Skip to main content

01.12.2012 | Research | Ausgabe 1/2012 Open Access

Molecular Cancer 1/2012

Interferon-α enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma

Molecular Cancer > Ausgabe 1/2012
Cong-Jun Wang, Chao-Wen Xiao, Tian-Geng You, Ya-Xin Zheng, Wei Gao, Zhu-Qing Zhou, Jun Chen, Xin-Bo Xue, Jia Fan, Hui Zhang
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-11-31) contains supplementary material, which is available to authorized users.
Cong-Jun Wang, Chao-Wen Xiao, Tian-Geng You contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

We declare that all the listed authors have participated actively in the study and all meet the requirements of the authorship. Dr. Cong-Jun Wang, Dr. Jia Fan, and Dr. Hui Zhang designed the study and wrote the protocol, Dr. Xin-Bo Xue contributed administrative, technical, or material support, Dr. Wei Gao, Dr. Chao-Wen Xiao managed the literature searches and analyses, Dr. Zhu-Qing Zhou undertook the statistical analysis, Dr. Tian-Geng You wrote the first draft of the manuscript, Dr. Ya-Xin Zheng, and Dr. Jun Chen provide critical versions of the manuscript for important intellectual content. All authors read and approved the final manuscript.



Hepatocellular carcinoma (HCC) has a dismal 5-year-survival rate of 10%, so novel strategies are warranted. IL-24 mediates anti-tumor activity reducing STAT3 expression, which suggests that interferon (IFN) alpha may augment tumor cell lysis and reduce angiogenesis. We investigated the antitumor activity of treatment with IFN-α, with the oncolytic adenovirus SG600-IL-24, or the combination of both in HCC in vitro and in vivo.


RT-PCR, ELISA assay and Western-blot confirmed that the exogenous IL-24 gene was highly expressed in HCC cells infected with SG600-IL-24. Treatment with combined IFN-α and SG600-IL-24 suppressed growth and promoted apoptosis of the HepG2, MHCC97L, and HCCLM3 cell lines compared with the normal cell line L02. The combined therapy increased STAT1 and SOCS1 and apoptosis, but decreased the expression of the metastatic and angiogenic proteins MMP-2, XIAP, OPN, and VEGF, which are regulated by STAT3 in HCC cells in vitro. To assess the effects in vivo, the HCC cell line HCCLM3 was transplanted subcutaneously into the right flanks of nude mice. Mice in the IFN-α group, the SG600-IL-24 group, or the combined therapy group had significantly suppressed growth of the HCC xenografted tumors compared to the PBS control group of mice. Among the mice treated with the combination of IFN-α and SG600-IL-24, three of those eight mice had long-term survival and no evidence of a tumor. These mice also had decreased expression of the metastatic and angiogenic proteins MMP-2, XIAP, OPN, and VEGF.


The present study demonstrated for the first time the potential antitumor activity of IFN-α combined with the oncolytic adenovirus SG600-IL-24 in HCC both in vitro and in vivo, and suggests its further development as a potential candidate for HCC cancer gene therapy.
Additional file 1: Additional file 1. Supplementary figure for figure 5. (TIFF 3 MB)
Additional file 2: Additional file 2. Supplementary figure for figure 6. (TIFF 3 MB)
Additional file 3: Additional file 3. Supplementary figure for virus existence. (TIFF 2 MB)
Authors’ original file for figure 1
Authors’ original file for figure 2
Authors’ original file for figure 3
Authors’ original file for figure 4
Authors’ original file for figure 5
Authors’ original file for figure 6
Authors’ original file for figure 7
Authors’ original file for figure 8
Authors’ original file for figure 9
Authors’ original file for figure 10
Authors’ original file for figure 11
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

Molecular Cancer 1/2012 Zur Ausgabe

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.