Skip to main content
Erschienen in: Strahlentherapie und Onkologie 10/2013

01.10.2013 | Original article

PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs

verfasst von: M. Rodriguez, J. Sempau, L. Brualla

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 10/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used.

Methods

PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard.

Results

A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86 × 3.00 × 1.86 mm3 voxels with an average 2 % standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h—excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once.

Conclusion

PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.
Literatur
1.
Zurück zum Zitat Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 100:31–46CrossRef Baró J, Sempau J, Fernández-Varea JM, Salvat F (1995) PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods B 100:31–46CrossRef
2.
Zurück zum Zitat Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef Brualla L, Palanco-Zamora R, Steuhl KP et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498PubMedCrossRef
3.
Zurück zum Zitat Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481PubMedCrossRef
4.
Zurück zum Zitat Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149PubMedCrossRef
5.
Zurück zum Zitat Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Rad Phys Chem 79:929–932CrossRef Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Rad Phys Chem 79:929–932CrossRef
6.
Zurück zum Zitat Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedCrossRef Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174PubMedCrossRef
7.
Zurück zum Zitat Capote R, Jeraj R, Ma CM et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. Vienna, Austria: International Atomic Energy Agency, Nuclear Data Section Capote R, Jeraj R, Ma CM et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. Vienna, Austria: International Atomic Energy Agency, Nuclear Data Section
8.
Zurück zum Zitat Chetty I, Curran B, Cygler J, DeMarco J (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRef Chetty I, Curran B, Cygler J, DeMarco J (2007) Report of the AAPM Task Group No. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 34:4818–4853PubMedCrossRef
9.
Zurück zum Zitat Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483PubMedCrossRef Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L (2007) Monte Carlo based water/medium stopping power ratios for various ICRP and ICRU tissues. Phys Med Biol 52:6475–6483PubMedCrossRef
10.
Zurück zum Zitat Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRef Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–457PubMedCrossRef
11.
Zurück zum Zitat Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedCrossRef
12.
Zurück zum Zitat Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC—a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC—a high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574PubMedCrossRef
13.
Zurück zum Zitat Reynaert N, Vandermarck S, Schaart D et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686CrossRef Reynaert N, Vandermarck S, Schaart D et al (2007) Monte Carlo treatment planning for photon and electron beams. Rad Phys Chem 76:643–686CrossRef
14.
Zurück zum Zitat Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024PubMedCrossRef
15.
Zurück zum Zitat Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. Issy-les- Moulineaux, France: OECD Nuclear Energy Agency Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011—a code system for Monte Carlo simulation of electron and photon transport. Issy-les- Moulineaux, France: OECD Nuclear Energy Agency
16.
Zurück zum Zitat Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132:377–390CrossRef Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132:377–390CrossRef
17.
Zurück zum Zitat Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—application to far-from-axis fields. Med Phys 38:5887–5895PubMedCrossRef
18.
Zurück zum Zitat Sempau J, Sánchez-Reyes A, Salvat F et al (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRef Sempau J, Sánchez-Reyes A, Salvat F et al (2001) Monte Carlo simulation of electron beams from an accelerator head using PENELOPE. Phys Med Biol 46:1163–1186PubMedCrossRef
19.
Zurück zum Zitat Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291PubMedCrossRef
20.
Zurück zum Zitat Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129PubMedCrossRef
21.
Zurück zum Zitat Zee W van der, Hogenbirk A, Marck S van der (2005) ORANGE: a Monte Carlo dose engine for radiotherapy. Phys Med Biol 50:625–641PubMedCrossRef Zee W van der, Hogenbirk A, Marck S van der (2005) ORANGE: a Monte Carlo dose engine for radiotherapy. Phys Med Biol 50:625–641PubMedCrossRef
Metadaten
Titel
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
verfasst von
M. Rodriguez
J. Sempau
L. Brualla
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 10/2013
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0415-1

Weitere Artikel der Ausgabe 10/2013

Strahlentherapie und Onkologie 10/2013 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.