Skip to main content
Erschienen in: Experimental Brain Research 2/2003

01.11.2003 | Research Article

Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas

verfasst von: Jody C. Culham, Stacey L. Danckert, Joseph F. X. De Souza, Joseph S. Gati, Ravi S. Menon, Melvyn A. Goodale

Erschienen in: Experimental Brain Research | Ausgabe 2/2003

Einloggen, um Zugang zu erhalten

Abstract

Although both reaching and grasping require transporting the hand to the object location, only grasping also requires processing of object shape, size and orientation to preshape the hand. Behavioural and neuropsychological evidence suggests that the object processing required for grasping relies on different neural substrates from those mediating object recognition. Specifically, whereas object recognition is believed to rely on structures in the ventral (occipitotemporal) stream, object grasping appears to rely on structures in the dorsal (occipitoparietal) stream. We used functional magnetic resonance imaging (fMRI) to determine whether grasping (compared to reaching) produced activation in dorsal areas, ventral areas, or both. We found greater activity for grasping than reaching in several regions, including anterior intraparietal (AIP) cortex. We also performed a standard object perception localizer (comparing intact vs. scrambled 2D object images) in the same subjects to identify the lateral occipital complex (LOC), a ventral stream area believed to play a critical role in object recognition. Although LOC was activated by the objects presented on both grasping and reaching trials, there was no greater activity for grasping compared to reaching. These results suggest that dorsal areas, including AIP, but not ventral areas such as LOC, play a fundamental role in computing object properties during grasping.
Fußnoten
1
Preliminary results from this study have previously appeared in abstract form (Culham et al. 2001).
 
Literatur
Zurück zum Zitat Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548CrossRefPubMed Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548CrossRefPubMed
Zurück zum Zitat Battaglini PP, Muzur A, Galletti C, Skrap M, Brovelli A, Fattori P (2002) Effects of lesions to area V6A in monkeys. Exp Brain Res 144:419–422CrossRefPubMed Battaglini PP, Muzur A, Galletti C, Skrap M, Brovelli A, Fattori P (2002) Effects of lesions to area V6A in monkeys. Exp Brain Res 144:419–422CrossRefPubMed
Zurück zum Zitat Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund H-J (1998) Human anterior intraparietal area subserves prehension. Neurology 50:1253–1259PubMed Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund H-J (1998) Human anterior intraparietal area subserves prehension. Neurology 50:1253–1259PubMed
Zurück zum Zitat Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213PubMed Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213PubMed
Zurück zum Zitat Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106–114CrossRefPubMed Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106–114CrossRefPubMed
Zurück zum Zitat Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in the human brain. Neuron 31:317–328PubMed Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in the human brain. Neuron 31:317–328PubMed
Zurück zum Zitat Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484CrossRefPubMed Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484CrossRefPubMed
Zurück zum Zitat Connolly J, Andersen RA, Goodale MA (2003) fMRI evidence for a 'parietal reach region' in human brain. Exp Brain Res DOI 10.1007/s00221-003-1587-1 Connolly J, Andersen RA, Goodale MA (2003) fMRI evidence for a 'parietal reach region' in human brain. Exp Brain Res DOI 10.1007/s00221-003-1587-1
Zurück zum Zitat Culham J (in press) Human brain imaging reveals a parietal area specialized for grasping. In: Kanwisher N, Duncan J (eds) Attention and performance XX: functional neuroimaging of human cognition. Oxford University Press, Oxford Culham J (in press) Human brain imaging reveals a parietal area specialized for grasping. In: Kanwisher N, Duncan J (eds) Attention and performance XX: functional neuroimaging of human cognition. Oxford University Press, Oxford
Zurück zum Zitat Culham JC, DeSouza JFX, Woodward S, Kourtzi Z, Gati JS, Menon RS, Goodale MA (2001) Visually-guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. J Vision 1:194 Culham JC, DeSouza JFX, Woodward S, Kourtzi Z, Gati JS, Menon RS, Goodale MA (2001) Visually-guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. J Vision 1:194
Zurück zum Zitat DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMed DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840PubMed
Zurück zum Zitat Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536PubMed Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536PubMed
Zurück zum Zitat Faillenot I, Sakata H, Costes N, Decety J, Jeannerod M (1997a) Visual working memory for shape and 3D-orientation: a PET study. Neuroreport 8:859–862PubMed Faillenot I, Sakata H, Costes N, Decety J, Jeannerod M (1997a) Visual working memory for shape and 3D-orientation: a PET study. Neuroreport 8:859–862PubMed
Zurück zum Zitat Faillenot I, Toni I, Decety J, Gregoire MC, Jeannerod M (1997b) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7:77–85PubMed Faillenot I, Toni I, Decety J, Gregoire MC, Jeannerod M (1997b) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7:77–85PubMed
Zurück zum Zitat Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. Neuroimage 10:114–124CrossRefPubMed Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. Neuroimage 10:114–124CrossRefPubMed
Zurück zum Zitat Faillenot I, Sunaert S, Van Hecke P, Orban GA (2001) Orientation discrimination of objects and gratings compared: An fMRI study. Eur J Neurosci 13:585–596CrossRefPubMed Faillenot I, Sunaert S, Van Hecke P, Orban GA (2001) Orientation discrimination of objects and gratings compared: An fMRI study. Eur J Neurosci 13:585–596CrossRefPubMed
Zurück zum Zitat Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain 124:571–586PubMed Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain 124:571–586PubMed
Zurück zum Zitat Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709–722CrossRefPubMed Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709–722CrossRefPubMed
Zurück zum Zitat Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5:1525–1529PubMed Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5:1525–1529PubMed
Zurück zum Zitat Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed
Zurück zum Zitat Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156PubMed Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156PubMed
Zurück zum Zitat Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6:226–237PubMed Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6:226–237PubMed
Zurück zum Zitat Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35:173–184PubMed Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35:173–184PubMed
Zurück zum Zitat Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422CrossRefPubMed Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422CrossRefPubMed
Zurück zum Zitat Jakobson LS, Archibald YM, Carey DP, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29:803–809CrossRefPubMed Jakobson LS, Archibald YM, Carey DP, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29:803–809CrossRefPubMed
Zurück zum Zitat James TW, Culham JC, Humphrey GK, Milner AD, Goodale MA (in press) fMRI evidence for a neurological dissociation between perceiving objects and grasping them. Brain James TW, Culham JC, Humphrey GK, Milner AD, Goodale MA (in press) fMRI evidence for a neurological dissociation between perceiving objects and grasping them. Brain
Zurück zum Zitat Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale NJ, pp 153–168 Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale NJ, pp 153–168
Zurück zum Zitat Kawashima R, Naitoh E, Matsumura M, Itoh H, Ono S, Satoh K, Gotoh R, Koyama M, Inoue K, Yoshioka S, Fukuda H (1996) Topographic representation in human intraparietal sulcus of reaching and saccade. Neuroreport 7:1253–1256PubMed Kawashima R, Naitoh E, Matsumura M, Itoh H, Ono S, Satoh K, Gotoh R, Koyama M, Inoue K, Yoshioka S, Fukuda H (1996) Topographic representation in human intraparietal sulcus of reaching and saccade. Neuroreport 7:1253–1256PubMed
Zurück zum Zitat Kinoshita H, Oku N, Hashikawa K, Nishimura T (2000) Functional brain areas used for the lifting of objects using a precision grip: a PET study. Brain Res 857:119–130CrossRefPubMed Kinoshita H, Oku N, Hashikawa K, Nishimura T (2000) Functional brain areas used for the lifting of objects using a precision grip: a PET study. Brain Res 857:119–130CrossRefPubMed
Zurück zum Zitat Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20:3310–3318PubMed Kourtzi Z, Kanwisher N (2000) Cortical regions involved in perceiving object shape. J Neurosci 20:3310–3318PubMed
Zurück zum Zitat Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14:382–390CrossRefPubMed Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14:382–390CrossRefPubMed
Zurück zum Zitat Lawrence BM, Snyder LH (2002) Effector specific and non-specific activity in frontal eye fields. Soc Neurosci Abstr:622.628 Lawrence BM, Snyder LH (2002) Effector specific and non-specific activity in frontal eye fields. Soc Neurosci Abstr:622.628
Zurück zum Zitat Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RBH (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92:8135–8139PubMed Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RBH (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A 92:8135–8139PubMed
Zurück zum Zitat Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6:176–184CrossRefPubMed Malach R, Levy I, Hasson U (2002) The topography of high-order human object areas. Trends Cogn Sci 6:176–184CrossRefPubMed
Zurück zum Zitat Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298PubMed Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298PubMed
Zurück zum Zitat Matsumura M, Kawashima R, Naito E, Takahashi T, Satoh K, Yanagisawa T, Fukuda H (1996) Changes in rCBF during grasping in humans examined by PET. Neuroreport 7:749–752PubMed Matsumura M, Kawashima R, Naito E, Takahashi T, Satoh K, Yanagisawa T, Fukuda H (1996) Changes in rCBF during grasping in humans examined by PET. Neuroreport 7:749–752PubMed
Zurück zum Zitat Mecklinger A, Gruenewald C, Besson M, Magnie MN, Von Cramon DY (2002) Separable neuronal circuitries for manipulable and non-manipulable objects in working memory. Cereb Cortex 12:1115–1123CrossRefPubMed Mecklinger A, Gruenewald C, Besson M, Magnie MN, Von Cramon DY (2002) Separable neuronal circuitries for manipulable and non-manipulable objects in working memory. Cereb Cortex 12:1115–1123CrossRefPubMed
Zurück zum Zitat Muri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseiligny C (1996) Location of the human posterior eye fields with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448PubMed Muri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseiligny C (1996) Location of the human posterior eye fields with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448PubMed
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh handedness inventory. Neuropsychologia 9:97–113PubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh handedness inventory. Neuropsychologia 9:97–113PubMed
Zurück zum Zitat Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMed Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMed
Zurück zum Zitat Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507PubMed Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507PubMed
Zurück zum Zitat Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252PubMed Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252PubMed
Zurück zum Zitat Roland PE, O'Sullivan B, Kawashima R (1998) Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci U S A 95:3295–3300CrossRefPubMed Roland PE, O'Sullivan B, Kawashima R (1998) Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci U S A 95:3295–3300CrossRefPubMed
Zurück zum Zitat Sakata H, Taira M, Mine S, Murata A (1992) Hand-movement-related neurons of the posterior parietal cortex of the monkey: their role in the visual guidance of hand movements. In: Caminiti R, Johnson PB, Burnod Y (eds) Control of arm movement in space: neurophysiological and computational approaches. Springer, Heidelberg, pp 185–198 Sakata H, Taira M, Mine S, Murata A (1992) Hand-movement-related neurons of the posterior parietal cortex of the monkey: their role in the visual guidance of hand movements. In: Caminiti R, Johnson PB, Burnod Y (eds) Control of arm movement in space: neurophysiological and computational approaches. Springer, Heidelberg, pp 185–198
Zurück zum Zitat Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357PubMed Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357PubMed
Zurück zum Zitat Sakata H, Taira M, Kusunoki M, Murata A, Tsutsui K, Tanaka Y, Shein WN, Miyashita Y (1999) Neural representation of three-dimensional features of manipulation objects with stereopsis. Exp Brain Res 128:160–169CrossRefPubMed Sakata H, Taira M, Kusunoki M, Murata A, Tsutsui K, Tanaka Y, Shein WN, Miyashita Y (1999) Neural representation of three-dimensional features of manipulation objects with stereopsis. Exp Brain Res 128:160–169CrossRefPubMed
Zurück zum Zitat Shikata E, Tanaka Y, Nakamura H, Taira M, Sakata H (1996) Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. Neuroreport 7:2389–2394PubMed Shikata E, Tanaka Y, Nakamura H, Taira M, Sakata H (1996) Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. Neuroreport 7:2389–2394PubMed
Zurück zum Zitat Shikata E, Hamzel F, Glauche V, Knab R, Dettmers C, Weiller C, Buchel C (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: An event-related fMRI study. J Neurophysiol 85:1309–1314PubMed Shikata E, Hamzel F, Glauche V, Knab R, Dettmers C, Weiller C, Buchel C (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: An event-related fMRI study. J Neurophysiol 85:1309–1314PubMed
Zurück zum Zitat Steeves JKE, Humphrey GK, Culham JC, Menon RS, Milner AD, Goodale MA (submitted) Behavioral and neuroimaging evidence for a contribution of color information to scene recognition in a patient with impaired form recognition Steeves JKE, Humphrey GK, Culham JC, Menon RS, Milner AD, Goodale MA (submitted) Behavioral and neuroimaging evidence for a contribution of color information to scene recognition in a patient with impaired form recognition
Zurück zum Zitat Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36PubMed Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36PubMed
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York
Zurück zum Zitat Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:747–764PubMed Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:747–764PubMed
Metadaten
Titel
Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas
verfasst von
Jody C. Culham
Stacey L. Danckert
Joseph F. X. De Souza
Joseph S. Gati
Ravi S. Menon
Melvyn A. Goodale
Publikationsdatum
01.11.2003
Erschienen in
Experimental Brain Research / Ausgabe 2/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1591-5

Weitere Artikel der Ausgabe 2/2003

Experimental Brain Research 2/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.