Skip to main content
Erschienen in: European Radiology 3/2021

Open Access 08.09.2020 | Emergency Radiology

Interobserver reliability of the Tile classification system for pelvic fractures among radiologists and surgeons

verfasst von: Tobias Zingg, Emilie Uldry, Patrick Omoumi, Daniel Clerc, Arnaud Monier, Basile Pache, Mohammed Moshebah, Fabio Butti, Fabio Becce

Erschienen in: European Radiology | Ausgabe 3/2021

Abstract

Objectives

To assess the interobserver reliability (IOR) of the Tile classification system, and its potential influence on outcomes, for the interpretation of CT images of pelvic fractures by radiologists and surgeons.

Methods

Retrospective data (1/2008–12/2016) from 238 patients with pelvic fractures were analyzed. Mean patient age was 44 years (SD 20); 66% were male. There were 54 Tile A, 82 Tile B, and 102 Tile C type injuries. The 30-day mortality rate was 15% (36/238). Six observers, three radiologists, and three surgeons with different levels of experience (attending/resident/intern) classified each fracture into one of the 26 second-order subcategories of the Tile classification. Weighted kappa coefficients were used to assess the IORs for the three main categories and nine first-order subcategories.

Results

The overall IORs of the Tile system for the main categories and first-order subcategories were moderate (kappa = 0.44) and fair (kappa = 0.31), respectively. IOR was fair to moderate among radiologists, but only fair among surgeons. By level of training, IOR was moderate between attendings and between residents, whereas it was only fair between interns. IOR was moderate to substantial (kappa = 0.56–0.70) between the radiology attending and resident. Association of the Tile fracture type with 30-day mortality was present based on two out of six observer ratings.

Conclusions

The overall IOR of the Tile classification system is only fair to moderate, increases with the level of rater experience and is better among radiologists than surgeons. In the light of these findings, results from studies using this classification system must be interpreted cautiously.

Key Points

The overall interobserver reliability of the Tile pelvic fracture classification is only fair to moderate.
Interobserver reliability increases with observer experience and radiologists have higher kappa coefficients than surgeons.
Interobserver reliability has an impact on the association of the Tile classification system with mortality in two out of six cases.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00330-020-07247-0) contains supplementary material, which is available to authorized users.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AIS
Abbreviated injury scale
BE
Base excess
BPM
Beats per minute
HR
Heart rate
ICU
Intensive care unit
IOR
Interobserver reliability
IQR
Interquartile range
ISS
Injury severity score
LOS
Length of stay
ORIF
Open reduction internal fixation
PCCD
Pelvic circumferential compression device
SBP
Systolic blood pressure
SD
Standard deviation

Introduction

Pelvic ring fractures account for approximately 3% of skeletal injuries, with a reported incidence of 23/100,000 persons/year [1, 2]. They result from high-energy impacts and are usually associated with multiple injuries [3, 4]. Due to significant retroperitoneal bleeding or severe extra-pelvic injuries, most often of the chest or the central nervous system, the mortality rate from pelvic ring injuries may reach up to 30%, especially in hemodynamically unstable patients [5]. Potential pelvic bleeding sources include bony fracture surfaces, the disrupted pelvic venous plexus, and arterial bleeding from branches of iliac vessels [6, 7].
With the aim of guiding clinical management and providing a common language for both clinicians and researchers based on the fracture pattern, several classification systems for pelvic ring injuries have been developed [813]. One of the most frequently used is the Tile classification, first proposed in 1980 [14, 15]. It is based on the mode of mechanical pelvic ring instability. Type A fractures do not concern the pelvic ring per se and are stable, type B are rotationally unstable, whereas type C are in addition vertically unstable. Each main fracture type is further subdivided into nine first-order subcategories and a total of 26 second-order subcategories [16]. Although originally designed for use with plain radiographs, the Tile classification is now routinely used based on CT images [17], which allow for a more precise evaluation of the posterior elements of the pelvic ring [1820] and can further aid in identifying bleeding from pelvic sources and associated abdominal injuries [2123].
For any classification system to be useful, there should be a high interobserver reliability (IOR); otherwise, it may not be possible to correctly interpret study results or justify clinical decisions and management algorithms based on such classification systems. For instance, there is controversy about the clinical usefulness of classification systems in terms of the association of fracture patterns with the risk of significant bleeding and mortality, whether the Tile [2430] or other systems [9, 29, 3134] are used. So far, four studies have examined the IOR of the Tile and other classification systems, finding IORs ranging from poor to moderate. None of these studies included radiologists as observers [3538].
The primary aim of this study was to examine the IOR of the Tile classification based on CT scans read by radiologists and surgeons with varying levels of experience. The secondary aim was to assess whether the classification ratings by different observers influenced the association between the pelvic fracture type and mortality in the present study.

Materials and methods

Patient selection and study design

All patients with a diagnosis of pelvic fracture and CT images obtained in the emergency department of our tertiary referral hospital (n = 229) or a transferring institution (n = 13) during the study period from January 2008 to December 2016 were identified in the institutional trauma registry (n = 242). After review, patients with isolated acetabular fractures (n = 4) were excluded. For each case (n = 238), the following variables were extracted from the registry: age, gender, injury mechanism, presence of a pelvic circumferential compression device (PCCD) on arrival, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS) score for head/neck, chest, abdomen and extremities/pelvis body regions, base excess (BE), lactate, systolic blood pressure (SBP), heart rate (HR), intensive care unit (ICU), length of stay (LOS), interventions (surgery, arterial angio-embolization), and 30-day mortality.
The present manuscript was prepared to conform to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines [39] and the study protocol was approved by the local institutional review board (Protocol number 2016-927).

CT protocol

For the vast majority of cases (n = 226, 95%), the institutional whole-body trauma CT protocol was performed using a 64- or 256-detector row CT scanner (LightSpeed VCT and Revolution CT; GE Healthcare) on arrival in the emergency radiology department. Relevant standardized pelvic CT data acquisition settings were as follows: tube potential, 120 kVp; tube current, ~ 400 mA; gantry revolution time, 0.5–0.6; beam collimation, 64 or 128 × 0.625 mm; and pitch, 0.992–1.375. Pelvic CT images were reconstructed at a section thickness/interval of 1.25/1 mm using both smooth (standard) and sharp (bone) kernels and iterative reconstruction algorithms (ASiR and ASiR-V, GE Healthcare; from 2010 and 2015 onwards, respectively).

Image analysis

In order to define the diagnostic reference values, two experts, one musculoskeletal radiologist (13 years of experience) and one emergency general surgeon (16 years of experience), independently reviewed all CT scans and attributed a second-order subcategory fracture type according to the Tile classification system to each case. When there was disagreement, CT images were independently reviewed by a third expert, an orthopedic trauma surgeon (17 years of experience), with adjudication and final consensual decision in a joint session.
CT scans were then independently reviewed by six other observers, three radiologists and three surgeons, who were blinded to patient characteristics, treatments, outcomes, and the classification ratings of their peers. Each specialty was represented by an attending (radiologist, 15 years; surgeon, 14 years of experience), a resident (radiologist, 6 years; surgeon, 7 years of experience), and a first-year intern. The observers were all provided with the same description of the Tile classification system [16] prior to reviewing the whole CT image datasets (axial images with coronal and sagittal reformations, with the availability of 2D oblique sections and 3D reconstructions using the multiplanar reformation and volume rendering view modes, respectively) using a picture archiving and communication system (Vue, Carestream Health), without any time constraints. Fifty cases were randomly chosen and reviewed by six other peers (three from each specialty) with comparable levels of experience (two attendings with 13 and 16 years, two residents with 5 years each, and two interns in their first clinical year) in order to check for internal consistency.

Statistical analysis

For categorical variables, results were expressed in frequencies and percentages. For continuous variables, a measure of dispersion was given using medians with interquartile ranges (IQR) for data with a skewed distribution or means with standard deviation (SD) for normally distributed data. Associations between categorical variables and binary outcomes were evaluated using Pearson’s chi-squared test. Weighted kappa coefficients were used to measure IOR, which were interpreted according to Landis and Koch. Kappa values of 0–0.20 indicate poor, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.80–1 almost perfect agreement [40]. Since the minimal number of observations (k) for valid kappa statistics is (2 × k2) [41], only IORs for the main (k = 3, n = 18) and first-order (k = 9, n = 162) subcategories were analyzed. Cohen’s kappa [42] was used when comparing two raters and Fleiss’s kappa [43] for combined kappa values of three or more raters. All analyses were performed using Stata/IC v15.1 (StataCorp LLC). The distribution of kappa weights is illustrated in Supplementary Table 1. A significance threshold with a two-sided p value of 0.05 was adopted for all statistical analyses.

Results

Among the 238 pelvic fractures included for analysis, there were 54 Tile A (23%), 82 Tile B (34%), and 102 (43%) Tile C types. In the present study cohort, the mean ISS was 24 (SD, 13) and the most frequently associated major (AIS ≥ 3) injuries concerned the chest in 98 (41%), the abdomen in 54 (23%), and the head in 53 (22%) patients. Mean patient age was 44 years (SD, 20 years); 158 patients (66%) were males. Surgical stabilization of the pelvis was performed in 52 (22%) of patients and 25 (11%) underwent arterial angio-embolization for active pelvic bleeding. Table 1 summarizes the detailed diagnostic reference values based on the consensual review by the three experts, and Table 2 shows the characteristics of the study population. Figure 1 illustrates examples of the three main categories (A/B/C) of the Tile classification.
Table 1
Reference Tile classifications of pelvic fractures (n = 238)
Categories, n (%)
Main
1st order
2nd order
A: 54 (23)
 
A1: 2 (0.8)
 
 
A1.1: 1 (0.4)
 
A1.2: 1 (0.4)
A2: 28 (16)
 
 
A2.1: 16 (7)
 
A2.2: 17 (7)
 
A2.3: 5 (2)
A3: 14 (6)
 
 
A3.1: 1 (0.4)
 
A3.2: 8 (3)
 
A3.3: 5 (2)
B: 82 (34)
 
B1: 7 (3)
 
 
B1.1: 5 (2)
 
B1.2: 2 (0.8)
B2: 67 (28)
 
 
B2.1: 52 (22)
 
B2.2: 14 (6)
 
B2.3: 1 (0.4)
B3: 8 (3)
 
 
B3.1: 1 (0.4)
 
B3.3: 7 (3)
C: 102 (43)
 
C1: 60 (25)
 
 
C1.1: 1 (0.4)
 
C1.2: 23 (10)
 
C1.3: 36 (15)
C2: 17 (7)
 
 
C2.1: 1 (0.4)
 
C2.2: 9 (4)
 
C2.3: 7 (3)
C3: 25 (11)
 
 
C3.1: 4 (2)
 
C3.2: 2 (0.8)
 
C3.3: 19 (8)
Table 2
Demographics and characteristics of the study population (n = 238)
n (%)
238 (100)
Age (years), mean (SD)
44 (20)
Male gender, n (%)
158 (66)
ISS, mean (SD)
24 (13)
AIS head/neck, mean (SD)
1.3 (1.7)
AIS chest, mean (SD)
1.8 (1.5)
AIS abdomen, mean (SD)
1.5 (1.4)
AIS extremities/pelvis, mean (SD)
3.1 (1)
Admission SBP (mmHg), mean (SD)
125 (27)
Admission HR (BPM), mean (SD)
95 (22)
Base excess (mEq/l), median (IQR)
-3.9 (-1.9 to -7.4)
Lactate (mmol/l), median (IQR)
2.3 (1.4–3.9)
Prehospital PCCD placed, n (%)
151 (63)
Surgical pelvic stabilization, n (%)
52 (22)
  External fixation, n (%)
16 (6.7)
  Primary ORIF, n (%)
18 (7.6)
  External fixation followed by ORIF, n (%)
18 (7.6)
Arterial angio-embolization for pelvic bleeding, n (%)
25 (11)
ICU LOS (days), median (IQR)
0 (0–3)
30-day mortality, n (%)
36 (15)
Injury mechanism:
  Falls, n (%)
112 (47)
  Road traffic accidents
    Cyclist, n (%)
12 (5)
    Motor vehicle, n (%)
73 (31)
    Pedestrian hit, n (%)
28 (12)
  Crush, n (%)
11 (5)
  Other, n (%)
2 (0.8)
AIS abbreviated injury scale, BPM beats per minute, HR heart rate, ICU intensive care unit, IQR interquartile range, ISS injury severity score, LOS length of stay, ORIF open reduction internal fixation, PCCD pelvic circumferential compression device, SD standard deviation, SBP systolic blood pressure
For the three main Tile categories (A, B, C), the combined IOR for all six observers was moderate (kappa = 0.44). When analyzed by specialty, IOR was moderate among radiologists (kappa = 0.47) but only fair among surgeons (kappa = 0.34). The combined IOR for the nine first-order subcategories (A1–3, B1–3, C1–3) was fair, overall (kappa = 0.31) and by specialty, yet kappa values were higher among radiologists (kappa = 0.35) than among surgeons (kappa = 0.23). Table 3 summarizes the combined IORs with the corresponding kappa values.
Table 3
Combined interobserver reliabilities
 
Kappa§
p
Tile main categories (A, B, C)
  All, 6 observers
0.4410
< 0.001
  RAD, 3 observers
0.4731
< 0.001
  SURG, 3 observers
0.3435
< 0.001
Tile first-order subcategories (A1–3, B1–3, C1–3)
  All, 6 observers
0.3123
< 0.001
  RAD, 3 observers
0.3525
< 0.001
  SURG, 3 observers
0.2278
< 0.001
RAD radiology, SURG surgery
§Fleiss’s kappa
For both main and first-order subcategories, the individual two-rater IORs between each of the six observer ratings and the reference classification were substantial for the two attendings (radiology and surgery; kappa = 0.79 and 0.74, respectively) and the radiology resident (kappa = 0.79). They were moderate for the surgery resident (kappa = 0.58) and interns of both specialties (kappa = 0.43 and 0.52, respectively).
By general level of experience, the two-rater IORs were moderate for attendings (kappa = 0.60 and 0.41) and residents (kappa = 0.55 and 0.42), but only fair for interns (kappa = 0.33 and 0.27), both for the main and first-order subcategories. Kappa values were consistently higher for the main categories.
By level of experience and specialty, the two-rater IORs were only fair whenever one of the raters was an intern, both for the main (kappa = 0.37–0.40) and first-order subcategories (kappa = 0.28–0.37). Again, kappa values were consistently higher for the main categories. For the attending-resident pairs, the IORs were substantial for radiology (kappa = 0.70) and moderate for surgery (kappa = 0.47) for the main categories but decreased to moderate (kappa = 0.56) and fair (kappa = 0.31), respectively, for the first-order subcategories. Table 4 summarizes all two-rater kappa values.
Table 4
Two-rater interobserver reliabilities
 
Observed agreement (%)
Expected agreement (%)
Kappa§
Standard error
p
Tile main categories (A, B, C)
  REF—RAD attending
87.92
41.46
0.7937
0.0454
< 0.001
  REF—RAD resident
87.71
42.71
0.7855
0.0459
< 0.001
  REF—RAD intern
63.97
36.91
0.4289
0.0428
< 0.001
  REF—SURG attending
85.29
43.47
0.7399
0.0459
< 0.001
  REF—SURG resident
76.05
43.41
0.5768
0.0440
< 0.001
  REF—SURG intern
71.53
40.37
0.5226
0.0429
< 0.001
  RAD—SURG attendings
76.58
41.93
0.5966
0.0451
< 0.001
  RAD—SURG residents
74.58
44.09
0.5454
0.0449
< 0.001
  RAD—SURG interns
56.83
35.76
0.3280
0.0416
< 0.001
  RAD attending—resident
82.56
41.18
0.7036
0.0452
< 0.001
  RAD intern—attending
61.97
36.75
0.3988
0.0435
< 0.001
  RAD resident—intern
62.39
37.21
0.4011
0.0433
< 0.001
  SURG attending—resident
70.69
44.26
0.4742
0.0438
< 0.001
  SURG intern—attending
64.60
40.63
0.4038
0.0423
< 0.001
  SURG resident—intern
58.93
35.26
0.3656
0.0363
< 0.001
Tile first-order subcategories (A1–3, B1–3, C1–3)
  REF—RAD attending
76.55
23.61
0.6931
0.0296
< 0.001
  REF—RAD resident
74.08
23.77
0.6599
0.0299
< 0.001
  REF—RAD intern
52.73
18.96
0.4167
0.0259
< 0.001
  REF—SURG attending
70.55
23.33
0.6158
0.0291
<0.001
  REF—SURG resident
57.23
21.58
0.4546
0.0271
< 0.001
  REF—SURG intern
58.03
24.50
0.4441
0.0288
< 0.001
  RAD—SURG attendings
54.62
22.95
0.4111
0.0283
< 0.001
  RAD—SURG residents
54.75
22.55
0.4157
0.0279
< 0.001
  RAD—SURG interns
40.38
18.34
0.2699
0.0240
< 0.001
  RAD attending—resident
65.84
22.97
0.5566
0.0287
< 0.001
  RAD intern—attending
46.60
18.41
0.3455
0.0252
< 0.001
  RAD resident—intern
49.79
19.96
0.3727
0.0269
< 0.001
  SURG attending—resident
45.97
21.74
0.3096
0.0270
< 0.001
  SURG intern—attending
48.45
23.60
0.3252
0.0275
< 0.001
  SURG resident—intern
41.39
18.33
0.2823
0.0231
< 0.001
RAD Radiology, REF Reference classification, SURG Surgery
§Cohen’s kappa
The agreement on the 50 randomly chosen control cases between the designated raters and their peers with a comparable level of expertise ranged from moderate to almost perfect (kappa = 0.57–0.81) (Supplementary Table 2).
The overall 30-day mortality rate of the study cohort was 15% (36/238). Based on the reference classification by the three experts, none of the main Tile categories (A, B, C) of pelvic fractures was associated with mortality (p = 0.06). However, when based on the classification ratings of each of the six observers separately, an association of Tile C fracture types with mortality was observed for two out of six raters. Table 5 summarizes the association of main Tile categories of pelvic fractures with 30-day mortality for the reference and each rater.
Table 5
30-day mortality by Tile main pelvic fracture categories and observers
 
Tile A, n (%)
Tile B, n (%)
Tile C, n (%)
p§
All
Alive
Dead
All
Alive
Dead
All
Alive
Dead
Reference
54
48 (89)
6 (11)
82
74 (90)
8 (10)
102
80 (78)
22 (22)
0.06
Observer 1
48
43 (90)
5 (10)
83
76 (92)
7 (8)
107
83 (78)
24 (22)
0.02
Observer 2
59
54 (92)
5 (8)
35
31 (89)
4 (11)
144
117 (81)
27 (19)
0.14
Observer 3
64
57 (89)
7 (11)
127
106 (83)
21 (17)
47
39 (83)
8 (17)
0.55
Observer 4
62
55 (89)
7 (11)
95
82 (86)
13 (14)
81
65 (80)
16 (20)
0.33
Observer 5
56
49 (88)
7 (12)
75
64 (85)
11 (15)
107
89 (83)
18 (17)
0.76
Observer 6
109
96 (88)
13 (12)
52
48 (92)
4 (8)
77
58 (75)
19 (25)
0.01
§Pearson’s chi-squared test was used to measure the association between mortality and Tile categories (A, B, C)

Discussion

The results of this study show that the overall combined IORs for the Tile pelvic fracture classification system using CT alone are moderate for the three main categories and fair for the nine first-order subcategories. Radiologists had a higher combined IOR (moderate) than surgeons (fair), but only for the three main categories. The IORs of the attendings from both specialties and the radiology resident were substantial, but only moderate for the other raters. These findings suggest an improvement of IOR with increasing level of experience and radiological specialization. When taking the classifications by each rater individually and relating them to mortality, a significant association was observed in two out of six cases, showing the potential influence of IOR on study results, conclusions, and potential implications for clinical decision-making, management algorithms, and recommendations.
For any imaging-based classification system to be useful, there should be a high level of inter- and intraobserver agreement. This has important implications for communication in research (comparability of study results) and, in consequence, clinical activities (classification-based outcome prediction or management guidelines). The importance of reliably linking imaging findings with outcomes in musculoskeletal radiology studies has been recently highlighted by Tagliafico et al [44]. Several classification systems for pelvic fractures have been proposed in the past [9, 1115, 18]. Only four studies [3538] assessing the IORs of the Tile [14, 15] and other classification systems [13, 18] have been published so far. To our knowledge, the present study is the largest to date on the IOR of the Tile pelvic fracture classification, allowing for a statistically sound evaluation of the first-order subcategory. It is also the first to include not only surgeons but also radiologists with different levels of experience among the raters.
Koo et al [35] were the first to evaluate the Tile and the Young-Burgess (YB) [18] classification systems by assessing IORs based on the interpretation of plain radiographs first and then comparing them with IORs based on the ratings of CT scans. All six observers were orthopedic traumatologists with different levels of expertise (pelvic/acetabular specialists, orthopedic traumatologists, and orthopedic trainees). Although only 30 patients were included in their study, subcategories were also assessed and results reported. The IORs for the Tile system pre- (kappa = 0.30) and post-CT (kappa = 0.33) were only fair, mainly due to the poor agreement among raters who were not pelvic/acetabular specialists. In line with our findings, advanced observer experience increased the IOR (from kappa = 0.07 to kappa = 0.84). One of the main clinically relevant findings in their study was that CT, compared with plain radiographs alone, improved the reliability of fracture stability assessment from moderate to almost perfect. Furey et al [36], in addition to IOR, also assessed the intraobserver reliability of both the Tile and YB systems. Their study, conducted at the center where the YB classification was designed, was based on plain radiographs and CTs for each fracture and included 89 patients and 5 observers (all experienced orthopedic trauma surgeons). Only the three main Tile categories were evaluated. Moderate IORs were found for both the Tile (kappa = 0.47) and YB (kappa = 0.46) classifications. Intraobserver reliabilities were only moderate for the Tile (kappa = 0.47), but substantial for the YB (kappa = 0.72) main classifications. Gabbe et al [37] rated 100 pre-interventional (no PCCDs or external fixators placed) pelvic CTs and plain radiographs (anteroposterior view only) by three experienced orthopedic surgeons (over 52 years of combined experience in managing pelvic fractures) from different Australian level 1 trauma centers. The authors found only slight IORs for both the Tile (kappa = 0.10–0.17) and YB (kappa = 0.17–0.19) main classifications, insufficient for clinical or research purposes according to their conclusion. Berger-Groch et al [38] recently published a study including 154 patients with pelvic fractures. Only CT images were interpreted by four observers (two senior orthopedic surgeons, one resident in training, and one medical student). Inter- and intraobserver reliabilities were assessed for the Tile, YB, and Rommens [13] classification systems. The overall IORs, expressed as intraclass correlation coefficients [45], were fair for the Tile (0.55) and the other classification systems and were strongly dependent on rater experience.
There may be several causes for the only slight to moderate overall IORs of the Tile classification system in the present and previous studies. One explanation may be the weight of disagreements among inexperienced raters, decreasing the combined IORs, despite substantial to almost perfect IORs among experienced orthopedic traumatologists. This could be observed in both studies that included raters with different levels of training, showing an improvement of IOR with increasing rater experience. However, one of the two studies with exclusively experienced raters also showed only moderate inter- and intraobserver reliabilities for the Tile classification system. Interestingly, the intraobserver reliability in that study was substantial for the YB system, potentially attributable to the fact that the raters routinely worked with the YB classification, and not with the Tile system [36]. Inter- and intraobserver reliabilities may therefore also depend on the regularity with which any system is applied by a given observer. The second study with only experienced observers found an only slight IOR of the Tile system. The presence of a greater number of more complex Tile type B and C fractures compared with the other previously published studies may explain the only slight IORs in their series [37]. However, the higher, moderate overall IORs in the present patient cohort, despite the highest rate of Type B and C fractures among all studies, do not support this hypothesis.

Limitations and strengths

Our study has several limitations. Firstly, patients with PCCDs in place while undergoing CT (63%) were included in the present study. It has been shown previously that the presence of PCCDs may lead to misinterpretation of the fracture pattern and thus have an influence on fracture classification [4648] and assessment of pelvic ring stability [49]. However, given the widespread use of PCCDs in the prehospital setting [50], this situation is now frequently encountered and represents clinical conditions under which fracture classifications have to occur. Secondly, as highlighted by Gabbe et al in their study [37], attributing mortality to any particular pelvic fracture type of the Tile classification based on CT is problematic, since the most severely injured patients presenting with hemodynamic instability and the highest mortality frequently do not undergo CT imaging. Therefore, the association of CT-based pelvic fracture type with mortality must be interpreted with caution. Thirdly, since it is routinely used at our center, we only assessed the Tile and no other classification system, unlike all other studies [3538]. As suggested by the results of Furey et al [36], who observed better intraobserver reliabilities for the system routinely used at their hospital, we think there would have been a bias in the results for all not routinely used classification systems. Furthermore, unlike in three of the four existing studies [35, 36, 51], we only assessed IORs for CTs and not for plain radiographs. The current clinical practice no longer includes the three plain radiographical views for which the Tile classification was initially developed [52]. In our center, only plain radiographs (anteroposterior view) of the pelvis are obtained for hemodynamically unstable trauma patients. Hemodynamically stable trauma patients undergo a routine contrast-enhanced whole-body CT.
The present study is the first to include radiologists among the raters, and the largest so far assessing IORs of the Tile classification system, allowing for statistically appropriate evaluation of its first-order subcategories. Second-order subcategories were not assessed for IOR in the present study. A statistically appropriate analysis would have required the inclusion of 1352 cases. Given the decrease in IOR from moderate to fair from the main to the first-order subcategories, we believe that a second-order subcategory IOR below, or at best equal to fair, can be expected. Therefore, the extension of the observation period or inclusion of other centers to reach the required case number was considered excessive.

Conclusion

Similar to the results of previous studies, the overall IOR of the Tile classification system is only fair (nine first-order subcategories) to moderate (three main categories). It depends not only on the level of experience of the observers, but it also seems to be better among radiologists than surgeons. However, even among radiologists, misclassification of pelvic fractures by the least experienced, likely to occur in emergency radiology departments and particularly during night shifts, may have important implications in clinical decision-making and management of severely injured patients. In research settings, misclassification may lead to erroneous study results and conclusions, with subsequent inappropriate translation into clinical management algorithms. This may be avoided by using only classification ratings from experienced observers.

Acknowledgments

The authors thank Anne Huguenin, MD, Anne Gallot-Lavallée, MD, Sylvain Eminian, MD, and Olivier Borens, MD, for their generous contribution to this work.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Tobias Zingg.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.
Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in “Association of pelvic fracture patterns, pelvic binder use and arterial angio-embolization with transfusion requirements and mortality rates; a 7-year retrospective cohort study” by Agri et al (https://​doi.​org/​10.​1186/​s12893-017-0299-6).

Methodology

• retrospective
• observational
• single center
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Hauschild O, Strohm PC, Culemann U et al (2008) Mortality in patients with pelvic fractures: results from the German pelvic injury register. J Trauma 64:449–455PubMed Hauschild O, Strohm PC, Culemann U et al (2008) Mortality in patients with pelvic fractures: results from the German pelvic injury register. J Trauma 64:449–455PubMed
2.
Zurück zum Zitat Balogh Z, King KL, Mackay P et al (2007) The epidemiology of pelvic ring fractures: a population-based study. J Trauma 63:1066–1073PubMed Balogh Z, King KL, Mackay P et al (2007) The epidemiology of pelvic ring fractures: a population-based study. J Trauma 63:1066–1073PubMed
3.
Zurück zum Zitat Yoshihara H, Yoneoka D (2014) Demographic epidemiology of unstable pelvic fracture in the United States from 2000 to 2009: trends and in-hospital mortality. J Trauma Acute Care Surg 76:380–385PubMedCrossRef Yoshihara H, Yoneoka D (2014) Demographic epidemiology of unstable pelvic fracture in the United States from 2000 to 2009: trends and in-hospital mortality. J Trauma Acute Care Surg 76:380–385PubMedCrossRef
4.
Zurück zum Zitat Hermans E, Biert J, Edwards MJR (2017) Epidemiology of pelvic ring fractures in a level 1 trauma center in the Netherlands. Hip Pelvis 29:253–261PubMedPubMedCentralCrossRef Hermans E, Biert J, Edwards MJR (2017) Epidemiology of pelvic ring fractures in a level 1 trauma center in the Netherlands. Hip Pelvis 29:253–261PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Gabbe BJ, de Steiger R, Esser M, Bucknill A, Russ MK, Cameron PA (2011) Predictors of mortality following severe pelvic ring fracture: results of a population-based study. Injury 42:985–991PubMedCrossRef Gabbe BJ, de Steiger R, Esser M, Bucknill A, Russ MK, Cameron PA (2011) Predictors of mortality following severe pelvic ring fracture: results of a population-based study. Injury 42:985–991PubMedCrossRef
6.
Zurück zum Zitat White CE, Hsu JR, Holcomb JB (2009) Haemodynamically unstable pelvic fractures. Injury 40:1023–1030PubMedCrossRef White CE, Hsu JR, Holcomb JB (2009) Haemodynamically unstable pelvic fractures. Injury 40:1023–1030PubMedCrossRef
7.
Zurück zum Zitat Dreizin D, Bodanapally U, Boscak A et al (2018) CT prediction model for major arterial injury after blunt pelvic ring disruption. Radiology 287:1061–1069PubMedCrossRef Dreizin D, Bodanapally U, Boscak A et al (2018) CT prediction model for major arterial injury after blunt pelvic ring disruption. Radiology 287:1061–1069PubMedCrossRef
8.
9.
Zurück zum Zitat Dalal SA, Burgess AR, Siegel JH et al (1989) Pelvic fracture in multiple trauma: classification by mechanism is key to pattern of organ injury, resuscitative requirements, and outcome. J Trauma 29:981–1000PubMedCrossRef Dalal SA, Burgess AR, Siegel JH et al (1989) Pelvic fracture in multiple trauma: classification by mechanism is key to pattern of organ injury, resuscitative requirements, and outcome. J Trauma 29:981–1000PubMedCrossRef
10.
Zurück zum Zitat Burgess AR, Eastridge BJ, Young JW et al (1990) Pelvic ring disruptions: effective classification system and treatment protocols. J Trauma 30:848–856PubMedCrossRef Burgess AR, Eastridge BJ, Young JW et al (1990) Pelvic ring disruptions: effective classification system and treatment protocols. J Trauma 30:848–856PubMedCrossRef
11.
Zurück zum Zitat Isler B, Ganz R (1990) Classification of pelvic girdle injuries. Unfallchirurg 93:289–302PubMed Isler B, Ganz R (1990) Classification of pelvic girdle injuries. Unfallchirurg 93:289–302PubMed
12.
Zurück zum Zitat Mayr E, Braun W, Ruter A (1994) Is there a classification of pelvic ring injuries, which takes the trauma mechanism, morphology and stability relations into consideration and thereby gives references for subsequent therapy? Zentralbl Chir 119:597–607PubMed Mayr E, Braun W, Ruter A (1994) Is there a classification of pelvic ring injuries, which takes the trauma mechanism, morphology and stability relations into consideration and thereby gives references for subsequent therapy? Zentralbl Chir 119:597–607PubMed
13.
Zurück zum Zitat Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44:1733–1744PubMedCrossRef Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44:1733–1744PubMedCrossRef
14.
Zurück zum Zitat Pennal GF, Tile M, Waddell JP, Garside H (1980) Pelvic disruption: assessment and classification. Clin Orthop Relat Res:12–21 Pennal GF, Tile M, Waddell JP, Garside H (1980) Pelvic disruption: assessment and classification. Clin Orthop Relat Res:12–21
15.
Zurück zum Zitat Tile M, Pennal GF (1980) Pelvic disruption: principles of management. Clin Orthop Relat Res:56–64 Tile M, Pennal GF (1980) Pelvic disruption: principles of management. Clin Orthop Relat Res:56–64
16.
Zurück zum Zitat Marsh JL, Slongo TF, Agel J et al (2007) Fracture and dislocation classification compendium - 2007: orthopaedic trauma association classification, database and outcomes committee. J Orthop Trauma 21:S59–S63CrossRef Marsh JL, Slongo TF, Agel J et al (2007) Fracture and dislocation classification compendium - 2007: orthopaedic trauma association classification, database and outcomes committee. J Orthop Trauma 21:S59–S63CrossRef
17.
Zurück zum Zitat Theumann NH, Verdon JP, Mouhsine E, Denys A, Schnyder P, Portier F (2002) Traumatic injuries: imaging of pelvic fractures. Eur Radiol 12:1312–1330PubMedCrossRef Theumann NH, Verdon JP, Mouhsine E, Denys A, Schnyder P, Portier F (2002) Traumatic injuries: imaging of pelvic fractures. Eur Radiol 12:1312–1330PubMedCrossRef
18.
Zurück zum Zitat Young JW, Burgess AR, Brumback RJ, Poka A (1986) Pelvic fractures: value of plain radiography in early assessment and management. Radiology 160:445–451PubMedCrossRef Young JW, Burgess AR, Brumback RJ, Poka A (1986) Pelvic fractures: value of plain radiography in early assessment and management. Radiology 160:445–451PubMedCrossRef
19.
Zurück zum Zitat Scheyerer MJ, Osterhoff G, Wehrle S, Wanner GA, Simmen HP, Werner CM (2012) Detection of posterior pelvic injuries in fractures of the pubic rami. Injury 43:1326–1329PubMedCrossRef Scheyerer MJ, Osterhoff G, Wehrle S, Wanner GA, Simmen HP, Werner CM (2012) Detection of posterior pelvic injuries in fractures of the pubic rami. Injury 43:1326–1329PubMedCrossRef
20.
Zurück zum Zitat Schicho A, Schmidt SA, Seeber K, Olivier A, Richter PH, Gebhard F (2016) Pelvic X-ray misses out on detecting sacral fractures in the elderly - importance of CT imaging in blunt pelvic trauma. Injury 47:707–710PubMedCrossRef Schicho A, Schmidt SA, Seeber K, Olivier A, Richter PH, Gebhard F (2016) Pelvic X-ray misses out on detecting sacral fractures in the elderly - importance of CT imaging in blunt pelvic trauma. Injury 47:707–710PubMedCrossRef
21.
Zurück zum Zitat Berg EE, Chebuhar C, Bell RM (1996) Pelvic trauma imaging: a blinded comparison of computed tomography and roentgenograms. J Trauma 41:994–998PubMedCrossRef Berg EE, Chebuhar C, Bell RM (1996) Pelvic trauma imaging: a blinded comparison of computed tomography and roentgenograms. J Trauma 41:994–998PubMedCrossRef
22.
Zurück zum Zitat Verbeek DOF, Zijlstra IAJ, van der Leij C, Ponsen KJ, van Delden OM, Goslings JC (2014) Predicting the need for abdominal hemorrhage control in major pelvic fracture patients: the importance of quantifying the amount of free fluid. J Trauma Acute Care Surg 76:1259–1263PubMedCrossRef Verbeek DOF, Zijlstra IAJ, van der Leij C, Ponsen KJ, van Delden OM, Goslings JC (2014) Predicting the need for abdominal hemorrhage control in major pelvic fracture patients: the importance of quantifying the amount of free fluid. J Trauma Acute Care Surg 76:1259–1263PubMedCrossRef
23.
Zurück zum Zitat Treskes K, Saltzherr TP, Edwards MJR et al (2020) Refining the criteria for immediate total-body CT after severe trauma. Eur Radiol 30:2955–2963PubMedPubMedCentralCrossRef Treskes K, Saltzherr TP, Edwards MJR et al (2020) Refining the criteria for immediate total-body CT after severe trauma. Eur Radiol 30:2955–2963PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Rommens PM, Hessmann MH (2002) Staged reconstruction of pelvic ring disruption: differences in morbidity, mortality, radiologic results, and functional outcomes between B1, B2/B3, and C-type lesions. J Orthop Trauma 16:92–98PubMedCrossRef Rommens PM, Hessmann MH (2002) Staged reconstruction of pelvic ring disruption: differences in morbidity, mortality, radiologic results, and functional outcomes between B1, B2/B3, and C-type lesions. J Orthop Trauma 16:92–98PubMedCrossRef
25.
Zurück zum Zitat O’Sullivan RE, White TO, Keating JF (2005) Major pelvic fractures: identification of patients at high risk. J Bone Joint Surg Br 87:530–533PubMedCrossRef O’Sullivan RE, White TO, Keating JF (2005) Major pelvic fractures: identification of patients at high risk. J Bone Joint Surg Br 87:530–533PubMedCrossRef
26.
Zurück zum Zitat Lunsjo K, Tadros A, Hauggaard A, Blomgren R, Kopke J, Abu-Zidan FM (2007) Associated injuries and not fracture instability predict mortality in pelvic fractures: a prospective study of 100 patients. J Trauma 62:687–691PubMed Lunsjo K, Tadros A, Hauggaard A, Blomgren R, Kopke J, Abu-Zidan FM (2007) Associated injuries and not fracture instability predict mortality in pelvic fractures: a prospective study of 100 patients. J Trauma 62:687–691PubMed
27.
Zurück zum Zitat Anandakumar V, Hussein FK, Varuun B, Zhu R (2013) Predictive parameters for angiography and embolization in the bleeding pelvic fracture. J Clin Orthop Trauma 4:70–74PubMedPubMedCentralCrossRef Anandakumar V, Hussein FK, Varuun B, Zhu R (2013) Predictive parameters for angiography and embolization in the bleeding pelvic fracture. J Clin Orthop Trauma 4:70–74PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Osterhoff G, Scheyerer MJ, Fritz Y et al (2014) Comparing the predictive value of the pelvic ring injury classification systems by Tile and by Young and Burgess. Injury 45:742–747PubMedCrossRef Osterhoff G, Scheyerer MJ, Fritz Y et al (2014) Comparing the predictive value of the pelvic ring injury classification systems by Tile and by Young and Burgess. Injury 45:742–747PubMedCrossRef
30.
Zurück zum Zitat Agri F, Bourgeat M, Becce F et al (2017) Association of pelvic fracture patterns, pelvic binder use and arterial angio-embolization with transfusion requirements and mortality rates; a 7-year retrospective cohort study. BMC Surg 17:104PubMedPubMedCentralCrossRef Agri F, Bourgeat M, Becce F et al (2017) Association of pelvic fracture patterns, pelvic binder use and arterial angio-embolization with transfusion requirements and mortality rates; a 7-year retrospective cohort study. BMC Surg 17:104PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Eastridge BJ, Starr A, Minei JP, O’Keefe GE, Scalea TM (2002) The importance of fracture pattern in guiding therapeutic decision-making in patients with hemorrhagic shock and pelvic ring disruptions. J Trauma 53:446–450PubMedCrossRef Eastridge BJ, Starr A, Minei JP, O’Keefe GE, Scalea TM (2002) The importance of fracture pattern in guiding therapeutic decision-making in patients with hemorrhagic shock and pelvic ring disruptions. J Trauma 53:446–450PubMedCrossRef
32.
Zurück zum Zitat Manson T, O'Toole RV, Whitney A, Duggan B, Sciadini M, Nascone J (2010) Young-Burgess classification of pelvic ring fractures: does it predict mortality, transfusion requirements, and non-orthopaedic injuries? J Orthop Trauma 24:603–609PubMedCrossRef Manson T, O'Toole RV, Whitney A, Duggan B, Sciadini M, Nascone J (2010) Young-Burgess classification of pelvic ring fractures: does it predict mortality, transfusion requirements, and non-orthopaedic injuries? J Orthop Trauma 24:603–609PubMedCrossRef
33.
Zurück zum Zitat Karadimas EJ, Nicolson T, Kakagia DD, Matthews SJ, Richards PJ, Giannoudis PV (2011) Angiographic embolisation of pelvic ring injuries. Treatment algorithm and review of the literature. Int Orthop 35:1381–1390PubMedPubMedCentralCrossRef Karadimas EJ, Nicolson T, Kakagia DD, Matthews SJ, Richards PJ, Giannoudis PV (2011) Angiographic embolisation of pelvic ring injuries. Treatment algorithm and review of the literature. Int Orthop 35:1381–1390PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Costantini TW, Coimbra R, Holcomb JB et al (2017) Pelvic fracture pattern predicts the need for hemorrhage control intervention—results of an AAST multi-institutional study. J Trauma Acute Care Surg 82:1030–1038PubMedCrossRef Costantini TW, Coimbra R, Holcomb JB et al (2017) Pelvic fracture pattern predicts the need for hemorrhage control intervention—results of an AAST multi-institutional study. J Trauma Acute Care Surg 82:1030–1038PubMedCrossRef
35.
Zurück zum Zitat Koo H, Leveridge M, Thompson C et al (2008) Interobserver reliability of the Young-Burgess and Tile classification systems for fractures of the pelvic ring. J Orthop Trauma 22:379–384PubMedCrossRef Koo H, Leveridge M, Thompson C et al (2008) Interobserver reliability of the Young-Burgess and Tile classification systems for fractures of the pelvic ring. J Orthop Trauma 22:379–384PubMedCrossRef
36.
Zurück zum Zitat Furey AJ, O’Toole RV, Nascone JW, Sciadini MF, Copeland CE, Turen C (2009) Classification of pelvic fractures: analysis of inter- and intraobserver variability using the Young-Burgess and Tile classification systems. Orthopedics 32:401PubMed Furey AJ, O’Toole RV, Nascone JW, Sciadini MF, Copeland CE, Turen C (2009) Classification of pelvic fractures: analysis of inter- and intraobserver variability using the Young-Burgess and Tile classification systems. Orthopedics 32:401PubMed
37.
Zurück zum Zitat Gabbe BJ, Esser M, Bucknill A et al (2013) The imaging and classification of severe pelvic ring fractures: experiences from two level 1 trauma centres. Bone Joint J 95-B:1396–1401PubMedCrossRef Gabbe BJ, Esser M, Bucknill A et al (2013) The imaging and classification of severe pelvic ring fractures: experiences from two level 1 trauma centres. Bone Joint J 95-B:1396–1401PubMedCrossRef
38.
Zurück zum Zitat Berger-Groch J, Thiesen DM, Grossterlinden LG, Schaewel J, Fensky F, Hartel MJ (2019) The intra- and interobserver reliability of the Tile AO, the Young and Burgess, and FFP classifications in pelvic trauma. Arch Orthop Trauma Surg 139:645–650PubMedCrossRef Berger-Groch J, Thiesen DM, Grossterlinden LG, Schaewel J, Fensky F, Hartel MJ (2019) The intra- and interobserver reliability of the Tile AO, the Young and Burgess, and FFP classifications in pelvic trauma. Arch Orthop Trauma Surg 139:645–650PubMedCrossRef
39.
Zurück zum Zitat von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457CrossRef
40.
Zurück zum Zitat Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMed Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMed
41.
Zurück zum Zitat Cicchetti DV (1981) Testing the normal approximation and minimal sample size requirements of weighted kappa when the number of categories is large. Appl Psychol Measur 5:101–104CrossRef Cicchetti DV (1981) Testing the normal approximation and minimal sample size requirements of weighted kappa when the number of categories is large. Appl Psychol Measur 5:101–104CrossRef
42.
Zurück zum Zitat Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRef Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRef
43.
Zurück zum Zitat Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382CrossRef Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382CrossRef
44.
Zurück zum Zitat Tagliafico AS, Wilson D, Sconfienza LM, European Society of Musculoskeletal Radiology Research Committee (2019) Encouraging MSK imaging research towards clinical impact is a necessity: opinion paper of the European Society of Musculoskeletal Radiology (ESSR). Eur Radiol 29:3410–3413PubMedCrossRef Tagliafico AS, Wilson D, Sconfienza LM, European Society of Musculoskeletal Radiology Research Committee (2019) Encouraging MSK imaging research towards clinical impact is a necessity: opinion paper of the European Society of Musculoskeletal Radiology (ESSR). Eur Radiol 29:3410–3413PubMedCrossRef
45.
Zurück zum Zitat Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef
46.
Zurück zum Zitat Chesser TJ, Cross AM, Ward AJ (2012) The use of pelvic binders in the emergent management of potential pelvic trauma. Injury 43:667–669PubMedCrossRef Chesser TJ, Cross AM, Ward AJ (2012) The use of pelvic binders in the emergent management of potential pelvic trauma. Injury 43:667–669PubMedCrossRef
47.
Zurück zum Zitat Swartz J, Vaidya R, Hudson I, Oliphant B, Tonnos F (2016) Effect of pelvic binder placement on OTA classification of pelvic ring injuries using computed tomography. Does it mask the injury? J Orthop Trauma 30:325–330PubMed Swartz J, Vaidya R, Hudson I, Oliphant B, Tonnos F (2016) Effect of pelvic binder placement on OTA classification of pelvic ring injuries using computed tomography. Does it mask the injury? J Orthop Trauma 30:325–330PubMed
48.
Zurück zum Zitat Dreizin D, Bodanapally U, Mascarenhas D et al (2018) Quantitative MDCT assessment of binder effects after pelvic ring disruptions using segmented pelvic haematoma volumes and multiplanar caliper measurements. Eur Radiol 28:3953–3962PubMedCrossRef Dreizin D, Bodanapally U, Mascarenhas D et al (2018) Quantitative MDCT assessment of binder effects after pelvic ring disruptions using segmented pelvic haematoma volumes and multiplanar caliper measurements. Eur Radiol 28:3953–3962PubMedCrossRef
49.
Zurück zum Zitat Dreizin D, Nascone J, Davis DL et al (2016) Can MDCT unmask instability in binder-stabilized pelvic ring disruptions? AJR Am J Roentgenol 207:1244–1251PubMedCrossRef Dreizin D, Nascone J, Davis DL et al (2016) Can MDCT unmask instability in binder-stabilized pelvic ring disruptions? AJR Am J Roentgenol 207:1244–1251PubMedCrossRef
50.
Zurück zum Zitat Zingg T, Piaget-Rossel R, Steppacher J et al (2020) Prehospital use of pelvic circumferential compression devices in a physician-based emergency medical service: a 6-year retrospective cohort study. Sci Rep 10:5106PubMedPubMedCentralCrossRef Zingg T, Piaget-Rossel R, Steppacher J et al (2020) Prehospital use of pelvic circumferential compression devices in a physician-based emergency medical service: a 6-year retrospective cohort study. Sci Rep 10:5106PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Crozier MS, Ting HY, Boone DC et al (2015) Use of human patient simulation and validation of the team situation awareness global assessment technique (TSAGAT): a multidisciplinary team assessment tool in trauma education. J Surg Educ 72:156–163PubMedCrossRef Crozier MS, Ting HY, Boone DC et al (2015) Use of human patient simulation and validation of the team situation awareness global assessment technique (TSAGAT): a multidisciplinary team assessment tool in trauma education. J Surg Educ 72:156–163PubMedCrossRef
52.
Zurück zum Zitat Soto JR, Zhou C, Hu D, Arazoza AC, Dunn E, Sladek P (2015) Skip and save: utility of pelvic x-rays in the initial evaluation of blunt trauma patients. Am J Surg 210:1076–1081PubMedCrossRef Soto JR, Zhou C, Hu D, Arazoza AC, Dunn E, Sladek P (2015) Skip and save: utility of pelvic x-rays in the initial evaluation of blunt trauma patients. Am J Surg 210:1076–1081PubMedCrossRef
Metadaten
Titel
Interobserver reliability of the Tile classification system for pelvic fractures among radiologists and surgeons
verfasst von
Tobias Zingg
Emilie Uldry
Patrick Omoumi
Daniel Clerc
Arnaud Monier
Basile Pache
Mohammed Moshebah
Fabio Butti
Fabio Becce
Publikationsdatum
08.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 3/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-07247-0

Weitere Artikel der Ausgabe 3/2021

European Radiology 3/2021 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.