Skip to main content
Erschienen in: Experimental Brain Research 1/2005

01.09.2005 | Research Article

Identifying brain regions for integrative sensorimotor processing with ankle movements

verfasst von: O. Ciccarelli, A. T. Toosy, J. F. Marsden, C. M. Wheeler-Kingshott, C. Sahyoun, P. M. Matthews, D. H. Miller, A. J. Thompson

Erschienen in: Experimental Brain Research | Ausgabe 1/2005

Einloggen, um Zugang zu erhalten

Abstract

The objective of this study was to define cortical and subcortical structures activated during both active and passive movements of the ankle, which have a fundamental role in the physiology of locomotion, to improve our understanding of brain sensorimotor integration. Sixteen healthy subjects, all right-foot dominant, performed a dorsi-plantar flexion task of the foot using a custom-made wooden manipulandum, which enabled measurements of the movement amplitude. All subjects underwent a training session, which included surface electromyography, and were able to relax completely during passive movements. Patterns of activation during active and passive movements and differences between functional MRI (fMRI) responses for the two types of movement were assessed. Regions of common activation during the active and passive movements were identified by conjunction analysis. We found that passive movements activated cortical regions that were usually similar in location to those activated by active movements, although the extent of the activations was more limited with passive movements. Active movements of both feet generated greater activation than passive movements in some regions (such as the ipsilateral primary motor cortex) identified in previous studies as being important for motor planning. Common activations during active and passive movements were found not only in the contralateral primary motor and sensory cortices, but also in the premotor cortical regions (such as the bilateral rolandic operculum and contralateral supplementary motor area), and in the subcortical regions (such as the ipsilateral cerebellum and contralateral putamen), suggesting that these regions participate in sensorimotor integration for ankle movements. In future, similar fMRI studies using passive movements have potential to elucidate abnormalities of sensorimotor integration in central nervous system diseases that affect motor function.
Literatur
Zurück zum Zitat Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240CrossRefPubMed Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240CrossRefPubMed
Zurück zum Zitat Alary F, Doyon B, Loubinoux I, Carel C, Boulanouar K, Ranjeva JP, Celsis P, Chollet F (1998) Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI. Neuroimage 8:377–390CrossRefPubMed Alary F, Doyon B, Loubinoux I, Carel C, Boulanouar K, Ranjeva JP, Celsis P, Chollet F (1998) Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI. Neuroimage 8:377–390CrossRefPubMed
Zurück zum Zitat Carel C, Loubinoux I, Boulanouar K, Manelfe C, Rascol O, Celsis P, Chollet F (2000) Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab 20:478–484PubMed Carel C, Loubinoux I, Boulanouar K, Manelfe C, Rascol O, Celsis P, Chollet F (2000) Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab 20:478–484PubMed
Zurück zum Zitat Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41:781–788CrossRefPubMed Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41:781–788CrossRefPubMed
Zurück zum Zitat Dobkin BH, Firestine A, West M, Saremi K, Woods R (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 23:370–381CrossRefPubMed Dobkin BH, Firestine A, West M, Saremi K, Woods R (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. Neuroimage 23:370–381CrossRefPubMed
Zurück zum Zitat Friston KJ (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab 15:361–370 Friston KJ (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab 15:361–370
Zurück zum Zitat Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
Zurück zum Zitat Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235CrossRefPubMed Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235CrossRefPubMed
Zurück zum Zitat Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study?. Neuroimage 10:1–5CrossRefPubMed Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study?. Neuroimage 10:1–5CrossRefPubMed
Zurück zum Zitat Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512CrossRefPubMed Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512CrossRefPubMed
Zurück zum Zitat Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54:40–60PubMed Gellman R, Gibson AR, Houk JC (1985) Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol 54:40–60PubMed
Zurück zum Zitat Grill SE, Hallett M, Marcus C, McShane L (1994) Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 117(Pt 6):1433–1447PubMed Grill SE, Hallett M, Marcus C, McShane L (1994) Disturbances of kinaesthesia in patients with cerebellar disorders. Brain 117(Pt 6):1433–1447PubMed
Zurück zum Zitat Hartmann MJ, Bower JM (2001) Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci 21:3549–3563PubMed Hartmann MJ, Bower JM (2001) Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci 21:3549–3563PubMed
Zurück zum Zitat Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110PubMed Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110PubMed
Zurück zum Zitat Jueptner M, Ottinger S, Fellows SJ, Adamschewski J, Flerich L, Muller SP, Diener HC, Thilmann AF, Weiller C (1997) The relevance of sensory input for the cerebellar control of movements. Neuroimage 5:41–48CrossRefPubMed Jueptner M, Ottinger S, Fellows SJ, Adamschewski J, Flerich L, Muller SP, Diener HC, Thilmann AF, Weiller C (1997) The relevance of sensory input for the cerebellar control of movements. Neuroimage 5:41–48CrossRefPubMed
Zurück zum Zitat Kandel ER, Schwarts JH, Jessell TM (2000) Voluntary movement. In: Kandel ER, Schwarts JH, Jessell TM (eds) Principle of neural science. McGraw Hill, New York, pp 756–779 Kandel ER, Schwarts JH, Jessell TM (2000) Voluntary movement. In: Kandel ER, Schwarts JH, Jessell TM (eds) Principle of neural science. McGraw Hill, New York, pp 756–779
Zurück zum Zitat Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser TK, Goldberg AP, Hanley DF (2002) Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp 17:131–140CrossRefPubMed Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser TK, Goldberg AP, Hanley DF (2002) Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp 17:131–140CrossRefPubMed
Zurück zum Zitat Machii K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Mochizuki H, Shiio Y, Enomoto H, Uesugi H, Kuzuhara S, Kanazawa I (1999) Input–output organization of the foot motor area in humans. Clin Neurophysiol 110:1315–1320CrossRefPubMed Machii K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Mochizuki H, Shiio Y, Enomoto H, Uesugi H, Kuzuhara S, Kanazawa I (1999) Input–output organization of the foot motor area in humans. Clin Neurophysiol 110:1315–1320CrossRefPubMed
Zurück zum Zitat MacIntosh BJ, Mraz R, Baker N, Tam F, Staines WR, Graham SJ (2004) Optimizing the experimental design for ankle dorsiflexion fMRI. Neuroimage 22:1619–1627CrossRefPubMed MacIntosh BJ, Mraz R, Baker N, Tam F, Staines WR, Graham SJ (2004) Optimizing the experimental design for ankle dorsiflexion fMRI. Neuroimage 22:1619–1627CrossRefPubMed
Zurück zum Zitat Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200CrossRefPubMed Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200CrossRefPubMed
Zurück zum Zitat Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(Pt 10):1989–1997CrossRefPubMed Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122(Pt 10):1989–1997CrossRefPubMed
Zurück zum Zitat Poline JB, Worsley KJ, Evans AC, Friston KJ (1997) Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5:83–96CrossRefPubMed Poline JB, Worsley KJ, Evans AC, Friston KJ (1997) Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5:83–96CrossRefPubMed
Zurück zum Zitat Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5:261–270CrossRefPubMed Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5:261–270CrossRefPubMed
Zurück zum Zitat Prochazka A (1989) Sensorimotor gain control: a basic strategy of motor systems? Prog Neurobiol 33:281–307CrossRefPubMed Prochazka A (1989) Sensorimotor gain control: a basic strategy of motor systems? Prog Neurobiol 33:281–307CrossRefPubMed
Zurück zum Zitat Reddy H, Floyer A, Donaghy M, Matthews PM (2001) Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 138:484–491CrossRefPubMed Reddy H, Floyer A, Donaghy M, Matthews PM (2001) Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 138:484–491CrossRefPubMed
Zurück zum Zitat Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold DL, Matthews PM (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125:2646–2657CrossRefPubMed Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold DL, Matthews PM (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125:2646–2657CrossRefPubMed
Zurück zum Zitat Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200PubMed Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200PubMed
Zurück zum Zitat Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM (2004) Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 21:568–575CrossRefPubMed Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM (2004) Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. Neuroimage 21:568–575CrossRefPubMed
Zurück zum Zitat Shimansky Y, Saling M, Wunderlich DA, Bracha V, Stelmach GE, Bloedel JR (1997) Impaired capacity of cerebellar patients to perceive and learn two-dimensional shapes based on kinesthetic cues. Learn Mem 4:36–48PubMed Shimansky Y, Saling M, Wunderlich DA, Bracha V, Stelmach GE, Bloedel JR (1997) Impaired capacity of cerebellar patients to perceive and learn two-dimensional shapes based on kinesthetic cues. Learn Mem 4:36–48PubMed
Zurück zum Zitat Thickbroom GW, Byrnes ML, Mastaglia FL (2003) Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage 18:670–674CrossRefPubMed Thickbroom GW, Byrnes ML, Mastaglia FL (2003) Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage 18:670–674CrossRefPubMed
Zurück zum Zitat Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126:873–888CrossRefPubMed Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126:873–888CrossRefPubMed
Zurück zum Zitat Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4:105–110CrossRefPubMed Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Muller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4:105–110CrossRefPubMed
Zurück zum Zitat Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited—again. Neuroimage 2:173–181CrossRefPubMed Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited—again. Neuroimage 2:173–181CrossRefPubMed
Zurück zum Zitat Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRef Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRef
Zurück zum Zitat Yeterian EH, Pandya DN (1998) Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399:384–402CrossRefPubMed Yeterian EH, Pandya DN (1998) Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399:384–402CrossRefPubMed
Zurück zum Zitat Yetkin FZ, Mueller WM, Hammeke TA, Morris GL III, Haughton VM (1995) Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 36:921–925PubMed Yetkin FZ, Mueller WM, Hammeke TA, Morris GL III, Haughton VM (1995) Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 36:921–925PubMed
Metadaten
Titel
Identifying brain regions for integrative sensorimotor processing with ankle movements
verfasst von
O. Ciccarelli
A. T. Toosy
J. F. Marsden
C. M. Wheeler-Kingshott
C. Sahyoun
P. M. Matthews
D. H. Miller
A. J. Thompson
Publikationsdatum
01.09.2005
Erschienen in
Experimental Brain Research / Ausgabe 1/2005
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-2335-5

Weitere Artikel der Ausgabe 1/2005

Experimental Brain Research 1/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.