Skip to main content
Erschienen in: Experimental Brain Research 4/2008

01.12.2008 | Review

Mapping causal interregional influences with concurrent TMS–fMRI

verfasst von: Sven Bestmann, Christian C. Ruff, Felix Blankenburg, Nikolaus Weiskopf, Jon Driver, John C. Rothwell

Erschienen in: Experimental Brain Research | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS–fMRI studies that illustrate how this novel combined technique may provide unique insights into causal interactions among brain regions in humans. We show how fMRI can detect the spatial topography of local and remote TMS effects and how these may vary with psychological factors such as task-state. Concurrent TMS–fMRI may furthermore reveal how the brain adapts to so-called virtual lesions induced by TMS, and the distributed activity changes that may underlie the behavioural consequences often observed during cortical stimulation with TMS. We argue that combining TMS with neuroimaging techniques allows a further step in understanding the physiological underpinnings of TMS, as well as the neural correlated of TMS-evoked consequences on perception and behaviour. This can provide powerful new insights about causal interactions among brain regions in both health and disease that may ultimately lead to developing more efficient protocols for basic research and therapeutic TMS applications.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allen EA, Pasley BN, Duong T, Freeman RD (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317:1918–1921PubMedCrossRef Allen EA, Pasley BN, Duong T, Freeman RD (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317:1918–1921PubMedCrossRef
Zurück zum Zitat Armstrong KM, Fitzgerald JK, Moore T (2006) Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–798PubMedCrossRef Armstrong KM, Fitzgerald JK, Moore T (2006) Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50:791–798PubMedCrossRef
Zurück zum Zitat Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699PubMed Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699PubMed
Zurück zum Zitat Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRef Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRef
Zurück zum Zitat Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef
Zurück zum Zitat Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114PubMed Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114PubMed
Zurück zum Zitat Aydin-Abidin S, Moliadze V, Eysel UT, Funke K (2006) Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: dependence on stimulus frequency and train duration. J Physiol 574:443–455PubMedCrossRef Aydin-Abidin S, Moliadze V, Eysel UT, Funke K (2006) Effects of repetitive TMS on visually evoked potentials and EEG in the anaesthetized cat: dependence on stimulus frequency and train duration. J Physiol 574:443–455PubMedCrossRef
Zurück zum Zitat Balslev D, Nielsen FA, Lund TE, Law I, Paulson OB (2006) Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony. Neuroimage 31:308–312PubMedCrossRef Balslev D, Nielsen FA, Lund TE, Law I, Paulson OB (2006) Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony. Neuroimage 31:308–312PubMedCrossRef
Zurück zum Zitat Baudewig J, Nitsche MA, Paulus W, Frahm J (2001a) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45:196–201PubMedCrossRef Baudewig J, Nitsche MA, Paulus W, Frahm J (2001a) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45:196–201PubMedCrossRef
Zurück zum Zitat Baudewig J, Siebner HR, Bestmann S, Tergau F, Tings T, Paulus W, Frahm J (2001b) Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport 12:3543–3548PubMedCrossRef Baudewig J, Siebner HR, Bestmann S, Tergau F, Tings T, Paulus W, Frahm J (2001b) Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport 12:3543–3548PubMedCrossRef
Zurück zum Zitat Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20:1685–1696PubMedCrossRef Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20:1685–1696PubMedCrossRef
Zurück zum Zitat Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962PubMedCrossRef Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962PubMedCrossRef
Zurück zum Zitat Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29PubMedCrossRef Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29PubMedCrossRef
Zurück zum Zitat Bestmann S, Oliviero A, Voss M, Dechent P, Lopez-Dolado E, Driver J, Baudewig J (2006) Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS–fMRI. Neuropsychologia 44:2959–2971PubMedCrossRef Bestmann S, Oliviero A, Voss M, Dechent P, Lopez-Dolado E, Driver J, Baudewig J (2006) Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS–fMRI. Neuropsychologia 44:2959–2971PubMedCrossRef
Zurück zum Zitat Bestmann S, Ruff CC, Blakemore C, Driver J, Thilo KV (2007) Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17:134–139PubMedCrossRef Bestmann S, Ruff CC, Blakemore C, Driver J, Thilo KV (2007) Spatial attention changes excitability of human visual cortex to direct stimulation. Curr Biol 17:134–139PubMedCrossRef
Zurück zum Zitat Bestmann S, Ruff CC, Driver J, Blankenburg F (2008a) Concurrent TMS and functional magnetic resonance imaging: methods and current advances. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, Oxford Bestmann S, Ruff CC, Driver J, Blankenburg F (2008a) Concurrent TMS and functional magnetic resonance imaging: methods and current advances. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, Oxford
Zurück zum Zitat Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008b) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291PubMedCrossRef Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008b) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291PubMedCrossRef
Zurück zum Zitat Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Eshel N, Josephs O, Weiskopf N, Driver J (2008) Interhemispheric effect of parietal tms on somatosensory response confirmed directly with concurrent TMS–fMRI. J Neurosci (in press) Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Eshel N, Josephs O, Weiskopf N, Driver J (2008) Interhemispheric effect of parietal tms on somatosensory response confirmed directly with concurrent TMS–fMRI. J Neurosci (in press)
Zurück zum Zitat Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Dannels WR, Haxthausen EU, Vincent DJ, George MS (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340PubMedCrossRef Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Dannels WR, Haxthausen EU, Vincent DJ, George MS (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340PubMedCrossRef
Zurück zum Zitat Bohning DE, Shastri A, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, Teneback C, Vincent DJ, George MS (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394PubMedCrossRef Bohning DE, Shastri A, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, Teneback C, Vincent DJ, George MS (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394PubMedCrossRef
Zurück zum Zitat Bohning DE, Shastri A, McGavin L, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, George MS (2000a) Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Invest Radiol 35:676–683PubMedCrossRef Bohning DE, Shastri A, McGavin L, McConnell KA, Nahas Z, Lorberbaum JP, Roberts DR, George MS (2000a) Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Invest Radiol 35:676–683PubMedCrossRef
Zurück zum Zitat Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS (2000b) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574PubMedCrossRef Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS (2000b) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574PubMedCrossRef
Zurück zum Zitat Bohning DE, Shastri A, Lomarev MP, Lorberbaum JP, Nahas Z, George MS (2003) BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: testing for linearity. J Magn Reson Imaging 17:279–290PubMedCrossRef Bohning DE, Shastri A, Lomarev MP, Lorberbaum JP, Nahas Z, George MS (2003) BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: testing for linearity. J Magn Reson Imaging 17:279–290PubMedCrossRef
Zurück zum Zitat Brandt SA, Brocke J, Roricht S, Ploner CJ, Villringer A, Meyer BU (2001) In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imaging. Neuroimage 14:366–375PubMedCrossRef Brandt SA, Brocke J, Roricht S, Ploner CJ, Villringer A, Meyer BU (2001) In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imaging. Neuroimage 14:366–375PubMedCrossRef
Zurück zum Zitat Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA (2007) Transcranial cortex stimulation and fMRI: Electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 40:631–643PubMedCrossRef Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA (2007) Transcranial cortex stimulation and fMRI: Electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 40:631–643PubMedCrossRef
Zurück zum Zitat Chambers CD, Mattingley JB (2005) Neurodisruption of selective attention: insights and implications. Trends Cogn Sci 9:542–550PubMedCrossRef Chambers CD, Mattingley JB (2005) Neurodisruption of selective attention: insights and implications. Trends Cogn Sci 9:542–550PubMedCrossRef
Zurück zum Zitat Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10PubMedCrossRef Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10PubMedCrossRef
Zurück zum Zitat Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRef Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003) Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophysiol 90:1071–1083PubMedCrossRef
Zurück zum Zitat Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453PubMedCrossRef Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453PubMedCrossRef
Zurück zum Zitat Classen J, Stefan K (2008) Changes in TMS measures induced by repetitive TMS. The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 185-200 Classen J, Stefan K (2008) Changes in TMS measures induced by repetitive TMS. The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 185-200
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRef Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRef
Zurück zum Zitat Curra A, Modugno N, Inghilleri M, Manfredi M, Hallett M, Berardelli A (2002) Transcranial magnetic stimulation techniques in clinical investigation. Neurology 59:1851–1859PubMed Curra A, Modugno N, Inghilleri M, Manfredi M, Hallett M, Berardelli A (2002) Transcranial magnetic stimulation techniques in clinical investigation. Neurology 59:1851–1859PubMed
Zurück zum Zitat Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2008) Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry 65:378–385PubMedCrossRef Daskalakis ZJ, Christensen BK, Fitzgerald PB, Chen R (2008) Dysfunctional neural plasticity in patients with schizophrenia. Arch Gen Psychiatry 65:378–385PubMedCrossRef
Zurück zum Zitat Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268PubMedCrossRef Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268PubMedCrossRef
Zurück zum Zitat de Labra C, Rivadulla C, Grieve K, Marino J, Espinosa N, Cudeiro J (2007) Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb Cortex 17:1376–1385PubMedCrossRef de Labra C, Rivadulla C, Grieve K, Marino J, Espinosa N, Cudeiro J (2007) Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb Cortex 17:1376–1385PubMedCrossRef
Zurück zum Zitat Denslow S, Lomarev M, George MS, Bohning DE (2005) Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57:752–760PubMedCrossRef Denslow S, Lomarev M, George MS, Bohning DE (2005) Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57:752–760PubMedCrossRef
Zurück zum Zitat Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222PubMedCrossRef Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222PubMedCrossRef
Zurück zum Zitat Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268PubMedCrossRef Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268PubMedCrossRef
Zurück zum Zitat Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266PubMedCrossRef
Zurück zum Zitat Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92:53–78CrossRef Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92:53–78CrossRef
Zurück zum Zitat Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom–up dependent gating of frontal signals in early visual cortex. Science 321:414–417PubMedCrossRef Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom–up dependent gating of frontal signals in early visual cortex. Science 321:414–417PubMedCrossRef
Zurück zum Zitat Epstein CM (2008) TMS stimulation coils. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, Oxford Epstein CM (2008) TMS stimulation coils. In: Wasserman EA, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) Oxford handbook of transcranial stimulation. Oxford University Press, Oxford
Zurück zum Zitat Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMed Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMed
Zurück zum Zitat Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Curr Opin Neurobiol 13:174–181PubMedCrossRef Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Curr Opin Neurobiol 13:174–181PubMedCrossRef
Zurück zum Zitat Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791PubMedCrossRef Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791PubMedCrossRef
Zurück zum Zitat Friston KJ, Price CJ (2003) Degeneracy and redundancy in cognitive anatomy. Trends Cogn Sci 7:151–152PubMedCrossRef Friston KJ, Price CJ (2003) Degeneracy and redundancy in cognitive anatomy. Trends Cogn Sci 7:151–152PubMedCrossRef
Zurück zum Zitat Fujiwara T, Rothwell JC (2004) The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. Clin Neurophysiol 115:1514–1518PubMedCrossRef Fujiwara T, Rothwell JC (2004) The after effects of motor cortex rTMS depend on the state of contraction when rTMS is applied. Clin Neurophysiol 115:1514–1518PubMedCrossRef
Zurück zum Zitat George MS, Nahas Z, Kozol FA, Li X, Yamanaka K, Mishory A, Bohning DE (2003) Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectr 8:496–514PubMed George MS, Nahas Z, Kozol FA, Li X, Yamanaka K, Mishory A, Bohning DE (2003) Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectr 8:496–514PubMed
Zurück zum Zitat Hanaoka N, Aoyama Y, Kameyama M, Fukuda M, Mikuni M (2007) Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study. Neurosci Lett 414:99–104PubMedCrossRef Hanaoka N, Aoyama Y, Kameyama M, Fukuda M, Mikuni M (2007) Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study. Neurosci Lett 414:99–104PubMedCrossRef
Zurück zum Zitat Huang YZ, Rothwell JC, Edwards MJ, Chen RS (2008) Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 18:563–570PubMedCrossRef Huang YZ, Rothwell JC, Edwards MJ, Chen RS (2008) Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 18:563–570PubMedCrossRef
Zurück zum Zitat Hubl D, Nyffeler T, Wurtz P, Chaves S, Pflugshaupt T, Luthi M, von Wartburg R, Wiest R, Dierks T, Strik WK, Hess CW, Muri RM (2008) Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field. Neuroscience 151:921–928PubMedCrossRef Hubl D, Nyffeler T, Wurtz P, Chaves S, Pflugshaupt T, Luthi M, von Wartburg R, Wiest R, Dierks T, Strik WK, Hess CW, Muri RM (2008) Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field. Neuroscience 151:921–928PubMedCrossRef
Zurück zum Zitat Ilmoniemi R, Karhu J (2008) TMS and electroencephalography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 593–608 Ilmoniemi R, Karhu J (2008) TMS and electroencephalography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 593–608
Zurück zum Zitat Ilmoniemi RJ, Ruohonen J, Virtanen J, Aronen HJ, Karhu J (1999) EEG responses evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:22–29PubMed Ilmoniemi RJ, Ruohonen J, Virtanen J, Aronen HJ, Karhu J (1999) EEG responses evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:22–29PubMed
Zurück zum Zitat Josephs O, Henson RN (1999) Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philos Trans R Soc Lond B Biol Sci 354:1215–1228PubMedCrossRef Josephs O, Henson RN (1999) Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philos Trans R Soc Lond B Biol Sci 354:1215–1228PubMedCrossRef
Zurück zum Zitat Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960PubMedCrossRef Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960PubMedCrossRef
Zurück zum Zitat Kemna LJ, Gembris D (2003) Repetitive transcranial magnetic stimulation induces different responses in different cortical areas: a functional magnetic resonance study in humans. Neurosci Lett 336:85–88PubMedCrossRef Kemna LJ, Gembris D (2003) Repetitive transcranial magnetic stimulation induces different responses in different cortical areas: a functional magnetic resonance study in humans. Neurosci Lett 336:85–88PubMedCrossRef
Zurück zum Zitat Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, Benson BE, Herscovitch P, Post RM, Wassermann EM (2002) Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 115:101–113PubMedCrossRef Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, Benson BE, Herscovitch P, Post RM, Wassermann EM (2002) Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 115:101–113PubMedCrossRef
Zurück zum Zitat Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez SM, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459PubMedCrossRef Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez SM, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459PubMedCrossRef
Zurück zum Zitat Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C, Rothwell JC (2007) Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol 578:551–562PubMedCrossRef Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C, Rothwell JC (2007) Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol 578:551–562PubMedCrossRef
Zurück zum Zitat Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184PubMedCrossRef Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184PubMedCrossRef
Zurück zum Zitat Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMed Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519PubMed
Zurück zum Zitat Lee L, Siebner H, Bestmann S (2006) Rapid modulation of distributed brain activity by transcranial magnetic stimulation of human motor cortex. Behav Neurol 17:135–148PubMed Lee L, Siebner H, Bestmann S (2006) Rapid modulation of distributed brain activity by transcranial magnetic stimulation of human motor cortex. Behav Neurol 17:135–148PubMed
Zurück zum Zitat Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318PubMed Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318PubMed
Zurück zum Zitat Li X, Nahas Z, Kozel FA, Anderson B, Bohning DE, George MS (2004a) Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 55:882–890PubMedCrossRef Li X, Nahas Z, Kozel FA, Anderson B, Bohning DE, George MS (2004a) Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 55:882–890PubMedCrossRef
Zurück zum Zitat Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004b) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407PubMedCrossRef Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004b) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407PubMedCrossRef
Zurück zum Zitat Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531PubMedCrossRef Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531PubMedCrossRef
Zurück zum Zitat Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501PubMedCrossRef Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501PubMedCrossRef
Zurück zum Zitat Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369PubMedCrossRef Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369PubMedCrossRef
Zurück zum Zitat Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232PubMedCrossRef Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232PubMedCrossRef
Zurück zum Zitat Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75:6–12PubMed Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75:6–12PubMed
Zurück zum Zitat Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol 474:261–267PubMed Mazzocchio R, Rothwell JC, Day BL, Thompson PD (1994) Effect of tonic voluntary activity on the excitability of human motor cortex. J Physiol 474:261–267PubMed
Zurück zum Zitat Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A (2006) Mapping phantom movement representations in the motor cortex of amputees. Brain 129:2202–2210PubMedCrossRef Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A (2006) Mapping phantom movement representations in the motor cortex of amputees. Brain 129:2202–2210PubMedCrossRef
Zurück zum Zitat Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169:302–310PubMedCrossRef Mochizuki H, Ugawa Y, Terao Y, Sakai KL (2006) Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: a simultaneous recording with near-infrared spectroscopy. Exp Brain Res 169:302–310PubMedCrossRef
Zurück zum Zitat Mochizuki H, Furubayashi T, Hanajima R, Terao Y, Mizuno Y, Okabe S, Ugawa Y (2007) Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices. Exp Brain Res 180:667–675PubMedCrossRef Mochizuki H, Furubayashi T, Hanajima R, Terao Y, Mizuno Y, Okabe S, Ugawa Y (2007) Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices. Exp Brain Res 180:667–675PubMedCrossRef
Zurück zum Zitat Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359PubMedCrossRef Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359PubMedCrossRef
Zurück zum Zitat Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679PubMedCrossRef Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679PubMedCrossRef
Zurück zum Zitat Moliadze V, Giannikopoulos D, Eysel UT, Funke K (2005) Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. J Physiol 566:955–965PubMedCrossRef Moliadze V, Giannikopoulos D, Eysel UT, Funke K (2005) Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. J Physiol 566:955–965PubMedCrossRef
Zurück zum Zitat Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373PubMedCrossRef Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373PubMedCrossRef
Zurück zum Zitat Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561PubMed Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561PubMed
Zurück zum Zitat Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, McConnell K, Vincent DJ, Li X, George MS, Bohning DE (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720PubMedCrossRef Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, McConnell K, Vincent DJ, Li X, George MS, Bohning DE (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720PubMedCrossRef
Zurück zum Zitat Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19:6134–6144PubMed Naito E, Ehrsson HH, Geyer S, Zilles K, Roland PE (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19:6134–6144PubMed
Zurück zum Zitat Naito E, Roland PE, Ehrsson HH (2002) I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:979–988PubMedCrossRef Naito E, Roland PE, Ehrsson HH (2002) I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:979–988PubMedCrossRef
Zurück zum Zitat Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110:1325–1328PubMedCrossRef Nikouline V, Ruohonen J, Ilmoniemi RJ (1999) The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 110:1325–1328PubMedCrossRef
Zurück zum Zitat Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212PubMedCrossRef Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212PubMedCrossRef
Zurück zum Zitat Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRef Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639PubMedCrossRef
Zurück zum Zitat Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276PubMed Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276PubMed
Zurück zum Zitat O’Shea J, Johansen-Berg H, Trief D, Gobel S, Rushworth MF (2007a) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490PubMedCrossRef O’Shea J, Johansen-Berg H, Trief D, Gobel S, Rushworth MF (2007a) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490PubMedCrossRef
Zurück zum Zitat O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MF (2007b) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095PubMedCrossRef O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MF (2007b) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095PubMedCrossRef
Zurück zum Zitat Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della CF, Tonali P (1999) Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol 246:1164–1168PubMedCrossRef Oliviero A, Di Lazzaro V, Piazza O, Profice P, Pennisi MA, Della CF, Tonali P (1999) Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol 246:1164–1168PubMedCrossRef
Zurück zum Zitat Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol (in press). doi:10.1113/jphysiol.2008.158956 Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol (in press). doi:10.​1113/​jphysiol.​2008.​158956
Zurück zum Zitat Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354:1229–1238PubMedCrossRef Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354:1229–1238PubMedCrossRef
Zurück zum Zitat Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef
Zurück zum Zitat Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512PubMedCrossRef
Zurück zum Zitat Patel RS, Bowman FD, Rilling JK (2006) A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 27:267–276PubMedCrossRef Patel RS, Bowman FD, Rilling JK (2006) A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 27:267–276PubMedCrossRef
Zurück zum Zitat Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224PubMedCrossRef Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224PubMedCrossRef
Zurück zum Zitat Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360:1109–1114PubMedCrossRef Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360:1109–1114PubMedCrossRef
Zurück zum Zitat Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMed Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184PubMed
Zurück zum Zitat Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 79:1102–1107PubMed Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 79:1102–1107PubMed
Zurück zum Zitat Paus T, Castro-Alamancos MA, Petrides M (2001a) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411PubMedCrossRef Paus T, Castro-Alamancos MA, Petrides M (2001a) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411PubMedCrossRef
Zurück zum Zitat Paus T, Sipila PK, Strafella AP (2001b) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMed Paus T, Sipila PK, Strafella AP (2001b) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990PubMed
Zurück zum Zitat Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(suppl 1):S264–S274 Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23(suppl 1):S264–S274
Zurück zum Zitat Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Comparing dynamic causal models. Neuroimage 22:1157–1172PubMedCrossRef Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Comparing dynamic causal models. Neuroimage 22:1157–1172PubMedCrossRef
Zurück zum Zitat Pleger B, Blankenburg F, Bestmann S, Ruff CC, Wiech K, Stephan KE, Friston KJ, Dolan RJ (2006a) Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci 26:1945–1952PubMedCrossRef Pleger B, Blankenburg F, Bestmann S, Ruff CC, Wiech K, Stephan KE, Friston KJ, Dolan RJ (2006a) Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci 26:1945–1952PubMedCrossRef
Zurück zum Zitat Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ (2006b) Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26:12596–12601PubMedCrossRef Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ (2006b) Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26:12596–12601PubMedCrossRef
Zurück zum Zitat Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 143:276–285PubMedCrossRef Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 143:276–285PubMedCrossRef
Zurück zum Zitat Reddy H, Floyer A, Donaghy M, Matthews PM (2001) Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 138:484–491PubMedCrossRef Reddy H, Floyer A, Donaghy M, Matthews PM (2001) Altered cortical activation with finger movement after peripheral denervation: comparison of active and passive tasks. Exp Brain Res 138:484–491PubMedCrossRef
Zurück zum Zitat Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351PubMedCrossRef Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351PubMedCrossRef
Zurück zum Zitat Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548PubMed Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548PubMed
Zurück zum Zitat Roberts DR, Vincent DJ, Speer AM, Bohning DE, Cure J, Young J, George MS (1997) Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation. Short communication. J Neural Transm 104:833–843PubMedCrossRef Roberts DR, Vincent DJ, Speer AM, Bohning DE, Cure J, Young J, George MS (1997) Multi-modality mapping of motor cortex: comparing echoplanar BOLD fMRI and transcranial magnetic stimulation. Short communication. J Neural Transm 104:833–843PubMedCrossRef
Zurück zum Zitat Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242PubMedCrossRef Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242PubMedCrossRef
Zurück zum Zitat Romaiguere P, Anton JL, Roth M, Casini L, Roll JP (2003) Motor and parietal cortical areas both underlie kinaesthesia. Brain Res Cogn Brain Res 16:74–82PubMedCrossRef Romaiguere P, Anton JL, Roth M, Casini L, Roll JP (2003) Motor and parietal cortical areas both underlie kinaesthesia. Brain Res Cogn Brain Res 16:74–82PubMedCrossRef
Zurück zum Zitat Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472PubMedCrossRef Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472PubMedCrossRef
Zurück zum Zitat Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19:203–208PubMedCrossRef Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19:203–208PubMedCrossRef
Zurück zum Zitat Rosen G, Hugdahl K, Ersland L, Lundervold A, Smievoll AI, Barndon R, Sundberg H, Thomsen T, Roscher BE, Tjolsen A, Engelsen B (2001) Different brain areas activated during imagery of painful and non-painful ‘finger movements’ in a subject with an amputated arm. Neurocase 7:255–260PubMedCrossRef Rosen G, Hugdahl K, Ersland L, Lundervold A, Smievoll AI, Barndon R, Sundberg H, Thomsen T, Roscher BE, Tjolsen A, Engelsen B (2001) Different brain areas activated during imagery of painful and non-painful ‘finger movements’ in a subject with an amputated arm. Neurocase 7:255–260PubMedCrossRef
Zurück zum Zitat Roth BJ, Cohen LG, Hallett M (1991a) The electric field induced during magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 43:268–278PubMed Roth BJ, Cohen LG, Hallett M (1991a) The electric field induced during magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 43:268–278PubMed
Zurück zum Zitat Roth BJ, Saypol JM, Hallett M, Cohen LG (1991b) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:47–56PubMedCrossRef Roth BJ, Saypol JM, Hallett M, Cohen LG (1991b) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:47–56PubMedCrossRef
Zurück zum Zitat Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122PubMedCrossRef Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122PubMedCrossRef
Zurück zum Zitat Rothwell JC (1999) Paired-pulse investigations of short-latency intracortical facilitation using TMS in humans. Electroencephalogr Clin Neurophysiol Suppl 51:113–119PubMed Rothwell JC (1999) Paired-pulse investigations of short-latency intracortical facilitation using TMS in humans. Electroencephalogr Clin Neurophysiol Suppl 51:113–119PubMed
Zurück zum Zitat Rounis E, Stephan KE, Lee L, Siebner HR, Pesenti A, Friston KJ, Rothwell JC, Frackowiak RS (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26:9629–9638PubMedCrossRef Rounis E, Stephan KE, Lee L, Siebner HR, Pesenti A, Friston KJ, Rothwell JC, Frackowiak RS (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26:9629–9638PubMedCrossRef
Zurück zum Zitat Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS–fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488PubMedCrossRef Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS–fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488PubMedCrossRef
Zurück zum Zitat Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, Deichmann R, Driver J (2008a) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex 18:817–827PubMedCrossRef Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, Deichmann R, Driver J (2008a) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex 18:817–827PubMedCrossRef
Zurück zum Zitat Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Weiskopf N, Driver J (2008b) Hemispheric Differences in Frontal and Parietal Influences on the Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI. J Cogn Neurosci (in press) Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Weiskopf N, Driver J (2008b) Hemispheric Differences in Frontal and Parietal Influences on the Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI. J Cogn Neurosci (in press)
Zurück zum Zitat Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(suppl 1):S89–S100 Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(suppl 1):S89–S100
Zurück zum Zitat Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308:702–704PubMedCrossRef Sack AT, Camprodon JA, Pascual-Leone A, Goebel R (2005) The dynamics of interhemispheric compensatory processes in mental imagery. Science 308:702–704PubMedCrossRef
Zurück zum Zitat Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599PubMedCrossRef Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599PubMedCrossRef
Zurück zum Zitat Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852PubMedCrossRef Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852PubMedCrossRef
Zurück zum Zitat Sack AT, Sperling JM, Prvulovic D, Formisano E, Goebel R, Di Salle F, Dierks T, Linden DE (2002) Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35:195–204PubMedCrossRef Sack AT, Sperling JM, Prvulovic D, Formisano E, Goebel R, Di Salle F, Dierks T, Linden DE (2002) Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35:195–204PubMedCrossRef
Zurück zum Zitat Schafer RJ, Moore T (2007) Attention governs action in the primate frontal eye field. Neuron 56:541–551PubMedCrossRef Schafer RJ, Moore T (2007) Attention governs action in the primate frontal eye field. Neuron 56:541–551PubMedCrossRef
Zurück zum Zitat Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26:5098–5108PubMedCrossRef Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26:5098–5108PubMedCrossRef
Zurück zum Zitat Schluter ND, Krams M, Rushworth MF, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113PubMedCrossRef Schluter ND, Krams M, Rushworth MF, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113PubMedCrossRef
Zurück zum Zitat Seyal M, Ro T, Rafal R (1995) Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Ann Neurol 38:264–267PubMedCrossRef Seyal M, Ro T, Rafal R (1995) Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe. Ann Neurol 38:264–267PubMedCrossRef
Zurück zum Zitat Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577PubMedCrossRef Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577PubMedCrossRef
Zurück zum Zitat Siebner HR, Peller M, Willoch F, Auer C, Bartenstein P, Drzezga A, Schwaiger M, Conrad B (1999) Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects. Neurosci Lett 270:37–40PubMedCrossRef Siebner HR, Peller M, Willoch F, Auer C, Bartenstein P, Drzezga A, Schwaiger M, Conrad B (1999) Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects. Neurosci Lett 270:37–40PubMedCrossRef
Zurück zum Zitat Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein P (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54:956–963PubMed Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein P (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54:956–963PubMed
Zurück zum Zitat Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16PubMedCrossRef
Zurück zum Zitat Siebner HR, Filipovic SR, Rowe JB, Cordivari C, Gerschlager W, Rothwell JC, Frackowiak RS, Bhatia KP (2003a) Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 126:2710–2725PubMedCrossRef Siebner HR, Filipovic SR, Rowe JB, Cordivari C, Gerschlager W, Rothwell JC, Frackowiak RS, Bhatia KP (2003a) Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 126:2710–2725PubMedCrossRef
Zurück zum Zitat Siebner HR, Peller M, Lee L (2003b) Applications of combined TMS-PET studies in clinical and basic research. Suppl Clin Neurophysiol 56:63–72PubMed Siebner HR, Peller M, Lee L (2003b) Applications of combined TMS-PET studies in clinical and basic research. Suppl Clin Neurophysiol 56:63–72PubMed
Zurück zum Zitat Siebner HR, Peller M, Lee L (2008) TMS and positron emission tomography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 549–567 Siebner HR, Peller M, Lee L (2008) TMS and positron emission tomography: methods and current advances. In: Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, Oxford, pp 549–567
Zurück zum Zitat Siebner HR, Takano B, Peinemann A, Schwaiger M, Conrad B, Drzezga A (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890PubMedCrossRef Siebner HR, Takano B, Peinemann A, Schwaiger M, Conrad B, Drzezga A (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890PubMedCrossRef
Zurück zum Zitat Siebner HR, Willoch F, Peller M, Auer C, Boecker H, Conrad B, Bartenstein P (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9:943–948PubMedCrossRef Siebner HR, Willoch F, Peller M, Auer C, Boecker H, Conrad B, Bartenstein P (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9:943–948PubMedCrossRef
Zurück zum Zitat Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur J Neurosci 26:523–528PubMedCrossRef Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur J Neurosci 26:523–528PubMedCrossRef
Zurück zum Zitat Speer AM, Willis MW, Herscovitch P, Daube-Witherspoon M, Shelton JR, Benson BE, Post RM, Wassermann EM (2003) Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol Psychiatry 54:826–832PubMedCrossRef Speer AM, Willis MW, Herscovitch P, Daube-Witherspoon M, Shelton JR, Benson BE, Post RM, Wassermann EM (2003) Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol Psychiatry 54:826–832PubMedCrossRef
Zurück zum Zitat Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778PubMedCrossRef Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778PubMedCrossRef
Zurück zum Zitat Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ (2005) Investigating the functional role of callosal connections with dynamic causal models. Ann NY Acad Sci 1064:16–36PubMedCrossRef Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ (2005) Investigating the functional role of callosal connections with dynamic causal models. Ann NY Acad Sci 1064:16–36PubMedCrossRef
Zurück zum Zitat Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. Neuroimage 42:649–662PubMedCrossRef Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. Neuroimage 42:649–662PubMedCrossRef
Zurück zum Zitat Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157 Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157
Zurück zum Zitat Strafella AP, Paus T, Fraraccio M, Dagher A (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615PubMedCrossRef Strafella AP, Paus T, Fraraccio M, Dagher A (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615PubMedCrossRef
Zurück zum Zitat Strens LH, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285PubMedCrossRef Strens LH, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285PubMedCrossRef
Zurück zum Zitat Swayne O, Bestmann S, Blankenburg F, Ruff CC, Teo JT, Weiskopf N, Driver J, Frackowiak R, Rothwell JC, Ward NS. (2006) The role of contralesional premotor cortex after stroke. 559.8. 2006. Society for Neuroscience Swayne O, Bestmann S, Blankenburg F, Ruff CC, Teo JT, Weiskopf N, Driver J, Frackowiak R, Rothwell JC, Ward NS. (2006) The role of contralesional premotor cortex after stroke. 559.8. 2006. Society for Neuroscience
Zurück zum Zitat Taylor PC, Nobre AC, Rushworth MF (2007a) FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399PubMedCrossRef Taylor PC, Nobre AC, Rushworth MF (2007a) FEF TMS affects visual cortical activity. Cereb Cortex 17:391–399PubMedCrossRef
Zurück zum Zitat Taylor PC, Nobre AC, Rushworth MF (2007b) Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J Neurosci 27:11343–11353PubMedCrossRef Taylor PC, Nobre AC, Rushworth MF (2007b) Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J Neurosci 27:11343–11353PubMedCrossRef
Zurück zum Zitat Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362PubMedCrossRef Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362PubMedCrossRef
Zurück zum Zitat Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521PubMedCrossRef Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521PubMedCrossRef
Zurück zum Zitat Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48:901–911PubMedCrossRef Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron 48:901–911PubMedCrossRef
Zurück zum Zitat Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817PubMedCrossRef Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817PubMedCrossRef
Zurück zum Zitat Touge T, Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138–2145PubMedCrossRef Touge T, Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138–2145PubMedCrossRef
Zurück zum Zitat Valero-Cabre A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C–2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRef Valero-Cabre A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C–2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRef
Zurück zum Zitat Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326PubMedCrossRef Virtanen J, Ruohonen J, Naatanen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326PubMedCrossRef
Zurück zum Zitat Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRef Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRef
Zurück zum Zitat Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79PubMedCrossRef Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79PubMedCrossRef
Zurück zum Zitat Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367PubMedCrossRef Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367PubMedCrossRef
Zurück zum Zitat Ziemann U (2004b) TMS induced plasticity in human cortex. Rev Neurosci 15:253–266PubMed Ziemann U (2004b) TMS induced plasticity in human cortex. Rev Neurosci 15:253–266PubMed
Zurück zum Zitat Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378PubMedCrossRef Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378PubMedCrossRef
Zurück zum Zitat Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330PubMedCrossRef Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330PubMedCrossRef
Zurück zum Zitat Ziemann U, Meintzschel F, Korchounov A, Ilic TV (2006) Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 20:243–251PubMedCrossRef Ziemann U, Meintzschel F, Korchounov A, Ilic TV (2006) Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 20:243–251PubMedCrossRef
Metadaten
Titel
Mapping causal interregional influences with concurrent TMS–fMRI
verfasst von
Sven Bestmann
Christian C. Ruff
Felix Blankenburg
Nikolaus Weiskopf
Jon Driver
John C. Rothwell
Publikationsdatum
01.12.2008
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 4/2008
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-008-1601-8

Weitere Artikel der Ausgabe 4/2008

Experimental Brain Research 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.