Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2008

01.06.2008

Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue

verfasst von: Teresa E. Foley, Monika Fleshner

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Habitual exercise increases plasticity in a variety of neurotransmitter systems. The current review focuses on the effects of habitual physical activity on monoamine dopamine (DA) neurotransmission and the potential implication of these changes to exercise-induced fatigue. Although it is clear that peripheral adaptations in muscle and energy substrate utilization contribute to this effect, more recently it has been suggested that central nervous system pathways “upstream” of the motor cortex, which initiate activation of skeletal muscles, are also important. The contribution of the brain to exercise-induced fatigue has been termed “central fatigue.” Given the well-defined role of DA in the initiation of movement, it is likely that adaptations in DA systems influence exercise capacity. A reduction in DA neurotransmission in the substantia nigra pars compacta (SNpc), for example, could impair activation of the basal ganglia and reduce stimulation of the motor cortex leading to central fatigue. Here we present evidence that habitual wheel running produces changes in DA systems. Using in situ hybridization techniques, we report that 6 weeks of wheel running was sufficient to increase tyrosine hydroxylase mRNA expression and reduce D2 autoreceptor mRNA in the SNpc. Additionally, 6 weeks of wheel running increased D2 postsynaptic receptor mRNA in the caudate putamen, a major projection site of the SNpc. These results are consistent with prior data suggesting that habitually physically active animals may have an enhanced ability to increase DA synthesis and reduce D2 autoreceptor-mediated inhibition of DA neurons in the SNpc compared to sedentary animals. Furthermore, habitually physically active animals, compared to sedentary controls, may be better able to increase D2 receptor-mediated inhibition of the indirect pathway of the basal ganglia. Results from these studies are discussed in light of our understanding of the role of DA in the neurobiological mechanisms of central fatigue.
Literatur
Zurück zum Zitat Abdelmalki, A., Merino, D., Bonneau, D., et al. (1997). Administration of a GABAB agonist baclofen before running to exhaustion in the rat: Effects on performance and on some indicators of fatigue. International Journal of Sports Medicine, 18, 75–78.PubMed Abdelmalki, A., Merino, D., Bonneau, D., et al. (1997). Administration of a GABAB agonist baclofen before running to exhaustion in the rat: Effects on performance and on some indicators of fatigue. International Journal of Sports Medicine, 18, 75–78.PubMed
Zurück zum Zitat Acworth, I., Nicholass, J., Morgan, B., et al. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochemical and Biophysical Research Communications, 137, 149–153.PubMed Acworth, I., Nicholass, J., Morgan, B., et al. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochemical and Biophysical Research Communications, 137, 149–153.PubMed
Zurück zum Zitat Adell, A., & Artigas, F. (2004). The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neuroscience and Biobehavioural Reviews, 28, 415–431. Adell, A., & Artigas, F. (2004). The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neuroscience and Biobehavioural Reviews, 28, 415–431.
Zurück zum Zitat Agharanya, J. C., & Wurtman, R. J. (1982). Studies on the mechanism by which tyrosine raises urinary catecholamines. Biochemical Pharmacology, 31, 3577–3580.PubMed Agharanya, J. C., & Wurtman, R. J. (1982). Studies on the mechanism by which tyrosine raises urinary catecholamines. Biochemical Pharmacology, 31, 3577–3580.PubMed
Zurück zum Zitat Ahlenius, S., & Hillegaart, V. (1986). Involvement of extrapyramidal motor mechanisms in the suppression of locomotor activity by antipsychotic drugs: A comparison between the effects produced by pre- and post-synaptic inhibition of dopaminergic neurotransmission. Pharmacology, Biochemistry and Behaviour, 24, 1409–1415. Ahlenius, S., & Hillegaart, V. (1986). Involvement of extrapyramidal motor mechanisms in the suppression of locomotor activity by antipsychotic drugs: A comparison between the effects produced by pre- and post-synaptic inhibition of dopaminergic neurotransmission. Pharmacology, Biochemistry and Behaviour, 24, 1409–1415.
Zurück zum Zitat Ahlenius, S., Svensson, L., Hillegaart, V., et al. (1984). Antagonism by haloperidol of the suppression of exploratory locomotor activity induced by the local application of (−)3-(3-hydroxyphenyl)-N-n-propylpiperidine into the nucleus accumbens of the rat. Experientia, 40, 858–859.PubMed Ahlenius, S., Svensson, L., Hillegaart, V., et al. (1984). Antagonism by haloperidol of the suppression of exploratory locomotor activity induced by the local application of (−)3-(3-hydroxyphenyl)-N-n-propylpiperidine into the nucleus accumbens of the rat. Experientia, 40, 858–859.PubMed
Zurück zum Zitat Altar, C. A., Boylan, C. B., Jackson, C., et al. (1992). Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proceedings of National Academy of Sciences USA, 89, 11347–11351. Altar, C. A., Boylan, C. B., Jackson, C., et al. (1992). Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proceedings of National Academy of Sciences USA, 89, 11347–11351.
Zurück zum Zitat Avraham, Y., Hao, S., Mendelson, S., et al. (2001). Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Medicine and Science in Sports and Exercise, 33, 2104–2110.PubMed Avraham, Y., Hao, S., Mendelson, S., et al. (2001). Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Medicine and Science in Sports and Exercise, 33, 2104–2110.PubMed
Zurück zum Zitat Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.PubMed Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1992). Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica, 145, 75–76.PubMed
Zurück zum Zitat Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993a) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74, 3006–3012.PubMed Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993a) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74, 3006–3012.PubMed
Zurück zum Zitat Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993b) Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports and Medicne, 14, 330–333. Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993b) Serotonergic agonists and antagonists affect endurance performance in the rat. International Journal of Sports and Medicne, 14, 330–333.
Zurück zum Zitat Beck, K. D., Knusel, B., & Hefti, F. (1993). The nature of the trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience, 52, 855–866.PubMed Beck, K. D., Knusel, B., & Hefti, F. (1993). The nature of the trophic action of brain-derived neurotrophic factor, des(1–3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience, 52, 855–866.PubMed
Zurück zum Zitat Belke, T. W. (1997). Running and responding reinforced by the opportunity to run: Effect of reinforcer duration. Journal of Experimental Analysis and Behaviour, 67, 337–351. Belke, T. W. (1997). Running and responding reinforced by the opportunity to run: Effect of reinforcer duration. Journal of Experimental Analysis and Behaviour, 67, 337–351.
Zurück zum Zitat Bhagat, B., & Wheeler, N. (1973a) Effect of amphetamine on the swimming endurance of rats. Neuropharmacology, 12, 711–713.PubMed Bhagat, B., & Wheeler, N. (1973a) Effect of amphetamine on the swimming endurance of rats. Neuropharmacology, 12, 711–713.PubMed
Zurück zum Zitat Bhagat, B., & Wheeler, N. (1973b) Effect of nicotine on the swimming endurance of rats. Neuropharmacology, 12, 1161–1165.PubMed Bhagat, B., & Wheeler, N. (1973b) Effect of nicotine on the swimming endurance of rats. Neuropharmacology, 12, 1161–1165.PubMed
Zurück zum Zitat Bliss, E. L., & Ailion, J. (1971). Relationship of stress and activity to brain dopamine and homovanillic acid. Life Science I, 10, 1161–1169 . Bliss, E. L., & Ailion, J. (1971). Relationship of stress and activity to brain dopamine and homovanillic acid. Life Science I, 10, 1161–1169 .
Zurück zum Zitat Blomstrand, E. (2006). A role for branched-chain amino acids in reducing central fatigue. Journal of Nutrition, 136, 544S–547S.PubMed Blomstrand, E. (2006). A role for branched-chain amino acids in reducing central fatigue. Journal of Nutrition, 136, 544S–547S.PubMed
Zurück zum Zitat Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiologica Scandinavica, 136, 473–481.PubMed Blomstrand, E., Perrett, D., Parry-Billings, M., et al. (1989). Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiologica Scandinavica, 136, 473–481.PubMed
Zurück zum Zitat Bracken, M. E., Bracken, D. R., Nelson, A. G., et al. (1988). Effect of cocaine on exercise endurance and glycogen use in rats. Journal of Applied Physiology, 64, 884–887.PubMed Bracken, M. E., Bracken, D. R., Nelson, A. G., et al. (1988). Effect of cocaine on exercise endurance and glycogen use in rats. Journal of Applied Physiology, 64, 884–887.PubMed
Zurück zum Zitat Bracken, M. E., Bracken, D. R., Winder, W. W., et al. (1989). Effect of various doses of cocaine on endurance capacity in rats. Journal of Applied Physiology, 66, 377–383.PubMed Bracken, M. E., Bracken, D. R., Winder, W. W., et al. (1989). Effect of various doses of cocaine on endurance capacity in rats. Journal of Applied Physiology, 66, 377–383.PubMed
Zurück zum Zitat Burgess, M. L., Davis, J. M., Borg, T. K., et al. (1991). Intracranial self-stimulation motivates treadmill running in rats. Journal of Applied Physiology, 71, 1593–1597.PubMed Burgess, M. L., Davis, J. M., Borg, T. K., et al. (1991). Intracranial self-stimulation motivates treadmill running in rats. Journal of Applied Physiology, 71, 1593–1597.PubMed
Zurück zum Zitat Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R520–R530. Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R520–R530.
Zurück zum Zitat Chaouloff, F., Laude, D., Guezennec, Y., et al. (1986). Motor activity increases tryptophan, 5-hydroxyindoleacetic acid, and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. Journal of Neurochemistry, 46, 1313–1316.PubMed Chaouloff, F., Laude, D., Guezennec, Y., et al. (1986). Motor activity increases tryptophan, 5-hydroxyindoleacetic acid, and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. Journal of Neurochemistry, 46, 1313–1316.PubMed
Zurück zum Zitat Chaouloff, F., Laude, D., Merino, D., et al. (1987). Amphetamine and alpha-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology, 26, 1099–1106.PubMed Chaouloff, F., Laude, D., Merino, D., et al. (1987). Amphetamine and alpha-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology, 26, 1099–1106.PubMed
Zurück zum Zitat Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of Neurological Science, 179, 34–42. Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of Neurological Science, 179, 34–42.
Zurück zum Zitat Chen, H., Zhang, S. M., Schwarzschild, M. A., et al. (2005). Physical activity and the risk of Parkinson disease. Neurology, 64, 664–669.PubMed Chen, H., Zhang, S. M., Schwarzschild, M. A., et al. (2005). Physical activity and the risk of Parkinson disease. Neurology, 64, 664–669.PubMed
Zurück zum Zitat Chinevere, T. D., Sawyer, R. D., Creer, A. R., et al. (2002). Effects of l-tyrosine and carbohydrate ingestion on endurance exercise performance. Journal of Applied Physiology, 93, 1590–1597.PubMed Chinevere, T. D., Sawyer, R. D., Creer, A. R., et al. (2002). Effects of l-tyrosine and carbohydrate ingestion on endurance exercise performance. Journal of Applied Physiology, 93, 1590–1597.PubMed
Zurück zum Zitat Cooter, G. R., & Stull, G. A. (1974). The effect of amphetamine on endurance in rats. Journal of Sports Medicine and Physical Fitness, 14, 120–126.PubMed Cooter, G. R., & Stull, G. A. (1974). The effect of amphetamine on endurance in rats. Journal of Sports Medicine and Physical Fitness, 14, 120–126.PubMed
Zurück zum Zitat Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neuroscience, 25, 295–301. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neuroscience, 25, 295–301.
Zurück zum Zitat Craig, A., Tran, Y., Wijesuriya, N., et al. (2005). A controlled investigation into the psychological determinants of fatigue. Biological Psychology, 72, 78–87.PubMed Craig, A., Tran, Y., Wijesuriya, N., et al. (2005). A controlled investigation into the psychological determinants of fatigue. Biological Psychology, 72, 78–87.PubMed
Zurück zum Zitat Crizzle, A. M., & Newhouse, I. J. (2006). Is physical exercise beneficial for persons with Parkinson’s disease? Clinical Journal of Sport Medicne, 16, 422–425. Crizzle, A. M., & Newhouse, I. J. (2006). Is physical exercise beneficial for persons with Parkinson’s disease? Clinical Journal of Sport Medicne, 16, 422–425.
Zurück zum Zitat Davis, J. M. (1995). Central and peripheral factors in fatigue. Journal of Sports Sciences, 13(Spec No), S49–S53. Davis, J. M. (1995). Central and peripheral factors in fatigue. Journal of Sports Sciences, 13(Spec No), S49–S53.
Zurück zum Zitat Davis, J. M., Alderson, N. L., & Welsh, R. S. (2000). Serotonin and central nervous system fatigue: Nutritional considerations. American Journal of Clinical Nutrition, 72, 573S–578S.PubMed Davis, J. M., Alderson, N. L., & Welsh, R. S. (2000). Serotonin and central nervous system fatigue: Nutritional considerations. American Journal of Clinical Nutrition, 72, 573S–578S.PubMed
Zurück zum Zitat Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.PubMed Davis, J. M., & Bailey, S. P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29, 45–57.PubMed
Zurück zum Zitat Davis, J. M., Zhao, Z., Stock, H. S., et al. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R399–R404. Davis, J. M., Zhao, Z., Stock, H. S., et al. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology Regulatory, Integrative Comparative Physiology, 284, R399–R404.
Zurück zum Zitat Derevenco, P., Sovrea, I., Stoica, N., et al. (1978). The effects of central chemical sympathectomy on the response to exercise in rats. Physiologie, 15, 215–219.PubMed Derevenco, P., Sovrea, I., Stoica, N., et al. (1978). The effects of central chemical sympathectomy on the response to exercise in rats. Physiologie, 15, 215–219.PubMed
Zurück zum Zitat Derevenco, P., Stoica, N., Sovrea, I., et al. (1986). Central and peripheral effects of 6-hydroxydopamine on exercise performance in rats. Psychoneuroendocrinology, 11, 141–153.PubMed Derevenco, P., Stoica, N., Sovrea, I., et al. (1986). Central and peripheral effects of 6-hydroxydopamine on exercise performance in rats. Psychoneuroendocrinology, 11, 141–153.PubMed
Zurück zum Zitat Derevenco, P., Stoica, N., & Vaida, A. (1981). Other effects of monoaminergic inhibition with 6 hydroxydopamine and of disulfiram on the response to exercise in rats. Physiologie, 18, 181–185.PubMed Derevenco, P., Stoica, N., & Vaida, A. (1981). Other effects of monoaminergic inhibition with 6 hydroxydopamine and of disulfiram on the response to exercise in rats. Physiologie, 18, 181–185.PubMed
Zurück zum Zitat Derevenco, P., Vaida, A., Stoica, N., et al. (1982). New data concerning the effects of 6-hydroxydopamine on the exercise performance in rats. Physiologie, 19, 221–228.PubMed Derevenco, P., Vaida, A., Stoica, N., et al. (1982). New data concerning the effects of 6-hydroxydopamine on the exercise performance in rats. Physiologie, 19, 221–228.PubMed
Zurück zum Zitat Dishman, R. K., Berthoud, H. R., Booth, F. W., et al. (2006). Neurobiology of exercise. Scandinavian Journal of Medicine and Science in Sports, 16, 470. Dishman, R. K., Berthoud, H. R., Booth, F. W., et al. (2006). Neurobiology of exercise. Scandinavian Journal of Medicine and Science in Sports, 16, 470.
Zurück zum Zitat Elam, M., Svensson, T. H., & Thoren, P. (1987). Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiologica Scandinavica, 130, 313–316.PubMed Elam, M., Svensson, T. H., & Thoren, P. (1987). Brain monoamine metabolism is altered in rats following spontaneous, long-distance running. Acta Physiologica Scandinavica, 130, 313–316.PubMed
Zurück zum Zitat Elsworth, J. D., & Roth, R. H. (1997). Dopamine synthesis, uptake, metabolism, and receptors: Relevance to gene therapy of Parkinson’s disease. Experimental Neurology, 144, 4–9.PubMed Elsworth, J. D., & Roth, R. H. (1997). Dopamine synthesis, uptake, metabolism, and receptors: Relevance to gene therapy of Parkinson’s disease. Experimental Neurology, 144, 4–9.PubMed
Zurück zum Zitat Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72, 1631–1648.PubMed Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72, 1631–1648.PubMed
Zurück zum Zitat Fernstrom, J. D., & Fernstrom, M. H. (2006). Exercise, serum free tryptophan, and central fatigue. Journal of Nutrition, 136, 553S–559S.PubMed Fernstrom, J. D., & Fernstrom, M. H. (2006). Exercise, serum free tryptophan, and central fatigue. Journal of Nutrition, 136, 553S–559S.PubMed
Zurück zum Zitat Francois, C., Yelnik, J., Tande, D., et al. (1999). Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. Journal of Comparative Neurology, 414, 334–347.PubMed Francois, C., Yelnik, J., Tande, D., et al. (1999). Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. Journal of Comparative Neurology, 414, 334–347.PubMed
Zurück zum Zitat Freed, C. R., & Yamamoto, B. K. (1985). Regional brain dopamine metabolism: A marker for the speed, direction, and posture of moving animals. Science, 229, 62–65.PubMed Freed, C. R., & Yamamoto, B. K. (1985). Regional brain dopamine metabolism: A marker for the speed, direction, and posture of moving animals. Science, 229, 62–65.PubMed
Zurück zum Zitat Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Review, 81, 1725–1789. Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Review, 81, 1725–1789.
Zurück zum Zitat Gandevia, S. C., Allen, G. M., Butler, J. E., et al. (1996). Supraspinal factors in human muscle fatigue: Evidence for suboptimal output from the motor cortex. Journal of Physiology, 490(Pt 2), 529–536.PubMed Gandevia, S. C., Allen, G. M., Butler, J. E., et al. (1996). Supraspinal factors in human muscle fatigue: Evidence for suboptimal output from the motor cortex. Journal of Physiology, 490(Pt 2), 529–536.PubMed
Zurück zum Zitat Gandevia, S. C., Enoka, R. M., McComas, A. J., et al. (1995). Neurobiology of muscle fatigue. Advances and issues. Advances in Experimental Medicine and Biology, 384, 515–525.PubMed Gandevia, S. C., Enoka, R. M., McComas, A. J., et al. (1995). Neurobiology of muscle fatigue. Advances and issues. Advances in Experimental Medicine and Biology, 384, 515–525.PubMed
Zurück zum Zitat Gerald, M. C. (1978). Effects of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacology, 17, 703–704.PubMed Gerald, M. C. (1978). Effects of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacology, 17, 703–704.PubMed
Zurück zum Zitat Gerin, C., Becquet, D., & Privat, A. (1995). Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Research, 704, 191–201.PubMed Gerin, C., Becquet, D., & Privat, A. (1995). Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Research, 704, 191–201.PubMed
Zurück zum Zitat Gerin, C., & Privat, A. (1998). Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Research, 794, 169–173.PubMed Gerin, C., & Privat, A. (1998). Direct evidence for the link between monoaminergic descending pathways and motor activity: II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Research, 794, 169–173.PubMed
Zurück zum Zitat Gilliam, P. E., Spirduso, W. W., Martin, T. P., et al. (1984). The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacology, Biochemistry and Behaviour, 20, 863–867. Gilliam, P. E., Spirduso, W. W., Martin, T. P., et al. (1984). The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacology, Biochemistry and Behaviour, 20, 863–867.
Zurück zum Zitat Guezennec, C. Y., Abdelmalki, A., Serrurier, B., et al. (1998). Effects of prolonged exercise on brain ammonia and amino acids. International Journal of Sports and Medicine, 19, 323–327. Guezennec, C. Y., Abdelmalki, A., Serrurier, B., et al. (1998). Effects of prolonged exercise on brain ammonia and amino acids. International Journal of Sports and Medicine, 19, 323–327.
Zurück zum Zitat Guillin, O., Diaz, J., Carroll, P., et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411, 86–89.PubMed Guillin, O., Diaz, J., Carroll, P., et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411, 86–89.PubMed
Zurück zum Zitat Hasegawa, H., Yazawa, T., Yasumatsu, M., et al. (2000). Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neuroscience Letters, 289, 161–164.PubMed Hasegawa, H., Yazawa, T., Yasumatsu, M., et al. (2000). Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neuroscience Letters, 289, 161–164.PubMed
Zurück zum Zitat Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35, 41–49.PubMed Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35, 41–49.PubMed
Zurück zum Zitat Heyes, M. P., Garnett, E. S., & Coates, G. (1985). Central dopaminergic activity influences rats ability to exercise. Life Science, 36, 671–677. Heyes, M. P., Garnett, E. S., & Coates, G. (1985). Central dopaminergic activity influences rats ability to exercise. Life Science, 36, 671–677.
Zurück zum Zitat Heyes, M. P., Garnett, E. S., & Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Science, 42, 1537–1542. Heyes, M. P., Garnett, E. S., & Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Science, 42, 1537–1542.
Zurück zum Zitat Hillegaart, V., & Ahlenius, S. (1987). Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: Behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacology and Toxicology, 60, 350–354.PubMed Hillegaart, V., & Ahlenius, S. (1987). Effects of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: Behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacology and Toxicology, 60, 350–354.PubMed
Zurück zum Zitat Hillegaart, V., Ahlenius, S., Magnusson, O., et al. (1987). Repeated testing of rats markedly enhances the duration of effects induced by haloperidol on treadmill locomotion, catalepsy, and a conditioned avoidance response. Pharmacology, Biochemistry and Behaviour, 27, 159–164. Hillegaart, V., Ahlenius, S., Magnusson, O., et al. (1987). Repeated testing of rats markedly enhances the duration of effects induced by haloperidol on treadmill locomotion, catalepsy, and a conditioned avoidance response. Pharmacology, Biochemistry and Behaviour, 27, 159–164.
Zurück zum Zitat Hoffmann, P., Elam, M., Thoren, P., et al. (1994). Effects of long-lasting voluntary running on the cerebral levels of dopamine, serotonin and their metabolites in the spontaneously hypertensive rat. Life Science, 54, 855–861. Hoffmann, P., Elam, M., Thoren, P., et al. (1994). Effects of long-lasting voluntary running on the cerebral levels of dopamine, serotonin and their metabolites in the spontaneously hypertensive rat. Life Science, 54, 855–861.
Zurück zum Zitat Horger, B. A., Iyasere, C. A., Berhow, M. T., et al. (1999). Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. Journal of Neuroscience, 19, 4110–4122.PubMed Horger, B. A., Iyasere, C. A., Berhow, M. T., et al. (1999). Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. Journal of Neuroscience, 19, 4110–4122.PubMed
Zurück zum Zitat Howells, F. M., Russell, V. A., Mabandla, M. V., et al. (2005). Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behavourial Brain Research, 165, 210–220. Howells, F. M., Russell, V. A., Mabandla, M. V., et al. (2005). Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behavourial Brain Research, 165, 210–220.
Zurück zum Zitat Hyman, C., Hofer, M., Barde, Y. A., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.PubMed Hyman, C., Hofer, M., Barde, Y. A., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.PubMed
Zurück zum Zitat Iversen, I. H. (1993). Techniques for establishing schedules with wheel running as reinforcement in rats. Journal of Experimental Analysis and Behaviour, 60, 219–238. Iversen, I. H. (1993). Techniques for establishing schedules with wheel running as reinforcement in rats. Journal of Experimental Analysis and Behaviour, 60, 219–238.
Zurück zum Zitat Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.PubMed Jacobs, B. L. (1991). Serotonin and behavior: Emphasis on motor control. Journal of Clinical Psychiatry, 52, 17–23.PubMed
Zurück zum Zitat Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21, 9S–15S.PubMed Jacobs, B. L., & Fornal, C. A. (1999). Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 21, 9S–15S.PubMed
Zurück zum Zitat Jacobs, I., & Bell, D. G. (2004). Effects of acute modafinil ingestion on exercise time to exhaustion. Medicine and Science in Sports and Exercise, 36, 1078–1082.PubMed Jacobs, I., & Bell, D. G. (2004). Effects of acute modafinil ingestion on exercise time to exhaustion. Medicine and Science in Sports and Exercise, 36, 1078–1082.PubMed
Zurück zum Zitat Kalinski, M. I., Dluzen, D. E., & Stadulis, R. (2001). Methamphetamine produces subsequent reductions in running time to exhaustion in mice. Brain Research, 921, 160–164.PubMed Kalinski, M. I., Dluzen, D. E., & Stadulis, R. (2001). Methamphetamine produces subsequent reductions in running time to exhaustion in mice. Brain Research, 921, 160–164.PubMed
Zurück zum Zitat Kalmar, J. M., & Cafarelli, E. (2004). Caffeine: A valuable tool to study central fatigue in humans? Exercise and Sport Sciences Reviews, 32, 143–147.PubMed Kalmar, J. M., & Cafarelli, E. (2004). Caffeine: A valuable tool to study central fatigue in humans? Exercise and Sport Sciences Reviews, 32, 143–147.PubMed
Zurück zum Zitat Lacerda, A. C., Marubayashi, U., Balthazar, C. H., et al. (2006). Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neuroscience Letters, 393, 260–263.PubMed Lacerda, A. C., Marubayashi, U., Balthazar, C. H., et al. (2006). Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neuroscience Letters, 393, 260–263.PubMed
Zurück zum Zitat Le Moine, C., Normand, E., & Bloch, B. (1991). Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proceedings of National Academy Sciences USA, 88, 4205–4209. Le Moine, C., Normand, E., & Bloch, B. (1991). Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proceedings of National Academy Sciences USA, 88, 4205–4209.
Zurück zum Zitat Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.PubMed Lett, B. T., Grant, V. L., Byrne, M. J., et al. (2000). Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite, 34, 87–94.PubMed
Zurück zum Zitat Lim, B. V., Jang, M. H., Shin, M. C., et al. (2001). Caffeine inhibits exercise-induced increase in tryptophan hydroxylase expression in dorsal and median raphe of Sprague-Dawley rats. Neuroscience Letters, 308, 25–28.PubMed Lim, B. V., Jang, M. H., Shin, M. C., et al. (2001). Caffeine inhibits exercise-induced increase in tryptophan hydroxylase expression in dorsal and median raphe of Sprague-Dawley rats. Neuroscience Letters, 308, 25–28.PubMed
Zurück zum Zitat Liste, I., Guerra, M. J., Caruncho, H. J., et al. (1997). Treadmill running induces striatal Fos expression via, N. M.DA glutamate and dopamine receptors. Experimental Brain Research, 115, 458–468. Liste, I., Guerra, M. J., Caruncho, H. J., et al. (1997). Treadmill running induces striatal Fos expression via, N. M.DA glutamate and dopamine receptors. Experimental Brain Research, 115, 458–468.
Zurück zum Zitat Lu, X. Y., Ghasemzadeh, M. B., & Kalivas, P. W. (1998). Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience, 82, 767–780.PubMed Lu, X. Y., Ghasemzadeh, M. B., & Kalivas, P. W. (1998). Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience, 82, 767–780.PubMed
Zurück zum Zitat MacRae, P. G., Spirduso, W. W., Cartee, G. D., et al. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neuroscience Letters, 79, 138–144.PubMed MacRae, P. G., Spirduso, W. W., Cartee, G. D., et al. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neuroscience Letters, 79, 138–144.PubMed
Zurück zum Zitat Marshall, J. F., & Berrios, N. (1979). Movement disorders of aged rats: Reversal by dopamine receptor stimulation. Science, 206, 477–479.PubMed Marshall, J. F., & Berrios, N. (1979). Movement disorders of aged rats: Reversal by dopamine receptor stimulation. Science, 206, 477–479.PubMed
Zurück zum Zitat Martin-Iverson, M. T., Todd, K. G., & Altar, C. A. (1994). Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: Interactions with amphetamine. Journal of Neuroscience, 14, 1262–1270.PubMed Martin-Iverson, M. T., Todd, K. G., & Altar, C. A. (1994). Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: Interactions with amphetamine. Journal of Neuroscience, 14, 1262–1270.PubMed
Zurück zum Zitat McTavish, S. F., Cowen, P. J., & Sharp, T. (1999). Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl), 141, 182–188. McTavish, S. F., Cowen, P. J., & Sharp, T. (1999). Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl), 141, 182–188.
Zurück zum Zitat Meeusen, R., Piacentini, M. F., & De Meirleir, K. (2001). Brain microdialysis in exercise research. Sports Medicine, 31, 965–983.PubMed Meeusen, R., Piacentini, M. F., & De Meirleir, K. (2001). Brain microdialysis in exercise research. Sports Medicine, 31, 965–983.PubMed
Zurück zum Zitat Meeusen, R., Roeykens, J., Magnus, L., et al. (1997a) Endurance performance in humans: The effect of a dopamine precursor or a specific serotonin (5-HT2A/2C) antagonist. International Journal of Sports Medicine, 18, 571–577.PubMed Meeusen, R., Roeykens, J., Magnus, L., et al. (1997a) Endurance performance in humans: The effect of a dopamine precursor or a specific serotonin (5-HT2A/2C) antagonist. International Journal of Sports Medicine, 18, 571–577.PubMed
Zurück zum Zitat Meeusen, R., Smolders, I., Sarre, S., et al. (1997b) Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159, 335–341.PubMed Meeusen, R., Smolders, I., Sarre, S., et al. (1997b) Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiologica Scandinavica, 159, 335–341.PubMed
Zurück zum Zitat Meeusen, R., Watson, P., & Dvorak, J. (2006a) The brain and fatigue: New opportunities for nutritional interventions? Journal of Sports and Sciences, 24, 773–782. Meeusen, R., Watson, P., & Dvorak, J. (2006a) The brain and fatigue: New opportunities for nutritional interventions? Journal of Sports and Sciences, 24, 773–782.
Zurück zum Zitat Meeusen, R., Watson, P., Hasegawa, H., et al. (2006b) Central fatigue: The serotonin hypothesis and beyond. Sports and Medicine, 36, 881–909. Meeusen, R., Watson, P., Hasegawa, H., et al. (2006b) Central fatigue: The serotonin hypothesis and beyond. Sports and Medicine, 36, 881–909.
Zurück zum Zitat Milner, J. D., & Wurtman, R. J. (1987). Tyrosine availability: A presynaptic factor controlling catecholamine release. Advances in Experimental Medicine and Biology, 221, 211–221.PubMed Milner, J. D., & Wurtman, R. J. (1987). Tyrosine availability: A presynaptic factor controlling catecholamine release. Advances in Experimental Medicine and Biology, 221, 211–221.PubMed
Zurück zum Zitat Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise (pp. 127–133). London, UK: John Libbey Eurotext Ltd. Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise (pp. 127–133). London, UK: John Libbey Eurotext Ltd.
Zurück zum Zitat Newsholme, E. A., & Blomstrand, E. (2006). Branched-chain amino acids and central fatigue. Journal of Nutrition, 136, 274S–276S.PubMed Newsholme, E. A., & Blomstrand, E. (2006). Branched-chain amino acids and central fatigue. Journal of Nutrition, 136, 274S–276S.PubMed
Zurück zum Zitat Nielsen, B., & Nybo, L. (2003). Cerebral changes during exercise in the heat. Sports and Medicne, 33, 1–11. Nielsen, B., & Nybo, L. (2003). Cerebral changes during exercise in the heat. Sports and Medicne, 33, 1–11.
Zurück zum Zitat Nybo, L., Dalsgaard, M. K., Steensberg, A., et al. (2005). Cerebral ammonia uptake and accumulation during prolonged exercise in humans. Journal of Physiology, 563, 285–290.PubMed Nybo, L., Dalsgaard, M. K., Steensberg, A., et al. (2005). Cerebral ammonia uptake and accumulation during prolonged exercise in humans. Journal of Physiology, 563, 285–290.PubMed
Zurück zum Zitat Nybo, L., & Rasmussen, P. (2007). Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exercise and Sport Science Review, 35, 110–118. Nybo, L., & Rasmussen, P. (2007). Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exercise and Sport Science Review, 35, 110–118.
Zurück zum Zitat Nybo, L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged exercise. Progress in Neurobiology, 72, 223–261.PubMed Nybo, L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged exercise. Progress in Neurobiology, 72, 223–261.PubMed
Zurück zum Zitat Oldendorf, W. H., & Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. American Journal of Physiology, 230, 94–98.PubMed Oldendorf, W. H., & Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. American Journal of Physiology, 230, 94–98.PubMed
Zurück zum Zitat Pardridge, W. M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 28, 103–108.PubMed Pardridge, W. M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. Journal of Neurochemistry, 28, 103–108.PubMed
Zurück zum Zitat Paxinos, G., Watson, C. (1998). The rat brain in stereotaxic coordinates. CA: Academic Press. Paxinos, G., Watson, C. (1998). The rat brain in stereotaxic coordinates. CA: Academic Press.
Zurück zum Zitat Petzinger, G. M., Walsh, J. P., Akopian, G., et al. (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27, 5291–5300.PubMed Petzinger, G. M., Walsh, J. P., Akopian, G., et al. (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27, 5291–5300.PubMed
Zurück zum Zitat Rietjens, G. J., Kuipers, H., Adam, J. J., et al. (2005). Physiological biochemical and psychological markers of strenuous training-induced fatigue. International Journal of Sports and Medicine, 26, 16–26. Rietjens, G. J., Kuipers, H., Adam, J. J., et al. (2005). Physiological biochemical and psychological markers of strenuous training-induced fatigue. International Journal of Sports and Medicine, 26, 16–26.
Zurück zum Zitat Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18, 247–291.PubMed Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18, 247–291.PubMed
Zurück zum Zitat Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(Suppl 2), S91–S117.PubMed Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(Suppl 2), S91–S117.PubMed
Zurück zum Zitat Rojas Vega, S., Struder, H. K., Vera Wahrmann, B., et al. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121, 59–65.PubMed Rojas Vega, S., Struder, H. K., Vera Wahrmann, B., et al. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121, 59–65.PubMed
Zurück zum Zitat Russo-Neustadt, A. A., & Chen, M. J. (2005). Brain-derived neurotrophic factor and antidepressant activity. Current Pharmaceutical Design, 11, 1495–1510.PubMed Russo-Neustadt, A. A., & Chen, M. J. (2005). Brain-derived neurotrophic factor and antidepressant activity. Current Pharmaceutical Design, 11, 1495–1510.PubMed
Zurück zum Zitat Sabol, K. E., Richards, J. B., & Freed, C. R. (1990). In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmill. Pharmacology, Biochemistry and Behaviour, 36, 21–28. Sabol, K. E., Richards, J. B., & Freed, C. R. (1990). In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmill. Pharmacology, Biochemistry and Behaviour, 36, 21–28.
Zurück zum Zitat Snider, R. M., Ordway, G. A., & Gerald, M. C. (1983). Effects of methylphenidate on rat endurance performance and neuromuscular transmission in vitro. Neuropharmacology, 22, 83–88.PubMed Snider, R. M., Ordway, G. A., & Gerald, M. C. (1983). Effects of methylphenidate on rat endurance performance and neuromuscular transmission in vitro. Neuropharmacology, 22, 83–88.PubMed
Zurück zum Zitat Speciale, S. G., Miller, J. D., McMillen, B. A., et al. (1986). Activation of specific central dopamine pathways: Locomotion and footshock. Brain Research Bulletin, 16, 33–38.PubMed Speciale, S. G., Miller, J. D., McMillen, B. A., et al. (1986). Activation of specific central dopamine pathways: Locomotion and footshock. Brain Research Bulletin, 16, 33–38.PubMed
Zurück zum Zitat Spina, M. B., Squinto, S. P., Miller, J., et al. (1992). Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. Journal of Neurochemistry, 59, 99–106.PubMed Spina, M. B., Squinto, S. P., Miller, J., et al. (1992). Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. Journal of Neurochemistry, 59, 99–106.PubMed
Zurück zum Zitat Stokes, M. J., Cooper, R. G., & Edwards, R. H. (1988). Normal muscle strength and fatigability in patients with effort syndromes. BMJ, 297, 1014–1017.PubMedCrossRef Stokes, M. J., Cooper, R. G., & Edwards, R. H. (1988). Normal muscle strength and fatigability in patients with effort syndromes. BMJ, 297, 1014–1017.PubMedCrossRef
Zurück zum Zitat Struder, H. K., Hollmann, W., Platen, P., et al. (1998). Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Hormone and Metabolic Research, 30, 188–194.PubMed Struder, H. K., Hollmann, W., Platen, P., et al. (1998). Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Hormone and Metabolic Research, 30, 188–194.PubMed
Zurück zum Zitat Struder, H. K., & Weicker, H. (2001a) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part I. International Journal of Sports and Medicine, 22, 467–481. Struder, H. K., & Weicker, H. (2001a) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part I. International Journal of Sports and Medicine, 22, 467–481.
Zurück zum Zitat Struder, H. K., & Weicker, H. (2001b) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International Journal of Sports and Medicine, 22, 482–497. Struder, H. K., & Weicker, H. (2001b) Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part II. International Journal of Sports and Medicine, 22, 482–497.
Zurück zum Zitat Sutton, E. E., Coill, M. R., & Deuster, P. A. (2005). Ingestion of tyrosine: Effects on endurance, muscle strength, and anaerobic performance. International Journal of Sport Nutrition and Exercise Metabolism, 15, 173–185.PubMed Sutton, E. E., Coill, M. R., & Deuster, P. A. (2005). Ingestion of tyrosine: Effects on endurance, muscle strength, and anaerobic performance. International Journal of Sport Nutrition and Exercise Metabolism, 15, 173–185.PubMed
Zurück zum Zitat Tillerson, J. L., Caudle, W. M., Reveron, M. E., et al. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience, 119, 899–911.PubMed Tillerson, J. L., Caudle, W. M., Reveron, M. E., et al. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience, 119, 899–911.PubMed
Zurück zum Zitat Todd, G., Butler, J. E., Taylor, J. L., et al. (2005). Hyperthermia: A failure of the motor cortex and the muscle. Journal of Physiology, 563, 621–631.PubMed Todd, G., Butler, J. E., Taylor, J. L., et al. (2005). Hyperthermia: A failure of the motor cortex and the muscle. Journal of Physiology, 563, 621–631.PubMed
Zurück zum Zitat Trudeau, F., Peronnet, F., Beliveau, L., et al. (1990). 6-OHDA sympathectomy andexercise performance in the rat. Archives Internationales de Physiologie et de Biochimie, 98, 433–437.PubMedCrossRef Trudeau, F., Peronnet, F., Beliveau, L., et al. (1990). 6-OHDA sympathectomy andexercise performance in the rat. Archives Internationales de Physiologie et de Biochimie, 98, 433–437.PubMedCrossRef
Zurück zum Zitat Tumer, N., Demirel, H. A., Serova, L., et al. (2001). Geneexpression of catecholamine biosynthetic enzymes following exercise: Modulation by age. Neuroscience, 103, 703–711.PubMed Tumer, N., Demirel, H. A., Serova, L., et al. (2001). Geneexpression of catecholamine biosynthetic enzymes following exercise: Modulation by age. Neuroscience, 103, 703–711.PubMed
Zurück zum Zitat Van Hoomissen, J. D., Chambliss, H. O., Holmes, P. V., et al. (2003). Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Research, 974, 228–235.PubMed Van Hoomissen, J. D., Chambliss, H. O., Holmes, P. V., et al. (2003). Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Research, 974, 228–235.PubMed
Zurück zum Zitat Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19, 283–295.PubMed Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19, 283–295.PubMed
Zurück zum Zitat Wang, G. J., Volkow, N. D., Fowler, J. S., et al. (2000). PET studies of the effects of aerobic exercise on human striatal dopamine release. Journal of Nuclear Medicine, 41, 1352–1356.PubMed Wang, G. J., Volkow, N. D., Fowler, J. S., et al. (2000). PET studies of the effects of aerobic exercise on human striatal dopamine release. Journal of Nuclear Medicine, 41, 1352–1356.PubMed
Zurück zum Zitat Werme, M., Messer, C., Olson, L., et al. (2002). Delta FosB regulates wheel running. Journal of Neuroscience, 22, 8133–8138.PubMed Werme, M., Messer, C., Olson, L., et al. (2002). Delta FosB regulates wheel running. Journal of Neuroscience, 22, 8133–8138.PubMed
Zurück zum Zitat Williams, M. H., & Thompson, J. (1973). Effect of variant dosages of amphetamine upon endurance. Research Quarterly, 44, 417–422.PubMed Williams, M. H., & Thompson, J. (1973). Effect of variant dosages of amphetamine upon endurance. Research Quarterly, 44, 417–422.PubMed
Zurück zum Zitat Wilson, W. M., & Marsden, C. A. (1995). Extracellular dopamine in the nucleus accumbens of the rat during treadmill running. Acta Physiologica Scandinavica, 155, 465–466.PubMed Wilson, W. M., & Marsden, C. A. (1995). Extracellular dopamine in the nucleus accumbens of the rat during treadmill running. Acta Physiologica Scandinavica, 155, 465–466.PubMed
Zurück zum Zitat Yee, R. E., Cheng, D. W., Huang, S. C., et al. (2001). Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-l-DOPA. Biochemical Pharmacology, 62, 1409–1415.PubMed Yee, R. E., Cheng, D. W., Huang, S. C., et al. (2001). Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-l-DOPA. Biochemical Pharmacology, 62, 1409–1415.PubMed
Metadaten
Titel
Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue
verfasst von
Teresa E. Foley
Monika Fleshner
Publikationsdatum
01.06.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8032-3

Weitere Artikel der Ausgabe 2/2008

NeuroMolecular Medicine 2/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.