. (2000). Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clinical Endocrinology, 53, 689–695.PubMedCrossRef Leifke, E., Gorenoi, V., Wichers, C., et al. (2000). Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clinical Endocrinology, 53, 689–695.PubMedCrossRef
Zurück zum Zitat Lijffijt, M., Van Dam, P. S., Kenemans, J. L., et al. (2003). Somatotropic-axis deficiency affects brain substrates of selective attention in childhood-onset growth hormone deficient patients. Neuroscience Letters, 353, 123–126.PubMedCrossRef Lijffijt, M., Van Dam, P. S., Kenemans, J. L., et al. (2003). Somatotropic-axis deficiency affects brain substrates of selective attention in childhood-onset growth hormone deficient patients. Neuroscience Letters, 353, 123–126.PubMedCrossRef
Zurück zum Zitat Lommatzsch, M., Braun, A., Mannsfeldt, A., et al. (1999). Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. The American Journal of Pathology, 155, 1183–1193.PubMed Lommatzsch, M., Braun, A., Mannsfeldt, A., et al. (1999). Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. The American Journal of Pathology, 155, 1183–1193.PubMed
Zurück zum Zitat Lopez-Lopez, C., Leroith, D., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–9838.PubMedCrossRef Lopez-Lopez, C., Leroith, D., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101, 9833–9838.PubMedCrossRef
Zurück zum Zitat Markowska, A. L., Mooney, M., & Sonntag, W. E. (1998). Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience, 87, 559–569.PubMedCrossRef Markowska, A. L., Mooney, M., & Sonntag, W. E. (1998). Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience, 87, 559–569.PubMedCrossRef
Zurück zum Zitat Miyata, M., Kim, H. T., Hashimoto, K., et al. (2001). Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. European Journal of Neurosciences, 13, 1945–1954.CrossRef Miyata, M., Kim, H. T., Hashimoto, K., et al. (2001). Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. European Journal of Neurosciences, 13, 1945–1954.CrossRef
Zurück zum Zitat Monteggia, L. M., Barrot, M., Powell, C. M., et al. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 101, 10827–10832.PubMedCrossRef Monteggia, L. M., Barrot, M., Powell, C. M., et al. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 101, 10827–10832.PubMedCrossRef
Zurück zum Zitat Neves-Pereira, M., Mundo, E., Muglia, P., et al. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. American Journal of Human Genetics, 71, 651–655.PubMedCrossRef Neves-Pereira, M., Mundo, E., Muglia, P., et al. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: Evidence from a family-based association study. American Journal of Human Genetics, 71, 651–655.PubMedCrossRef
Zurück zum Zitat Nieto-Bona, M. P., Garcia-Segura, L. M., & Torres-Aleman, I. (1997). Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. International Journal of Developmental Neuroscience, 15, 749–754.PubMedCrossRef Nieto-Bona, M. P., Garcia-Segura, L. M., & Torres-Aleman, I. (1997). Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. International Journal of Developmental Neuroscience, 15, 749–754.PubMedCrossRef
Zurück zum Zitat Nunez, A., Carro, E., & Torres-Aleman, I. (2003). Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. Journal of Neurophysiology, 89, 3008–3017.PubMedCrossRef Nunez, A., Carro, E., & Torres-Aleman, I. (2003). Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. Journal of Neurophysiology, 89, 3008–3017.PubMedCrossRef
Zurück zum Zitat Okereke, O., Kang, J. H., Ma, J., et al. (2007). Plasma IGF-I levels and cognitive performance in older women. Neurobiology of Aging, 28, 135–142.PubMedCrossRef Okereke, O., Kang, J. H., Ma, J., et al. (2007). Plasma IGF-I levels and cognitive performance in older women. Neurobiology of Aging, 28, 135–142.PubMedCrossRef
Zurück zum Zitat O’Kusky, J. R., Ye, P., & D’Ercole, A. J. (2000). Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. Journal of Neuroscience, 20, 8435–8442.PubMed O’Kusky, J. R., Ye, P., & D’Ercole, A. J. (2000). Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. Journal of Neuroscience, 20, 8435–8442.PubMed
Zurück zum Zitat Ono, M., Itakura, Y., Nonomura, T., et al. (2000). Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism, 49, 129–133.PubMedCrossRef Ono, M., Itakura, Y., Nonomura, T., et al. (2000). Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism, 49, 129–133.PubMedCrossRef
Zurück zum Zitat Pan, W., Banks, W. A., & Kastin, A. J. (1998) Permeability of the blood-brain barrier to neurotrophins. Brain Research, 788, 87–94.PubMedCrossRef Pan, W., Banks, W. A., & Kastin, A. J. (1998) Permeability of the blood-brain barrier to neurotrophins. Brain Research, 788, 87–94.PubMedCrossRef
Zurück zum Zitat Ploughman, M., Attwood, Z., White, N., et al. (2007). Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. European Journal of Neuroscience, 25, 3453–3460.PubMedCrossRef Ploughman, M., Attwood, Z., White, N., et al. (2007). Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. European Journal of Neuroscience, 25, 3453–3460.PubMedCrossRef
Zurück zum Zitat Ploughman, M., Granter-Button, S., Chernenko, G., et al. (2005). Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience, 136, 991–1001.PubMedCrossRef Ploughman, M., Granter-Button, S., Chernenko, G., et al. (2005). Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience, 136, 991–1001.PubMedCrossRef
Zurück zum Zitat Pulford, B. E., Whalen, L.R., & Ishii, D. N. (1999). Peripherally administered insulin-like growth factor-I preserves hindlimb reflex and spinal cord noradrenergic circuitry following a central nervous system lesion in rats. Experimental Neurology, 159, 114–123.PubMedCrossRef Pulford, B. E., Whalen, L.R., & Ishii, D. N. (1999). Peripherally administered insulin-like growth factor-I preserves hindlimb reflex and spinal cord noradrenergic circuitry following a central nervous system lesion in rats. Experimental Neurology, 159, 114–123.PubMedCrossRef
Zurück zum Zitat Roelen, C. A., de Vries, W. R., Koppeschaar, H. P., et al. (1997). Plasma insulin-like growth factor-I and high affinity growth hormone-binding protein levels increase after two weeks of strenuous physical training. International Journal of Sports Medicine, 18, 238–241.PubMedCrossRef Roelen, C. A., de Vries, W. R., Koppeschaar, H. P., et al. (1997). Plasma insulin-like growth factor-I and high affinity growth hormone-binding protein levels increase after two weeks of strenuous physical training. International Journal of Sports Medicine, 18, 238–241.PubMedCrossRef
Zurück zum Zitat Rollero, A., Murialdo, G., Fonzi, S., et al. (1998). Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology, 38, 73–79.PubMedCrossRef Rollero, A., Murialdo, G., Fonzi, S., et al. (1998). Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology, 38, 73–79.PubMedCrossRef
Zurück zum Zitat Rosenfeld, R. D., Zeni, L., Haniu, M., et al. (1995). Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expression and Purification, 6, 465–471.PubMedCrossRef Rosenfeld, R. D., Zeni, L., Haniu, M., et al. (1995). Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expression and Purification, 6, 465–471.PubMedCrossRef
Zurück zum Zitat Russo, V.C., Gluckman, P. D., Feldman, E. L., et al. (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocrine Reviews, 26, 916–943.PubMedCrossRef Russo, V.C., Gluckman, P. D., Feldman, E. L., et al. (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocrine Reviews, 26, 916–943.PubMedCrossRef
Zurück zum Zitat Serrano, T., Lorigados, L. C., et al. (1996) Nerve growth factor levels in normal human sera. Neuroreport, 8, 179–181.PubMedCrossRef Serrano, T., Lorigados, L. C., et al. (1996) Nerve growth factor levels in normal human sera. Neuroreport, 8, 179–181.PubMedCrossRef
Zurück zum Zitat Shirayama, Y., Chen, A. C., Nakagawa, S., et al. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neurosciences, 22, 3251–3261. Shirayama, Y., Chen, A. C., Nakagawa, S., et al. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neurosciences, 22, 3251–3261.
Zurück zum Zitat Smith, A. D., & Zigmond, M. J. (2003). Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Experimental Neurology, 184, 31–39.PubMedCrossRef Smith, A. D., & Zigmond, M. J. (2003). Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Experimental Neurology, 184, 31–39.PubMedCrossRef
Zurück zum Zitat Sonntag, W. E., Lynch, C. D., Cooney, P. T., et al. (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology, 138, 3515–3520.PubMedCrossRef Sonntag, W. E., Lynch, C. D., Cooney, P. T., et al. (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology, 138, 3515–3520.PubMedCrossRef
Zurück zum Zitat Stummer, W., Weber, K., Tranmer, B., et al. (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke, 25, 1862–1869.PubMed Stummer, W., Weber, K., Tranmer, B., et al. (1994) Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke, 25, 1862–1869.PubMed
Zurück zum Zitat Svensson, J., Diez, M., Engel, J., et al. (2006). Endocrine, liver-derived IGF-I is of importance for spatial learning and memory in old mice. The Journal of Endocrinology, 189, 617–627.PubMedCrossRef Svensson, J., Diez, M., Engel, J., et al. (2006). Endocrine, liver-derived IGF-I is of importance for spatial learning and memory in old mice. The Journal of Endocrinology, 189, 617–627.PubMedCrossRef
Zurück zum Zitat Tissandier, O., Peres, G., Fiet, J., et al. (2001). Testosterone, dehydroepiandrosterone, insulin-like growth factor 1, and insulin in sedentary and physically trained aged men. European Journal of Applied Physiology, 85, 177–184.PubMedCrossRef Tissandier, O., Peres, G., Fiet, J., et al. (2001). Testosterone, dehydroepiandrosterone, insulin-like growth factor 1, and insulin in sedentary and physically trained aged men. European Journal of Applied Physiology, 85, 177–184.PubMedCrossRef
Zurück zum Zitat Torres-Aleman, I. (2000). Serum growth factors and neuroprotective surveillance: Focus on IGF-1. Molecular Neurobiology, 21, 153–160.PubMedCrossRef Torres-Aleman, I. (2000). Serum growth factors and neuroprotective surveillance: Focus on IGF-1. Molecular Neurobiology, 21, 153–160.PubMedCrossRef
Zurück zum Zitat Trejo, J. L., Carro, E., Garcia-Galloway, E., et al. (2004a). Role of insulin-like growth factor I signaling in neurodegenerative diseases. Journal of Molecular Medicine, 82, 156–162.PubMedCrossRef Trejo, J. L., Carro, E., Garcia-Galloway, E., et al. (2004a). Role of insulin-like growth factor I signaling in neurodegenerative diseases. Journal of Molecular Medicine, 82, 156–162.PubMedCrossRef
Zurück zum Zitat Trejo, J. L., Carro, E., Lopez-Lopez, C., et al. (2004b). Role of serum insulin-like growth factor I in mammalian brain aging. Growth Hormone & IGF Research, 14(Suppl A), S39–S43.CrossRef Trejo, J. L., Carro, E., Lopez-Lopez, C., et al. (2004b). Role of serum insulin-like growth factor I in mammalian brain aging. Growth Hormone & IGF Research, 14(Suppl A), S39–S43.CrossRef
Zurück zum Zitat Trejo, J. L., Carro, E., Nunez, A., et al. (2002). Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Reviews in the Neurosciences, 13, 365–374.PubMed Trejo, J. L., Carro, E., Nunez, A., et al. (2002). Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Reviews in the Neurosciences, 13, 365–374.PubMed
Zurück zum Zitat Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. The Journal of Neuroscience, 21, 1628–1634.PubMed Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. The Journal of Neuroscience, 21, 1628–1634.PubMed
Zurück zum Zitat Trejo, J. L., Llorens-Martin, M., & Torres-Aleman, I. (2008). The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Molecular and Cellular Neurosciences, 37, 402–411.PubMedCrossRef Trejo, J. L., Llorens-Martin, M., & Torres-Aleman, I. (2008). The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Molecular and Cellular Neurosciences, 37, 402–411.PubMedCrossRef
Zurück zum Zitat Trejo, J. L., Piriz, J., Llorens-Martin, M. V., et al. (2007). Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Molecular Psychiatry, 12, 1118–1128.PubMedCrossRef Trejo, J. L., Piriz, J., Llorens-Martin, M. V., et al. (2007). Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Molecular Psychiatry, 12, 1118–1128.PubMedCrossRef
Zurück zum Zitat Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of Neuroscience Research, 76, 356–362.PubMedCrossRef Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of Neuroscience Research, 76, 356–362.PubMedCrossRef
Zurück zum Zitat Vaynman, S. S., Ying, Z., Yin, D., et al. (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Research, 1070, 124–130.PubMedCrossRef Vaynman, S. S., Ying, Z., Yin, D., et al. (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Research, 1070, 124–130.PubMedCrossRef
Zurück zum Zitat Wallace, J. D., Cuneo, R. C., Baxter, R., et al. (1999). Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: A potential test for GH abuse in sport. The Journal of Clinical Endocrinology and Metabolism, 84, 3591–3601.PubMedCrossRef Wallace, J. D., Cuneo, R. C., Baxter, R., et al. (1999). Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: A potential test for GH abuse in sport. The Journal of Clinical Endocrinology and Metabolism, 84, 3591–3601.PubMedCrossRef
Zurück zum Zitat Welsh, J. P., Yamaguchi, H., Zeng, X. H., et al. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 102, 17166–17171.PubMedCrossRef Welsh, J. P., Yamaguchi, H., Zeng, X. H., et al. (2005). Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 102, 17166–17171.PubMedCrossRef
Zurück zum Zitat Yakar, S., Liu, J. L., Stannard, B., et al. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 96, 7324–7329.PubMedCrossRef Yakar, S., Liu, J. L., Stannard, B., et al. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 96, 7324–7329.PubMedCrossRef
Metadaten
Titel
Growth Factors as Mediators of Exercise Actions on the Brain
verfasst von
M. Llorens-Martín
I. Torres-Alemán
José L. Trejo
Publikationsdatum
01.06.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8026-1

Weitere Artikel der Ausgabe 2/2008

NeuroMolecular Medicine 2/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.