Skip to main content
Erschienen in: Experimental Brain Research 4/2006

01.03.2006 | Research Article

Adaptation and generalization in acceleration-dependent force fields

verfasst von: Eun Jung Hwang, Maurice A. Smith, Reza Shadmehr

Erschienen in: Experimental Brain Research | Ausgabe 4/2006

Einloggen, um Zugang zu erhalten

Abstract

Any passive rigid inertial object that we hold in our hand, e.g., a tennis racquet, imposes a field of forces on the arm that depends on limb position, velocity, and acceleration. A fundamental characteristic of this field is that the forces due to acceleration and velocity are linearly separable in the intrinsic coordinates of the limb. In order to learn such dynamics with a collection of basis elements, a control system would generalize correctly and therefore perform optimally if the basis elements that were sensitive to limb velocity were not sensitive to acceleration, and vice versa. However, in the mammalian nervous system proprioceptive sensors like muscle spindles encode a nonlinear combination of all components of limb state, with sensitivity to velocity dominating sensitivity to acceleration. Therefore, limb state in the space of proprioception is not linearly separable despite the fact that this separation is a desirable property of control systems that form models of inertial objects. In building internal models of limb dynamics, does the brain use a representation that is optimal for control of inertial objects, or a representation that is closely tied to how peripheral sensors measure limb state? Here we show that in humans, patterns of generalization of reaching movements in acceleration-dependent fields are strongly inconsistent with basis elements that are optimized for control of inertial objects. Unlike a robot controller that models the dynamics of the natural world and represents velocity and acceleration independently, internal models of dynamics that people learn appear to be rooted in the properties of proprioception, nonlinearly responding to the pattern of muscle activation and representing velocity more strongly than acceleration.
Literatur
Zurück zum Zitat Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4:590–600PubMedCrossRef Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4:590–600PubMedCrossRef
Zurück zum Zitat Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449PubMedCrossRef Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449PubMedCrossRef
Zurück zum Zitat Conditt MA, Mussa-Ivaldi FA (1999) Central representation of time during motor learning. Proc Natl Acad Sci USA 96:11625–11630PubMedCrossRef Conditt MA, Mussa-Ivaldi FA (1999) Central representation of time during motor learning. Proc Natl Acad Sci USA 96:11625–11630PubMedCrossRef
Zurück zum Zitat Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560PubMed Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560PubMed
Zurück zum Zitat Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophsyiol 48:989–1006 Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophsyiol 48:989–1006
Zurück zum Zitat Hasan Z, Houk JC (1975) Analysis of response properties of deefferented mammalian spindle receptors based on frequency response. J Neurophysiol 38:663–672PubMed Hasan Z, Houk JC (1975) Analysis of response properties of deefferented mammalian spindle receptors based on frequency response. J Neurophysiol 38:663–672PubMed
Zurück zum Zitat Houk JC, Harris DA, Hasan Z (1973) Nonlinear behavior of spindle receptors. In: Stein RB, Pearson PB, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, NY, pp 147–163 Houk JC, Harris DA, Hasan Z (1973) Nonlinear behavior of spindle receptors. In: Stein RB, Pearson PB, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, NY, pp 147–163
Zurück zum Zitat Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166PubMed Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166PubMed
Zurück zum Zitat Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278 PubMedCrossRef Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278 PubMedCrossRef
Zurück zum Zitat Hwang EJ, Donchin O, Smith MA, Shadmehr R (2003) A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 1:209–220CrossRef Hwang EJ, Donchin O, Smith MA, Shadmehr R (2003) A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 1:209–220CrossRef
Zurück zum Zitat Lackner JR, Dizio P (1994) Rapid adaptation to coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313PubMed Lackner JR, Dizio P (1994) Rapid adaptation to coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313PubMed
Zurück zum Zitat Lennerstrand G (1968) Position and velocity sensitivity of muscle spindles in the cat. I. Primary and secondary endings deprived of fusimotor activation. Acta Physiol Scand 73:281–299PubMed Lennerstrand G (1968) Position and velocity sensitivity of muscle spindles in the cat. I. Primary and secondary endings deprived of fusimotor activation. Acta Physiol Scand 73:281–299PubMed
Zurück zum Zitat Lennerstrand G, Thoden U (1968) Dynamic analysis of muscle spindle endings in the cat using length changes of different length–time relations. Acta Physiol Scand 73:234–250PubMedCrossRef Lennerstrand G, Thoden U (1968) Dynamic analysis of muscle spindle endings in the cat using length changes of different length–time relations. Acta Physiol Scand 73:234–250PubMedCrossRef
Zurück zum Zitat Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol (Lond) 320:1–30 Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol (Lond) 320:1–30
Zurück zum Zitat Prochazka A, Gorassini M (1998) Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol 507(Pt 1):277–291PubMedCrossRef Prochazka A, Gorassini M (1998) Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol 507(Pt 1):277–291PubMedCrossRef
Zurück zum Zitat Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056PubMed Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056PubMed
Zurück zum Zitat Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10:2047–2084PubMedCrossRef Schaal S, Atkeson CG (1998) Constructive incremental learning from only local information. Neural Comput 10:2047–2084PubMedCrossRef
Zurück zum Zitat Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853–862PubMed Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853–862PubMed
Zurück zum Zitat Shadmehr R, Moussavi ZMK (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20:7807–7815PubMed Shadmehr R, Moussavi ZMK (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20:7807–7815PubMed
Zurück zum Zitat Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed
Zurück zum Zitat Singh K, Scott SH (2003) A motor learning strategy reflects neural circuitry for limb control. Nat Neurosci 6:399–403PubMedCrossRef Singh K, Scott SH (2003) A motor learning strategy reflects neural circuitry for limb control. Nat Neurosci 6:399–403PubMedCrossRef
Zurück zum Zitat Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs, NJ Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs, NJ
Zurück zum Zitat Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747PubMedCrossRef Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747PubMedCrossRef
Zurück zum Zitat Wang T, Dordevic GS, Shadmehr R (2001) Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Biol Cybern 85:437–448PubMedCrossRef Wang T, Dordevic GS, Shadmehr R (2001) Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Biol Cybern 85:437–448PubMedCrossRef
Metadaten
Titel
Adaptation and generalization in acceleration-dependent force fields
verfasst von
Eun Jung Hwang
Maurice A. Smith
Reza Shadmehr
Publikationsdatum
01.03.2006
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2006
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-0163-2

Weitere Artikel der Ausgabe 4/2006

Experimental Brain Research 4/2006 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.