Skip to main content
Erschienen in: Journal of Translational Medicine 1/2023

Open Access 01.12.2023 | Research

Identification of serum exosomal metabolomic and proteomic profiles for remote ischemic preconditioning

verfasst von: Yang Du, Rui Qiu, Lei Chen, Yuewen Chen, Zhifeng Zhong, Peng Li, Fangcheng Fan, Yong Cheng

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2023

Abstract

Background

Remote ischemic preconditioning (RIPC) refers to a brief episode of exposure to potential adverse stimulation and prevents injury during subsequent exposure. RIPC has been shown to increase tolerance to ischemic injury and improve cerebral perfusion status. Exosomes have a variety of activities, such as remodeling the extracellular matrix and transmitting signals to other cells. This study aimed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection.

Methods

Sixty adult male military personnel participants were divided into the control group (n = 30) and the RIPC group (n = 30). We analyzed the differential metabolites and proteins in the serum exosomes of RIPC participants and control subjects.

Results

Eighty-seven differentially expressed serum exosomal metabolites were found between the RIPC and control groups, which were enriched in pathways related to tyrosine metabolism, sphingolipid metabolism, serotonergic synapses, and multiple neurodegeneration diseases. In addition, there were 75 differentially expressed exosomal proteins between RIPC participants and controls, which involved the regulation of insulin-like growth factor (IGF) transport, neutrophil degranulation, vesicle-mediated transport, etc. Furthermore, we found differentially expressed theobromine, cyclo gly-pro, hemopexin (HPX), and apolipoprotein A1 (ApoA1), which are associated with neuroprotective benefits in ischemia/reperfusion injury. In addition, five potential metabolite biomarkers, including ethyl salicylate, ethionamide, piperic acid, 2, 6-di-tert-butyl-4-hydroxymethylphenol and zerumbone, that separated RIPC from control individuals were identified.

Conclusion

Our data suggest that serum exosomal metabolites are promising biomarkers for RIPC, and our results provide a rich dataset and framework for future analyses of cerebral ischemia‒reperfusion injury under ischemia/reperfusion conditions.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12967-023-04070-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AFM
Afamin
APOA1
Apolipoprotein A1
APOE
Apolipoprotein E
APP
Amyloid beta precursor protein
ATP5A1
ATP synthase, H + transporting, mitochondrial F1 complex, alpha subunit 1
AUC
Area under curve
BH
Benjamini-Hochberg
CP
Ceruloplasmin
DBN1
Drebrin 1
GO
Gene Ontology
HSPE1
Heat shock protein family E member 1
IGF
Insulin-like Growth Factor
KEGG
Kyoto Encyclopedia of Genes and Genomes
LC–MS/MS
Liquid chromatography-tandem mass spectrometry
OPLS-DA
Orthogonal partial least squares discriminant analysis
PCA
Principal components analysis
PGLYRP2
Peptidoglycan Recognition Protein 2
PNP
Purine nucleoside phosphorylase
PON1
Paraoxonase 1
RIPC
Remote ischemic preconditioning
ROC
Receiver operating characteristic
UPLC-MS/MS
Ultraperformance liquid chromatography-tandem mass spectrometry
WGCNA
Weighted Gene Coexpression Network Analysis

Introduction

Remote ischemic preconditioning (RIPC) is a promising method for the protection of distant target organs when tissues or organs are exposed to intermittent ischemia/reperfusion conditions [1]. The organs achieve adaptive transient resistance to lethal ischemic injury through short-duration sublethal/mild ischemic injury preconditioning [2]. Recently, various types of RIPC have been performed experimentally to protect the brain, heart, kidney, and other organs [3].
Cerebrovascular accident or stroke is the second leading cause of death and a major cause of long-term disability worldwide, with an annual mortality rate of approximately 5.5 million. It is the main cause of global disability, with 50% of survivors suffering from chronic disability [4, 5]. Research has indicated that the incidence of stroke is increasing, and one-quarter of people experience stroke in their lifetime worldwide [6]. Stroke is classified as ischemic or hemorrhagic. It has been suggested that ischemic stroke is the most common form of stroke in the world [7]. Ischemic stroke is caused by transient or permanent occlusion of cerebral vessels, resulting in cellular damage in the brain and neurologic disability [8, 9]. Neurologic disability, including difficulties with memory, impaired reflexes, cognitive impairment, and aphasia, reduces quality of life [10]. Therefore, brain protection is a key objective in a variety of relevant clinical settings. Several pieces of preclinical evidence support the effectiveness of RIPC in inducing neuroprotection against cerebral ischemia‒reperfusion injury [11]. RIPC is now commonly carried out on limbs with blood pressure cuffs that inflate to prevent blood perfusion [12]. In addition, it has been indicated that preconditioning could increase tolerance to ischemic injury and improve cerebral perfusion status [13, 14]. Previous studies have reported the neuroprotective benefits of RIPC on ischemia/reperfusion injury [15]. Moreover, RIPC has been indicated to reduce injury in an experimental model of ischemic stroke and reduce injury and neurological sequela in humans after cardiac surgery [16, 17]. RIPC can effectively induce tolerance to cerebral ischemia, thereby reducing ischemic injury and improving the prognosis of patients. However, the underlying mechanisms of this process are not fully understood.
Exosomes play essential roles in cell-to-cell communication and have a variety of activities, such as remodeling the extracellular matrix and transmitting signals to other cells [18]. This intercellular vesicular transport pathway plays a critical role in many aspects of human health and disease, including development, tissue homeostasis, immunity, and neurodegenerative diseases [19]. Recently, exosomes have gained more attention in the regulation of diseases based on metabolome and proteome characterization [20]. Metabolomics and proteomics have been widely used to study complex systems [21, 22]. The metabolite spectrum that is generated is considered to be an effective indicator of biological physiology, and metabolite analysis assesses the interaction among a variety of proteins, genes, and the environment [23]. In this study, we performed ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS) and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the serum exosome metabolomic and proteomic profiles associated with RIPC.

Materials and methods

Participants

Sixty adult male military personnel participated in the study. All participants were physically healthy and completed the medical questionnaire before the test. Exclusion criteria: (1) acute or chronic diseases, including generalized anxiety, depression, cardiovascular disease, respiratory system disease, movement, and metabolic disease; (2) habit of drinking or smoking; (3) having taken medicines in 3 months; (4) high altitude (> 2500 m) exposure; (5) participation in clinical trials within 3 months. Participants were divided into the control group (n = 30) and the RIPC group (n = 30). The main characteristics of all participants are shown in Table 1. All participants provided written informed consent. The study protocol was approved by the ethics review board of the Minzu University of China and was conducted according to the guidelines of the Declaration of Helsinki.
Table 1
Demographic characteristics of the subjects
Feature
Control group
RIPC group
n
30
30
Age
22.67 ± 1.83
22.23 ± 1.45
Weight
67.87 ± 7.76
65.77 ± 8.48
Height
173.37 ± 5.48
172.1 ± 6.50
RIPC Remote ischemic preconditioning
Values are expressed as the mean ± standard deviation

Protocol for RIPC paradigm

A blood pressure cuff was placed around the left and right upper arms of participants in normal oxygen conditions. This paradigm involved inflation at a pressure of 80 mmHg for 5 min to block blood flow and then deflation for 5 min. The protocol was repeated for four cycles, which took 40 min (5 min of arterial occlusion + 5 min of arterial nonocclusion). The control group was treated identically without RIPC treatment. This treatment was performed daily for 10 days at sea level, and peripheral venous blood samples were obtained on the tenth day.

Exosome isolation and validation

Serum exosome isolation was performed using size-exclusion chromatography (qEV column, 70 nm; Izon, Oxford, UK). Exosome validation was performed using negative-staining electron microscopy, nanoparticle tracking analysis (Additional file 1), and Western blot methods, which were described previously [24]. ZetaView (version: 8.04.02 SP2) analysis showed a particle peak at approximately 100 nm, the duration of acquisition was 5 min, and the concentration of each sample was 2E + 12 particles/mL in 100 µl PBS for metabolite and proteome measurements.

Metabolite measurements

Widely targeted metabolomic analysis of serum exosome samples from participants was performed using the UPLC‒MS/MS method as described previously [25]. Briefly, MetaWare (a public database of metabolite information and metabolomics data management environment) was used for qualitative analysis of first- and second-order mass spectrometry. The quantification of metabolites was carried out by multiple reaction monitoring and triple quadrupole mass spectrometry.

Proteome measurements

Forty microliters of serum exosome samples was transferred into 100 μl of acetonitrile. After mixing, the samples were placed into liquid nitrogen for quick freezing, and the samples were concentrated by centrifugation. Then, 20 µl of 8 M urea (dissolved in 50 mM ABC solution) and 2 mM Tris (2-chloroethyl) phosphate (TCEP) were added to each sample sequentially, followed by heating at 55 °C for 30 min. Then, 14 mM indole acetic acid (IAA) was added to the samples and reacted in the dark at room temperature for 40 min. Then, 10 mM dithiothreitol (DTT) was added to the samples to stop the reaction (placed in a refrigerator at -20 °C). The concentration and purity of the proteins were quantitated by a SpectraMax QuickDrop (Molecular Devices, State of California, USA). The proteome measurements were performed according to the LC‒MS/MS method, which was described previously [26]. Briefly, Skyline with the UniProt database was used for the quantification of the targeted proteome. It should be noted that we mixed six individual samples into one sample for proteome measurements, and we adjusted the concentration of each sample to 2E + 12 particles/mL in 100 µl PBS for metabolite and proteome measurements.

Differential expression analysis

Based on the detected proteins and metabolites, an orthogonal partial least squares-discriminant analysis (OPLS-DA) model was generated to assess differentially expressed (DE) metabolites and proteins, and variable importance in projection (VIP) was extracted from this model [27]. Differential metabolites were defined as those with VIP > 1.5 [28] and P < 0.05 by a Mann–-Whitney U test.

Bioinformatics analysis

To understand the biological functions of the DE metabolites and proteins, metabolites were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (the major public database on metabolic pathways) and then mapped to the KEGG pathway database by MetaboAnalyst software [29]; Metascape pathway enrichment analysis was used for DE proteins [30]. Significant enrichments were defined as pathways with P < 0.05.
The Weighted Gene Coexpression Network Analysis (WGCNA) R software package was used for the coexpression network analysis. Pearson's correlation was performed to assess correlations between metabolite levels. Significant module-trait results were defined as Benjamini‒Hochberg (BH)-corrected P < 0.05. To further explore the biological function, metabolite-protein interaction pathway analysis was performed by MetaboAnalyst software [29].

Statistical analysis

Unsupervised principal component analysis (PCA) was performed by the statistical function prcomp in R [25]. The potential of blood exosomal metabolites to discriminate between participants with RIPC and controls was evaluated using a receiver operating characteristic (ROC) curve generated by MetaboAnalyst software [29].

Results

Differential expression of serum exosomal metabolites

We performed UPLC‒MS/MS to analyze metabolomic profiles in serum exosomes in controls and RIPC participants. PCA plot scores showed distinct metabolite profiles for controls and preconditioning participants (Fig. 1A). An OPLS-DA model was used to identify differential exosomal metabolites between the two groups (Fig. 1B). Of these 87 metabolites, 56 had increased levels and 31 had decreased levels in the RIPC participants compared to the controls (Figs. 1C, D, Additional file 2). We used Metascape enrichment analysis to assess the differential metabolites. Figure 1E shows the top 20 enriched metabolites, including diethanolamine lauric acid, famesylacetone, zerumbone, cyperotundone, and aniline phenylacetone. Bioinformatics analyses showed the top 20 enrichment pathways, including tyrosine metabolism, taurine and hypotaurine metabolism, sphingolipid metabolism, serotonergic synapse, pathways of multiple neurodegeneration diseases, Parkinson's disease, and GABAergic synapse. (Fig. 1F).

Perturbation of serum exosomal metabolite coexpression modules

To better understand the role of serum exosomal metabolite dysregulation in ischemic status, we used WGCNA to assign individual metabolites to coexpression modules, which were identified as 6 modules (Fig. 2A). The results suggested that two modules were significantly correlated with ischemic status: the modules represented in red and yellow showed decreased levels (Fig. 2B, Additional file 2). As shown in Fig. 2C, the red module had a significant association with auditory simple reaction time (plain); Nation; Lake Louise Acute Mountain Sickness Scoring System (Gastrointestinal symptoms); digital decoding (4500 m); diastolic pressure (mmHg) (plain); right frontal cerebral oxygen saturation rSO2% (4500 m); spatial memory (number of passes; plain); target tracking (total average dot; 4500 m); visual selection reaction time (4500 m); and Lake Louise Acute Mountain Sickness Scoring System (total scores). The yellow module had a significant association with systolic pressure (mmHg) (4500 m); manual dexterity (nondominant hand; plain); visual selection reaction time (4500 m); Lake Louise Acute Mountain Sickness Scoring System (fatigue and/or weakness); and manual dexterity (dominant hand; plain).

Exosomal metabolites as biomarkers for RIPC

We explored whether exosomal metabolites could serve as biomarkers to differentiate between control and RIPC participants. A total of 87 metabolites were analyzed for potential metabolite biomarkers, and 5 metabolites were selected as the optimal set of metabolites. We used the 5 metabolites to draw an ROC curve, and the area under the curve (AUC) was 0.967 (95% CI, 0.98–1.0) (Figs. 3A, B). The metabolites ethyl salicylate, ethionamide, piperic acid, 2,6-di-tert-butyl-4-hydroxymethylphenol, and zerumbone were identified as the optimal set of metabolites to distinguish the control and RIPC participants (Figs. 3C–G).

Differential expression of serum exosomal proteins

We performed LC‒MS/MS to validate the serum exosomal proteomic profiles in RIPC participants. Plots of PCA scores showed a separation of proteome profiles for controls and preconditioning participants (Fig. 4A). An OPLS-DA model was performed to identify differentially expressed exosomal proteins (Fig. 4B). Of these, 40 were upregulated and 35 were downregulated in the RIPC participants compared to the controls (Figs. 4C, D). Then, we used Metascape enrichment analysis to assess the differentially expressed proteins. The top 20 enrichment proteins included peptidoglycan recognition protein 2 (PGLYRP2), drebrin 1 (DBN1), heat shock protein family E member 1 (HSPE1), afamin (AFM), and paraoxonase 1 (PON1). (Fig. 4E). The bioinformatics analyses showed the top 20 enrichment pathways, including platelet degranulation, complement, and coagulation cascades, regulation of insulin-like growth factor (IGF) transport, neutrophil degranulation, regulation of supramolecular fiber organization, endocytosis, and vesicle-mediated transport. (Fig. 4F).

Integrative analysis of proteomics and metabolomics

To establish a comprehensive profile of ischemia and identify the relationship between metabolites and proteins, a multigroup analysis integrating metabolic and proteomics data was conducted based on the same samples. KEGG pathway enrichment analysis showed that the coregulated features were mainly involved in cholesterol metabolism, oxidative phosphorylation, ferroptosis, nicotinate and nicotinamide metabolism, sphingolipid signaling pathway, serotonergic synapse, purine metabolism, etc. (Fig. 5A). Metabolites mostly included sphingosine, thromboxane B2, coproporphyrin, succinic acid, and taurocholic acid. (Fig. 5B). The coregulated proteins mainly included apolipoprotein A1 (APOA1), ceruloplasmin (CP), purine nucleoside phosphorylase (PNP), apolipoprotein E (APOE), and amyloid beta precursor protein (APP) (Fig. 5C, Additional file 2).

Discussion

It is well known that RIPC protects the brain against ischemic injury [31]. Exosomes are extracellular vesicles released into the blood that transfer signals via cell communication [32]. In this study, we performed UPLC‒MS/MS and LC‒MS/MS to analyze the serum exosome metabolomic and proteomic profile associated with RIPC-mediated neuroprotection. The results showed differential metabolite and protein profiles in the serum exosomes under RIPC conditions. Briefly, 87 (56 with increased levels and 31 with decreased levels) differential metabolites were observed between RIPC participants controls. Regarding the proteomic results, 75 proteins (40 were upregulated and 35 were downregulated) showed differential expression between RIPC participants and controls. Further analysis suggested that the enriched pathways included tyrosine metabolism, sphingolipid metabolism, serotonergic synapse, pathways of multiple neurodegeneration diseases, Parkinson's disease, and GABAergic synapse. The proteomic functions included actin cytoskeleton organization, hemostasis, complement and coagulation cascades, vesicle-medicated transport, and wound healing. Integrative analysis of proteomic and metabolomic results showed that the coregulated features were mainly involved in oxidative phosphorylation, ferroptosis, nicotinate and nicotinamide metabolism, sphingolipid signaling pathway, serotonergic synapse, and purine metabolism. The bioinformatics analyses showed the top 20 enrichment pathways, including complement and coagulation cascades, regulation of IGF transport, neutrophil degranulation, endocytosis, and vesicle-mediated transport. Taken together, data from this study showed the dysregulation of serum exosomal metabolites and proteomic contents in RIPC.
RIPC caused by transient cerebral ischemia/reperfusion has a protective effect on brain injury induced by ischemic stroke [33]. Preconditioning leads to a protective phenotype labeled ischemic tolerance. The stimulation of RIPC induces tolerance by activating a large number of proteins, receptors, transcription factors, and other biological molecules and ultimately results in genome reprogramming [34]. Exosomes are involved in intercellular communication between local and distant cells [35]. Other forms of intercellular communication, including hormones, growth factors, cytokines, and direct interactions, play a critical role in how multicellular organisms can function as a single system [36]. They package active cargo such as proteins, nucleic acids, and lipids, deliver them to other neighboring or distant cells, and regulate the function of receptor cells through their delivery [37]. While this form of communication occurs between physiologically healthy cells, diseased cells package their active machinery in exosomes and transport them to other healthy cells to play a role in disease metastasis [38].
The pathophysiology of ischemic stroke is very complex, including early and late processes such as cell apoptosis, neuroinflammation, neurovascular repair, and regeneration [39]. Our results revealed that a series of metabolic pathways are closely related to cerebral ischemia/reperfusion injury. Cerebral ischemia/reperfusion injury involves the interaction between oxidative stress and inflammation, which is the basis of the development of the ischemic stroke cascade reaction [40]. In addition, ischemia/reperfusion injury induces a decrease in tryptophan and tyrosine levels, while the ability to synthesize serotonin decreases in the brain [41]. Moreover, sphingolipids are an important structural component of cell membranes, which plays an essential role in controlling the signal transduction of cell proliferation, differentiation, and apoptosis [42]. Moreover, there is a connection and/or cascade reaction among tyrosine metabolism, sphingolipid metabolism, serotonergic synapses, pathways of multiple neurodegeneration diseases, and GABAergic synapses [43, 44]. It is also applicable to our metabolism results from serum exosomes of RIPC participants. In this study, we found that RIPC may change the levels of a series of metabolites in serum exosomes to adapt to cerebral ischemia/reperfusion injury.
In addition to proteomic alterations, such as tyrosine phosphorylation, in the pathogenesis of ischemic stroke, growth factors or neurotrophic factors, including IGF, FGF, and BDNF, can reduce cell damage by inhibiting the tyrosine kinase receptor-activated apoptosis pathway [45]. IGF is a highly effective antiapoptotic factor in eukaryotic cells. It is considered to be a neuroprotective target in inflammatory and excitotoxic conditions. Therefore, IGF can reduce tissue and cell damage induced by ischemia and reperfusion [46]. In this study, our results demonstrate that the primary functions involved in RIPC included complement and coagulation cascades, regulation of IGF transport, neutrophil degranulation, endocytosis, and vesicle-mediated transport, which may participate in the potential role of RIPC. Our metabolomics and proteomics data showed that RIPC induces an ischemic cascade, and these peripheral signals are transmitted to the brain through exosomes to protect the brain against the effects of ischemia/reperfusion on the body. In addition, integrative analysis of proteomics and metabolomics showed that the differential metabolites and proteins connected to form a network under RIPC conditions. Our metabolomics data may provide a multitarget neurovascular unit protection strategy for ischemic stroke.
RIPC is an endogenous protective pathway of cerebral ischemia‒reperfusion injury [47]. The protective effect of RIPC on cerebral ischemia is mainly related to a variety of biological molecules and signaling pathways [48]. During ischemia, the tissues adapt to anaerobic metabolism [49]. The restoration of the blood supply causes the oxygen supply to exceed the requirements, which leads to the production of superoxide free radicals, causing oxidative stress. The key event involved in the initial stage of reperfusion injury is the activation of macrophages, which leads to endothelial injury and further release of proinflammatory cytokines [50, 51]. In this study, a differential expression profile of blood exosome-derived metabolites and proteins was observed under RIPC conditions. We found some differential metabolites and proteins, such as Theobromine, cyclo gly-pro, HPX, and ApoA1, that are associated with neuroprotective benefits in ischemia/reperfusion injury. It has been reported that Theobromine is a natural stimulant and vasoactive alkaloid that can prevent ischemic injury [52]; Cyclo gly-pro has a neuroprotective effect on hypoxic-ischemic brain injury in rats [53]; HPX is a rate-limiting enzyme that eliminates excessive free hemoglobin during ischemic stroke [54]; ApoA1 is the main transport protein for high-density lipoprotein macromolecules and significantly reduces the infarct volume and the transformation rate of hemorrhage by decreasing neutrophil recruitment [55]. RIPC may regulate the expression of these metabolites and/or proteins to induce ischemic tolerance to subsequent hypoxic injury.
Through the integrative analysis of blood exosomal metabolome and proteome data, 8 significantly perturbed pathways were identified. Among them, APOA1, APOE, and taurocholic acid were involved in cholesterol metabolism. Cholesterol metabolism was found to be significantly related to adverse outcomes of ischemic stroke [56]. In addition, ApoE is a multifunctional protein that plays a key role in cholesterol metabolism [57]; a higher level of APOA1 is considered to be protective against ischemic stroke [58], and taurocholic acid can lower postprandial lipemia [59]. Our results showed that ApoE, APOA1, and taurocholic acid showed higher levels in RIPC participants than in controls, which may have protective effects when participants are exposed to RIPC conditions. Furthermore, ATP synthase, H + transporting, mitochondrial F1 complex, alpha subunit 1 (ATP5A1; ATP5A1A and ATP5A1B) is positively correlated with the oxidative phosphorylation pathway in cells [60]; the reduction in succinic acid levels reduces oxidative phosphorylation [61]. Our results revealed that ATP5A1A, ATP5A1B, and succinic acid were less involved in the oxidative phosphorylation pathway, which is consistent with a previous study that reported that RIPC involves beneficial effects on oxidative phosphorylation of mitochondria [62]. Our results suggested that RIPC is involved in cholesterol metabolism and the oxidative metabolism pathway transmitted by blood exosomes. In addition, blood exosomes may play critical roles in the transfer of signals during the ischemia/reperfusion process.
RIPC refers to a brief episode of exposure to potential adverse stimulation and prevents injury during subsequent exposure. The protective mechanisms include stimulation of nitric oxide synthase, an increase in the levels of antioxidant enzymes, and downregulation of proinflammatory cytokines [2]. In this study, five potential metabolite biomarkers that separated RIPC from control individuals were identified. Our results showed that ethyl salicylate, ethionamide, and piperic acid levels were higher, and 2,6-di-tert-butyl-4-hydroxymethylphenol and zerumbone were lower under RIPC conditions. It has been reported that ethyl salicylate functions as an antibacterial and anti-inflammatory component for the treatment of tuberculous meningitis [63]. Furthermore, ethionamide has antibacterial and anti-inflammatory effects [64]. Piperic acid is indicated to have antinociceptive and anti-inflammatory activities [65]. These three metabolites may provide protective benefits when participants are exposed to RIPC conditions. Additionally, a limitation of this study is that the sample size was relatively small, which requires future large studies to verify the data from the present study.
The metabolomics and proteomics analysis of serum exosomes following RIPC has led to insight into metabolism during RIPC and the possible enrichment pathways of metabolites and proteins that are relevant to ischemia‒reperfusion damage. Our findings provide a better understanding of the pathophysiologic effects of RIPC and may facilitate the improvement of diagnostics and therapeutics of cerebral ischemia‒reperfusion injury for human clinical application. In addition, our data suggest that serum exosomal metabolites are promising biomarkers for RIPC and may provide a new treatment strategy for future cerebral ischemia‒reperfusion injury.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

There are no competing interests in the article.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Le Page S, Prunier F. Remote ischemic conditioning: current clinical perspectives. J Cardiol. 2015;66:91–6.PubMedCrossRef Le Page S, Prunier F. Remote ischemic conditioning: current clinical perspectives. J Cardiol. 2015;66:91–6.PubMedCrossRef
2.
Zurück zum Zitat Berger MM, Macholz F, Mairbäurl H, Bärtsch P. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction? J Appl Physiol. 1985;2015(119):1143–51. Berger MM, Macholz F, Mairbäurl H, Bärtsch P. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction? J Appl Physiol. 1985;2015(119):1143–51.
3.
Zurück zum Zitat Moskowitz MA, Waeber C. Remote ischemic preconditioning: making the brain more tolerant, safely and inexpensively. Circulation. 2011;123:709–11.PubMedCrossRef Moskowitz MA, Waeber C. Remote ischemic preconditioning: making the brain more tolerant, safely and inexpensively. Circulation. 2011;123:709–11.PubMedCrossRef
4.
Zurück zum Zitat Donkor ES. Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165.PubMedPubMedCentral Donkor ES. Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165.PubMedPubMedCentral
6.
Zurück zum Zitat Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:2429–37.PubMedPubMedCentralCrossRef Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:2429–37.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97:S6-s16.PubMedCrossRef Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97:S6-s16.PubMedCrossRef
10.
Zurück zum Zitat Li SR , Song YJ , Deng R , Li XW , Cheng Y , Zhang ZQ , Sun FY , Liu QS . Mallotus oblongifolius extracts ameliorate ischemic nerve damage by increasing endogenous neural stem cell proliferation through the Wnt/β-catenin signaling pathway. Food Funct. 2020;11(1):1027–36. https://doi.org/10.1039/c9fo01790a.CrossRefPubMed Li SR , Song YJ , Deng R , Li XW , Cheng Y , Zhang ZQ , Sun FY , Liu QS . Mallotus oblongifolius extracts ameliorate ischemic nerve damage by increasing endogenous neural stem cell proliferation through the Wnt/β-catenin signaling pathway. Food Funct. 2020;11(1):1027–36. https://​doi.​org/​10.​1039/​c9fo01790a.CrossRefPubMed
11.
Zurück zum Zitat Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: preclinical evidence and mechanisms. Eur J Pharmacol. 2020;883: 173380.PubMedCrossRef Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: preclinical evidence and mechanisms. Eur J Pharmacol. 2020;883: 173380.PubMedCrossRef
12.
Zurück zum Zitat Hess DC, Blauenfeldt RA, Andersen G, Hougaard KD, Hoda MN, Ding Y, Ji X. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015;11:698–710.PubMedCrossRef Hess DC, Blauenfeldt RA, Andersen G, Hougaard KD, Hoda MN, Ding Y, Ji X. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015;11:698–710.PubMedCrossRef
13.
Zurück zum Zitat Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, Shi J, Duan Y, Sun Z, Yu Y, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics. 2015;12:667–77.PubMedPubMedCentralCrossRef Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, Shi J, Duan Y, Sun Z, Yu Y, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics. 2015;12:667–77.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Zhao W, Zhang J, Sadowsky MG, Meng R, Ding Y, Ji X. Remote ischaemic conditioning for preventing and treating ischaemic stroke. Cochrane Database Syst Rev. 2018;7:cd012503.PubMed Zhao W, Zhang J, Sadowsky MG, Meng R, Ding Y, Ji X. Remote ischaemic conditioning for preventing and treating ischaemic stroke. Cochrane Database Syst Rev. 2018;7:cd012503.PubMed
15.
Zurück zum Zitat Mohammad Seyedsaadat S, Rangel Castilla L, Lanzino G, Cloft HJ, Blezek DJ, Theiler A, Kadirvel R, Brinjikji W, Kallmes DF. Remote ischemic preconditioning for elective endovascular intracranial aneurysm repair: a feasibility study. Neuroradiol J. 2019;32:166–72.PubMedPubMedCentralCrossRef Mohammad Seyedsaadat S, Rangel Castilla L, Lanzino G, Cloft HJ, Blezek DJ, Theiler A, Kadirvel R, Brinjikji W, Kallmes DF. Remote ischemic preconditioning for elective endovascular intracranial aneurysm repair: a feasibility study. Neuroradiol J. 2019;32:166–72.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Gasparovic H, Kopjar T, Rados M, Anticevic A, Rados M, Malojcic B, Ivancan V, Fabijanic T, Cikes M, Milicic D, et al. Impact of remote ischemic preconditioning preceding coronary artery bypass grafting on inducing neuroprotection. J Thorac Cardiovasc Surg. 2019;157:1466-1476.e1463.PubMedCrossRef Gasparovic H, Kopjar T, Rados M, Anticevic A, Rados M, Malojcic B, Ivancan V, Fabijanic T, Cikes M, Milicic D, et al. Impact of remote ischemic preconditioning preceding coronary artery bypass grafting on inducing neuroprotection. J Thorac Cardiovasc Surg. 2019;157:1466-1476.e1463.PubMedCrossRef
17.
Zurück zum Zitat Zhang Y, Liu X, Yan F, Min L, Ji X, Luo Y. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury. Neural Regen Res. 2012;7:583–7.PubMedPubMedCentral Zhang Y, Liu X, Yan F, Min L, Ji X, Luo Y. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury. Neural Regen Res. 2012;7:583–7.PubMedPubMedCentral
20.
Zurück zum Zitat Park JE, Dutta B, Tse SW, Gupta N, Tan CF, Low JK, Yeoh KW, Kon OL, Tam JP, Sze SK. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019;38:5158–73.PubMedCrossRef Park JE, Dutta B, Tse SW, Gupta N, Tan CF, Low JK, Yeoh KW, Kon OL, Tam JP, Sze SK. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019;38:5158–73.PubMedCrossRef
21.
Zurück zum Zitat Larina IM, Ivanisenko VA, Nikolaev EN, Grigorev AI. The proteome of a healthy human during physical activity under extreme conditions. Acta Naturae. 2014;6:66–75.PubMedPubMedCentralCrossRef Larina IM, Ivanisenko VA, Nikolaev EN, Grigorev AI. The proteome of a healthy human during physical activity under extreme conditions. Acta Naturae. 2014;6:66–75.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: paving the way toward integrative multiomics. J Pharm Biomed Anal. 2021;199: 114031.PubMedCrossRef Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: paving the way toward integrative multiomics. J Pharm Biomed Anal. 2021;199: 114031.PubMedCrossRef
23.
Zurück zum Zitat Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20:353–67.PubMedPubMedCentralCrossRef Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019;20:353–67.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Du Y, Yu Y, Hu Y, Li XW, Wei ZX, Pan RY, Li XS, Zheng GE, Qin XY, Liu QS, Cheng Y. Genome-wide, integrative analysis implicates exosome-derived MicroRNA dysregulation in schizophrenia. Schizophr Bull. 2019;45:1257–66.PubMedPubMedCentralCrossRef Du Y, Yu Y, Hu Y, Li XW, Wei ZX, Pan RY, Li XS, Zheng GE, Qin XY, Liu QS, Cheng Y. Genome-wide, integrative analysis implicates exosome-derived MicroRNA dysregulation in schizophrenia. Schizophr Bull. 2019;45:1257–66.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, et al. Metabolomic identification of exosome-derived biomarkers for schizophrenia: a large multicenter study. Schizophr Bull. 2021;47:615–23.PubMedCrossRef Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, et al. Metabolomic identification of exosome-derived biomarkers for schizophrenia: a large multicenter study. Schizophr Bull. 2021;47:615–23.PubMedCrossRef
26.
Zurück zum Zitat Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, Wang H, Cheng Y. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology. 2020;45:1050–8.PubMedPubMedCentralCrossRef Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, Wang H, Cheng Y. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology. 2020;45:1050–8.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Sun L, Kang Q, Pan Y, Li N, Wang X, He Y, Wang H, Yu D, Xie H, Yang L, et al. Serum metabolite profiling of familial adenomatous polyposis using ultra performance liquid chromatography and tandem mass spectrometry. Cancer Biol Ther. 2019;20:1017–28.PubMedPubMedCentralCrossRef Sun L, Kang Q, Pan Y, Li N, Wang X, He Y, Wang H, Yu D, Xie H, Yang L, et al. Serum metabolite profiling of familial adenomatous polyposis using ultra performance liquid chromatography and tandem mass spectrometry. Cancer Biol Ther. 2019;20:1017–28.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry. 2013;18:67–78.PubMedCrossRef Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry. 2013;18:67–78.PubMedCrossRef
29.
Zurück zum Zitat Chong J, Wishart DS, Xia J. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;68:86.CrossRef Chong J, Wishart DS, Xia J. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;68:86.CrossRef
30.
Zurück zum Zitat Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.PubMedPubMedCentralCrossRef Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Li Y, Ren C, Li H, Jiang F, Wang L, Xia C, Ji X. Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. NeuroReport. 2019;30:834–41.PubMedCrossRef Li Y, Ren C, Li H, Jiang F, Wang L, Xia C, Ji X. Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. NeuroReport. 2019;30:834–41.PubMedCrossRef
32.
Zurück zum Zitat Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X, Cai YS, Cheng Y. Exosome transplantation from patients with schizophrenia causes schizophrenia-relevant behaviors in mice: an integrative multi-omics data analysis. Schizophr Bull. 2021;47:1288–99.PubMedPubMedCentralCrossRef Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X, Cai YS, Cheng Y. Exosome transplantation from patients with schizophrenia causes schizophrenia-relevant behaviors in mice: an integrative multi-omics data analysis. Schizophr Bull. 2021;47:1288–99.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Zhong SJ, Cui MM, Gao YT, Cao XY, Chen B, Wen XR. MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg. 2021;121:95–106.PubMedCrossRef Zhong SJ, Cui MM, Gao YT, Cao XY, Chen B, Wen XR. MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg. 2021;121:95–106.PubMedCrossRef
34.
Zurück zum Zitat Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Rajanikant GK. Cerebral ischemic preconditioning: the road so far…. Mol Neurobiol. 2016;53:2579–93.PubMedCrossRef Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Rajanikant GK. Cerebral ischemic preconditioning: the road so far…. Mol Neurobiol. 2016;53:2579–93.PubMedCrossRef
36.
Zurück zum Zitat Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef
37.
Zurück zum Zitat Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015;65:783–97.PubMedPubMedCentralCrossRef Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015;65:783–97.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Gągało I, Rusiecka I, Kocić I. Tyrosine kinase inhibitor as a new therapy for ischemic stroke and other neurologic diseases: is there any hope for a better outcome? Curr Neuropharmacol. 2015;13:836–44.PubMedPubMedCentralCrossRef Gągało I, Rusiecka I, Kocić I. Tyrosine kinase inhibitor as a new therapy for ischemic stroke and other neurologic diseases: is there any hope for a better outcome? Curr Neuropharmacol. 2015;13:836–44.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci. 2020;13:28.PubMedPubMedCentralCrossRef Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci. 2020;13:28.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ormstad H, Verkerk R, Aass HC, Amthor KF, Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci. 2013;51:893–902.PubMedCrossRef Ormstad H, Verkerk R, Aass HC, Amthor KF, Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci. 2013;51:893–902.PubMedCrossRef
42.
Zurück zum Zitat Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol. 2011;2:347–61.PubMedPubMedCentral Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol. 2011;2:347–61.PubMedPubMedCentral
43.
Zurück zum Zitat Sidorov EV, Xu C, Garcia-Ramiu J, Blair A, Ortiz-Garcia J, Gordon D, Chainakul J, Sanghera DK. Global metabolomic profiling reveals disrupted lipid and amino acid metabolism between the acute and chronic stages of ischemic stroke. J Stroke Cerebrovasc Dis. 2022;31: 106320.PubMedPubMedCentralCrossRef Sidorov EV, Xu C, Garcia-Ramiu J, Blair A, Ortiz-Garcia J, Gordon D, Chainakul J, Sanghera DK. Global metabolomic profiling reveals disrupted lipid and amino acid metabolism between the acute and chronic stages of ischemic stroke. J Stroke Cerebrovasc Dis. 2022;31: 106320.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zarcone D, Corbetta S. Shared mechanisms of epilepsy, migraine and affective disorders. Neurol Sci. 2017;38:73–6.PubMedCrossRef Zarcone D, Corbetta S. Shared mechanisms of epilepsy, migraine and affective disorders. Neurol Sci. 2017;38:73–6.PubMedCrossRef
45.
Zurück zum Zitat Takagi N. Protein tyrosine phosphorylation in the ischemic brain. J Pharmacol Sci. 2014;125:333–9.PubMedCrossRef Takagi N. Protein tyrosine phosphorylation in the ischemic brain. J Pharmacol Sci. 2014;125:333–9.PubMedCrossRef
46.
Zurück zum Zitat Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab. 2021;41:2475–91.PubMedPubMedCentralCrossRef Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab. 2021;41:2475–91.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Liang W, Lin C, Yuan L, Chen L, Guo P, Li P, Wang W, Zhang X. Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway. J Neuroinflammation. 2019;16:181.PubMedPubMedCentralCrossRef Liang W, Lin C, Yuan L, Chen L, Guo P, Li P, Wang W, Zhang X. Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway. J Neuroinflammation. 2019;16:181.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury–a review. J Surg Res. 2008;150:304–30.PubMedCrossRef Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury–a review. J Surg Res. 2008;150:304–30.PubMedCrossRef
49.
51.
Zurück zum Zitat Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. Excli j. 2017;16:483–96.PubMedPubMedCentral Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. Excli j. 2017;16:483–96.PubMedPubMedCentral
52.
Zurück zum Zitat Bhat JA, Gupta S, Kumar M. Neuroprotective effects of theobromine in transient global cerebral ischemia-reperfusion rat model. Biochem Biophys Res Commun. 2021;571:74–80.PubMedCrossRef Bhat JA, Gupta S, Kumar M. Neuroprotective effects of theobromine in transient global cerebral ischemia-reperfusion rat model. Biochem Biophys Res Commun. 2021;571:74–80.PubMedCrossRef
53.
Zurück zum Zitat Guan J, Mathai S, Harris P, Wen JY, Zhang R, Brimble M, Gluckman P. Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia-ischemia in adult rats. Neuropharmacology. 2007;53:749–62.PubMedCrossRef Guan J, Mathai S, Harris P, Wen JY, Zhang R, Brimble M, Gluckman P. Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia-ischemia in adult rats. Neuropharmacology. 2007;53:749–62.PubMedCrossRef
54.
Zurück zum Zitat Dong B, Yang Y, Zhang Z, Xie K, Su L, Yu Y. Hemopexin alleviates cognitive dysfunction after focal cerebral ischemia-reperfusion injury in rats. BMC Anesthesiol. 2019;19:13.PubMedPubMedCentralCrossRef Dong B, Yang Y, Zhang Z, Xie K, Su L, Yu Y. Hemopexin alleviates cognitive dysfunction after focal cerebral ischemia-reperfusion injury in rats. BMC Anesthesiol. 2019;19:13.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Ducroux C, Desilles JP, Mawhin MA, Delbosc S, Ho-Tin-Noé B, Ollivier V, Di Meglio L, Lapergue B, Michel JB, Amarenco P. Protective effect of ApoA1 (Apolipoprotein A1)-Milano in a Rat model of large vessel occlusion stroke. Stroke. 2020;51:1886–90.PubMedCrossRef Ducroux C, Desilles JP, Mawhin MA, Delbosc S, Ho-Tin-Noé B, Ollivier V, Di Meglio L, Lapergue B, Michel JB, Amarenco P. Protective effect of ApoA1 (Apolipoprotein A1)-Milano in a Rat model of large vessel occlusion stroke. Stroke. 2020;51:1886–90.PubMedCrossRef
56.
Zurück zum Zitat Ntaios G, Milionis H. Low-density lipoprotein cholesterol lowering for the prevention of cardiovascular outcomes in patients with ischemic stroke. Int J Stroke. 2019;14:476–82.PubMedCrossRef Ntaios G, Milionis H. Low-density lipoprotein cholesterol lowering for the prevention of cardiovascular outcomes in patients with ischemic stroke. Int J Stroke. 2019;14:476–82.PubMedCrossRef
57.
Zurück zum Zitat Yin Y, Wang Z. ApoE and neurodegenerative diseases in aging. Adv Exp Med Biol. 2018;1086:77–92.PubMedCrossRef Yin Y, Wang Z. ApoE and neurodegenerative diseases in aging. Adv Exp Med Biol. 2018;1086:77–92.PubMedCrossRef
58.
Zurück zum Zitat Zhao X, Yu Y, Xu W, Dong L, Wang Y, Gao B, Li G, Zhang W. Apolipoprotein A1-unique peptide as a diagnostic biomarker for acute ischemic stroke. Int J Mol Sci. 2016;17:458.PubMedPubMedCentralCrossRef Zhao X, Yu Y, Xu W, Dong L, Wang Y, Gao B, Li G, Zhang W. Apolipoprotein A1-unique peptide as a diagnostic biomarker for acute ischemic stroke. Int J Mol Sci. 2016;17:458.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol. 2020;318:G682-g693.PubMedCrossRef Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol. 2020;318:G682-g693.PubMedCrossRef
60.
Zurück zum Zitat Yuan L, Chen L, Qian K, Wang G, Lu M, Qian G, Cao X, Jiang W, Xiao Y, Wang X. A novel correlation between ATP5A1 gene expression and progression of human clear cell renal cell carcinoma identified by co-expression analysis. Oncol Rep. 2018;39:525–36.PubMed Yuan L, Chen L, Qian K, Wang G, Lu M, Qian G, Cao X, Jiang W, Xiao Y, Wang X. A novel correlation between ATP5A1 gene expression and progression of human clear cell renal cell carcinoma identified by co-expression analysis. Oncol Rep. 2018;39:525–36.PubMed
61.
Zurück zum Zitat Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167:457-470.e413.PubMedPubMedCentralCrossRef Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167:457-470.e413.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ferko M, Kancirová I, Jašová M, Čarnická S, Muráriková M, Waczulíková I, Sumbalová Z, Kucharská J, Uličná O, Ravingerová T, Ziegelhöffer A. Remote ischemic preconditioning of the heart: protective responses in functional and biophysical properties of cardiac mitochondria. Physiol Res. 2014;63:S469-478.PubMedCrossRef Ferko M, Kancirová I, Jašová M, Čarnická S, Muráriková M, Waczulíková I, Sumbalová Z, Kucharská J, Uličná O, Ravingerová T, Ziegelhöffer A. Remote ischemic preconditioning of the heart: protective responses in functional and biophysical properties of cardiac mitochondria. Physiol Res. 2014;63:S469-478.PubMedCrossRef
63.
Zurück zum Zitat Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS. A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis (Edinb). 2016;97:126–36.PubMedCrossRef Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS. A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis (Edinb). 2016;97:126–36.PubMedCrossRef
64.
Zurück zum Zitat de Freitas PT, Duhayon C, de França Lopes LG, Silva Sousa EH, Chauvin R, Bernardes-Génisson V. Further insights into the oxidative pathway of thiocarbonyl-type antitubercular prodrugs: ethionamide, thioacetazone, and isoxyl. Chem Res Toxicol. 2021;34:1879–89.CrossRef de Freitas PT, Duhayon C, de França Lopes LG, Silva Sousa EH, Chauvin R, Bernardes-Génisson V. Further insights into the oxidative pathway of thiocarbonyl-type antitubercular prodrugs: ethionamide, thioacetazone, and isoxyl. Chem Res Toxicol. 2021;34:1879–89.CrossRef
65.
Zurück zum Zitat Oliveira PA, de Almeida TB, de Oliveira RG, Gonçalves GM, de Oliveira JM, Dos NevesSantos BB, Laureano-Melo R, Côrtes WDS, França TDN, Vasconcellos M, Marinho BG. Evaluation of the antinociceptive and anti-inflammatory activities of piperic acid: Involvement of the cholinergic and vanilloid systems. Eur J Pharmacol. 2018;834:54–64.PubMedCrossRef Oliveira PA, de Almeida TB, de Oliveira RG, Gonçalves GM, de Oliveira JM, Dos NevesSantos BB, Laureano-Melo R, Côrtes WDS, França TDN, Vasconcellos M, Marinho BG. Evaluation of the antinociceptive and anti-inflammatory activities of piperic acid: Involvement of the cholinergic and vanilloid systems. Eur J Pharmacol. 2018;834:54–64.PubMedCrossRef
Metadaten
Titel
Identification of serum exosomal metabolomic and proteomic profiles for remote ischemic preconditioning
verfasst von
Yang Du
Rui Qiu
Lei Chen
Yuewen Chen
Zhifeng Zhong
Peng Li
Fangcheng Fan
Yong Cheng
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2023
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04070-1

Weitere Artikel der Ausgabe 1/2023

Journal of Translational Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

RAS-Blocker bei Hyperkaliämie möglichst nicht sofort absetzen

14.05.2024 Hyperkaliämie Nachrichten

Bei ausgeprägter Nierenfunktionsstörung steigen unter der Einnahme von Renin-Angiotensin-System(RAS)-Hemmstoffen nicht selten die Serumkaliumspiegel. Was in diesem Fall zu tun ist, erklärte Prof. Jürgen Floege beim diesjährigen Allgemeinmedizin-Update-Seminar.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.