Skip to main content
Erschienen in: Intensive Care Medicine 4/2009

01.04.2009 | Editorial

Hippocampus: a future target for sepsis treatment!

verfasst von: Djillali Annane

Erschienen in: Intensive Care Medicine | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Excerpt

The central nervous system orchestrates host response to an infection. It is commonly thought that blood borne cytokines and autonomic nervous afferent fibres signal the brain during an infection [1]. Intercommunications between brain stem nuclei, hypothalamus and limbic systems represent main circuits through which the stress response is mounted. Upregulation of inflammatory mediators within these important brain areas may be a major determinant of inappropriate stress response, progression of inflammation to the various organs, and death from sepsis [1]. Very early manifestation of brain activation during sepsis is changes in behaviour, including anxiety and loss of short-term memory and spatial recognition [1]. These symptoms are likely generated from the limbic system, the amygdala and the hippocampus. In this issue of Intensive Care Medicine, Dr. Wolff and co-workers using micro-array tools found that systemic administration of a non-lethal dose of LPS induced marked upregulation of pro-inflammatory mediators in the rats hippocampus, an effect that was aggravated by norepinephrine and almost not affected by inducible nitric oxide inhibition [2]. The hippocampus is one of the most vulnerable parts of the brain and is highly susceptible to ischaemia, anoxia and inflammation. It is well known that intravenous administration of LPS elicited expression of pro-inflammatory cytokines in the hippocampus and subsequently inhibited long-term potentiation [3, 4]. The CAP region of the dentate gyrus and the inner blade are the most susceptible areas, and following LPS injection, these regions are associated with large numbers of macrophages and perivascular microglial cells. It is likely that these cells produce pro-inflammatory cytokines triggering in excess the activity of the inducible nitric oxide, thereby causing neuronal DNA damage and a CD14 mediated phenomenon [5]. Therefore, the net effects of LPS are inhibition of neurogenesis and hippocampus function. Dr Wolff and co-workers used brain homogenate and thus could not dissect which cells were responsible for cytokines expression in their experiments [2]. They also did not investigate neuronal damages in the hippocampus to confirm cytokines induced damages to the limbic system. Nevertheless, the data showing that most of chemokines genes were upregulated before hypotension are in line with the concept that LPS directly affects the limbic system [36]. The limbic system and particularly the hippocampus contributes to the neural regulation of the stress system. In animals, hippocampus lesions may result in thymic atrophy and decreased lymphocytes counts suggesting immune-suppression [6]. Activation of the hippocampus suppresses corticotropin releasing factor synthesis [7]. Thus, it is possible that low activity of hippocampal regions during sepsis will result in decreased hypothalamic-pituitary adrenal axis (HPA) inhibitory outflow, thereby contributing to enhancement of the HPA activity known to be paramount to survive infection. In contrast, persistent activation of the hippocampus may blunt the HPA axis and normal immune response to sepsis. Because no direct anatomical substrate between hippocampus/cortex and hypothalamic parvocellular neurons have yet been successfully identified, it is likely that cortico-hippocampal influences on hypothalamic hypophysiotropic neurons are indirectly achieved via subcortical relay neurons. Further investigations should examine whether sepsis induced anatomical and functional changes in the hippocampus and whether they correlate with the degree of HPA activation and survival. …
Literatur
1.
Zurück zum Zitat Ebersoldt M, Sharshar T, Annane D (2007) Sepsis associated delirium. Intensive Care Med 33:941–950PubMedCrossRef Ebersoldt M, Sharshar T, Annane D (2007) Sepsis associated delirium. Intensive Care Med 33:941–950PubMedCrossRef
2.
Zurück zum Zitat Wolff S, Klatt S, Wolff JC, Wilhelm J, Fink L, Kaps M, Rosengarten B (2009) Endotoxin-induced gene expression differences in the brain and effects of iNOS inhibition and norepinephrine. Intensive Care Med. doi:10.1007/s00134-009-1394-7 Wolff S, Klatt S, Wolff JC, Wilhelm J, Fink L, Kaps M, Rosengarten B (2009) Endotoxin-induced gene expression differences in the brain and effects of iNOS inhibition and norepinephrine. Intensive Care Med. doi:10.​1007/​s00134-009-1394-7
3.
Zurück zum Zitat Quang N, Sundar SK, Weiss JM (1994) Induction of interlukin-1 in various brain regions after peripheral and central injection of lipopolysaccharide. J Neuroimmunol 49:125–134CrossRef Quang N, Sundar SK, Weiss JM (1994) Induction of interlukin-1 in various brain regions after peripheral and central injection of lipopolysaccharide. J Neuroimmunol 49:125–134CrossRef
4.
Zurück zum Zitat Lynch AM, Walsh C, Delaney A, Nolan Y, Campbell VA, Lynch MA (2004) Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10: a role for IL-1β? J Neurochem 88:635–646PubMedCrossRef Lynch AM, Walsh C, Delaney A, Nolan Y, Campbell VA, Lynch MA (2004) Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10: a role for IL-1β? J Neurochem 88:635–646PubMedCrossRef
5.
Zurück zum Zitat Nolan Y, Vereker E, Lynch AM, Lynch MA (2003) Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp Neurol 184:794–804PubMedCrossRef Nolan Y, Vereker E, Lynch AM, Lynch MA (2003) Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp Neurol 184:794–804PubMedCrossRef
6.
Zurück zum Zitat Bratt AM, Kelley SP, Knowless JP, Barrett J, Davis K, Davis M, Mittleman G (2001) Long term modulation of the HPA axis by the hippocampus: behavioral, biochemical and immunological endpoints in rats exposed to chronic mild stress. Psychoneuroendocrinology 26:21–145CrossRef Bratt AM, Kelley SP, Knowless JP, Barrett J, Davis K, Davis M, Mittleman G (2001) Long term modulation of the HPA axis by the hippocampus: behavioral, biochemical and immunological endpoints in rats exposed to chronic mild stress. Psychoneuroendocrinology 26:21–145CrossRef
7.
Zurück zum Zitat Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic–pituitary–adrenal responses to stress. J Neurosci 13:3839–3847PubMed Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic–pituitary–adrenal responses to stress. J Neurosci 13:3839–3847PubMed
8.
Zurück zum Zitat Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765PubMedCrossRef Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765PubMedCrossRef
9.
Zurück zum Zitat Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, Shin HY, Lee BI, Kim GW (2006) Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett 398:195–200PubMedCrossRef Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, Shin HY, Lee BI, Kim GW (2006) Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett 398:195–200PubMedCrossRef
10.
Zurück zum Zitat Nolan Y, Campbell VA, Bolton AE, Lynch MA (2005) Evidence of an anti-inflammatory role for Vasogen’s immune modulation therapy. Neuroimmunomodulation 12:113–116PubMedCrossRef Nolan Y, Campbell VA, Bolton AE, Lynch MA (2005) Evidence of an anti-inflammatory role for Vasogen’s immune modulation therapy. Neuroimmunomodulation 12:113–116PubMedCrossRef
Metadaten
Titel
Hippocampus: a future target for sepsis treatment!
verfasst von
Djillali Annane
Publikationsdatum
01.04.2009
Verlag
Springer-Verlag
Erschienen in
Intensive Care Medicine / Ausgabe 4/2009
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-009-1395-6

Weitere Artikel der Ausgabe 4/2009

Intensive Care Medicine 4/2009 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.