Skip to main content
Erschienen in: Neurocritical Care 1/2019

09.07.2018 | Original Article

Hyperbaric Oxygen Protects Against Cerebral Damage in Permanent Middle Cerebral Artery Occlusion Rats and Inhibits Autophagy Activity

verfasst von: KongMiao Lu, HaiRong Wang, XiaoLi Ge, QingHua Liu, Miao Chen, Yong Shen, Xuan Liu, ShuMing Pan

Erschienen in: Neurocritical Care | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

To investigate the effects of hyperbaric oxygen (HBO) on brain damage and autophagy levels in a rat model of middle cerebral artery occlusion.

Methods

Neurologic injury and infarcted areas were evaluated according to the modified neurological severity score and 2,3,5-triphenyltetrazolium chloride staining. Western blots were used to determine beclin1, caspase-3 and fodrin1 protein expression. Beclin1 protein expression (an autophagy marker), positive terminal dUTP nick-end labeling (TUNEL) staining (an apoptosis marker) and positive propidium iodide (PI) staining (a necrosis marker) were detected by immunofluorescence.

Results

Our results indicated that HBO could decrease the infarct volume and speed up the recovery of the neurological deficit scores in ischemic rats. Beclin1 was down-regulated after HBO treatment. HBO treatment inhibited fodrin1 protein expression and decreased the number of PI-positive cells. HBO also down-regulated caspase-3 and decreased the number of TUNEL-positive cells.

Conclusion

Cerebral ischemia caused early neuronal death due to necrosis, followed by delayed neuronal death due to apoptosis. Consequently, autophagy might be involved in all processes of ischemia. HBO could protect the brain against ischemic injury, and the possible mechanisms might be correlated with decreased autophagy activity and decreased apoptosis and necrosis levels.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Investig. 1998;101(9):1992–9.CrossRefPubMedPubMedCentral Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Investig. 1998;101(9):1992–9.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab. 2002;22(4):420–30.CrossRefPubMed Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab. 2002;22(4):420–30.CrossRefPubMed
4.
Zurück zum Zitat Joly LM, Mucignat V, Mariani J, Plotkine M, Charriaut-Marlangue C. Caspase inhibition after neonatal ischemia in the rat brain. J Cereb Blood Flow Metab. 2004;24(1):124–31.CrossRefPubMed Joly LM, Mucignat V, Mariani J, Plotkine M, Charriaut-Marlangue C. Caspase inhibition after neonatal ischemia in the rat brain. J Cereb Blood Flow Metab. 2004;24(1):124–31.CrossRefPubMed
5.
Zurück zum Zitat Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100(4):1062–71.CrossRefPubMed Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100(4):1062–71.CrossRefPubMed
7.
Zurück zum Zitat Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed
10.
Zurück zum Zitat Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.CrossRefPubMedPubMedCentral Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009;31(2):114–21.CrossRefPubMed Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009;31(2):114–21.CrossRefPubMed
12.
Zurück zum Zitat Nemoto EM, Betterman K. Basic physiology of hyperbaric oxygen in brain. Neurol Res. 2007;29(2):116–26.CrossRefPubMed Nemoto EM, Betterman K. Basic physiology of hyperbaric oxygen in brain. Neurol Res. 2007;29(2):116–26.CrossRefPubMed
13.
Zurück zum Zitat Yin X, Meng F, Wang Y, Wei W, Li A, Chai Y, et al. Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol. 2013;6(1):66–75.PubMed Yin X, Meng F, Wang Y, Wei W, Li A, Chai Y, et al. Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol. 2013;6(1):66–75.PubMed
14.
Zurück zum Zitat Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, et al. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012;72(3):650–9.CrossRefPubMed Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, et al. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012;72(3):650–9.CrossRefPubMed
15.
Zurück zum Zitat Wang XL, Yang YJ, Xie M, Yu XH, Liu CT, Wang X. Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. NeuroReport. 2007;18(16):1753–6.CrossRefPubMed Wang XL, Yang YJ, Xie M, Yu XH, Liu CT, Wang X. Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. NeuroReport. 2007;18(16):1753–6.CrossRefPubMed
16.
Zurück zum Zitat Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.CrossRefPubMed Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.CrossRefPubMed
17.
Zurück zum Zitat Lu Y, Kang J, Bai Y, Zhang Y, Li H, Yang X, et al. Hyperbaric oxygen enlarges the area of brain damage in MCAO rats by blocking autophagy via ERK1/2 activation. Eur J Pharmacol. 2014;728:93–9.CrossRefPubMed Lu Y, Kang J, Bai Y, Zhang Y, Li H, Yang X, et al. Hyperbaric oxygen enlarges the area of brain damage in MCAO rats by blocking autophagy via ERK1/2 activation. Eur J Pharmacol. 2014;728:93–9.CrossRefPubMed
18.
Zurück zum Zitat Rupadevi M, Parasuraman S, Raveendran R. Protocol for middle cerebral artery occlusion by an intraluminal suture method. J Pharmacol Pharmacother. 2011;2(1):36–9.CrossRefPubMedPubMedCentral Rupadevi M, Parasuraman S, Raveendran R. Protocol for middle cerebral artery occlusion by an intraluminal suture method. J Pharmacol Pharmacother. 2011;2(1):36–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.CrossRefPubMed Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.CrossRefPubMed
20.
Zurück zum Zitat Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.CrossRefPubMed Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.CrossRefPubMed
21.
Zurück zum Zitat Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke. 1998;29(5):1037–46.CrossRefPubMed Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke. 1998;29(5):1037–46.CrossRefPubMed
23.
Zurück zum Zitat Saido TC, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, et al. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993;268(33):25239–43.PubMed Saido TC, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, et al. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993;268(33):25239–43.PubMed
24.
Zurück zum Zitat Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, et al. Failure to complete apoptosis following neonatal hypoxia–ischemia manifests as ‘‘continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–33.CrossRefPubMed Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, et al. Failure to complete apoptosis following neonatal hypoxia–ischemia manifests as ‘‘continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–33.CrossRefPubMed
25.
Zurück zum Zitat Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66(3):378–89.CrossRefPubMed Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66(3):378–89.CrossRefPubMed
26.
Zurück zum Zitat Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.CrossRefPubMed Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.CrossRefPubMed
27.
Zurück zum Zitat Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8(2):207–19.CrossRefPubMed Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8(2):207–19.CrossRefPubMed
28.
Zurück zum Zitat Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia–ischaemia in the rat brain. Neuropathol Appl Neurobiol. 2003;29(4):350–60.CrossRefPubMed Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia–ischaemia in the rat brain. Neuropathol Appl Neurobiol. 2003;29(4):350–60.CrossRefPubMed
29.
30.
Zurück zum Zitat Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007;29(2):162–72.CrossRefPubMed Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007;29(2):162–72.CrossRefPubMed
31.
Zurück zum Zitat Bao DS, Wu YK, Fu SJ, Wang GY, Yang SJ, Liang GB, et al. Hyperbaric oxygenation protects against ischemia-reperfusion injury in transplanted rat kidneys by triggering autophagy and inhibiting inflammatory response. Ann Transplant. 2017;10(22):75–82.CrossRef Bao DS, Wu YK, Fu SJ, Wang GY, Yang SJ, Liang GB, et al. Hyperbaric oxygenation protects against ischemia-reperfusion injury in transplanted rat kidneys by triggering autophagy and inhibiting inflammatory response. Ann Transplant. 2017;10(22):75–82.CrossRef
32.
Zurück zum Zitat Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett. 2016;618:139–45.CrossRefPubMed Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett. 2016;618:139–45.CrossRefPubMed
33.
Zurück zum Zitat Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, et al. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget. 2017;8(67):111522–34.PubMedPubMedCentral Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, et al. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget. 2017;8(67):111522–34.PubMedPubMedCentral
34.
Zurück zum Zitat Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169(2):566–83.CrossRefPubMedPubMedCentral Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169(2):566–83.CrossRefPubMedPubMedCentral
Metadaten
Titel
Hyperbaric Oxygen Protects Against Cerebral Damage in Permanent Middle Cerebral Artery Occlusion Rats and Inhibits Autophagy Activity
verfasst von
KongMiao Lu
HaiRong Wang
XiaoLi Ge
QingHua Liu
Miao Chen
Yong Shen
Xuan Liu
ShuMing Pan
Publikationsdatum
09.07.2018
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe 1/2019
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-018-0577-x

Weitere Artikel der Ausgabe 1/2019

Neurocritical Care 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.