Skip to main content
Erschienen in: Experimental Brain Research 3-4/2010

01.12.2010 | Research Article

Functional reorganization of upper-body movement after spinal cord injury

verfasst von: Maura Casadio, Assaf Pressman, Alon Fishbach, Zachary Danziger, Santiago Acosta, David Chen, Hsiang-Yi Tseng, Ferdinando A. Mussa-Ivaldi

Erschienen in: Experimental Brain Research | Ausgabe 3-4/2010

Einloggen, um Zugang zu erhalten

Abstract

Survivors of spinal cord injury need to reorganize their residual body movements for interacting with assistive devices and performing activities that used to be easy and natural. To investigate movement reorganization, we asked subjects with high-level spinal cord injury (SCI) and unimpaired subjects to control a cursor on a screen by performing upper-body motions. While this task would be normally accomplished by operating a computer mouse, here shoulder motions were mapped into the cursor position. Both the control and the SCI subjects were rapidly able to reorganize their movements and to successfully control the cursor. The majority of the subjects in both groups were successful in reducing the movements that were not effective at producing cursor motions. This is inconsistent with the hypothesis that the control system is merely concerned with the accurate acquisition of the targets and is unconcerned with motions that are not relevant to this goal. In contrast, our findings suggest that subjects can learn to reorganize coordination so as to increase the correspondence between the subspace of their upper-body motions with the plane in which the controlled cursor moves. This is effectively equivalent to constructing an inverse internal model of the map from body motions to cursor motions, established by the experiment. These results are relevant to the development of interfaces for assistive devices that optimize the use of residual voluntary control and enhance the learning process in disabled users, searching for an easily learnable map between their body motor space and control space of the device.
Literatur
Zurück zum Zitat Baillieul J (1985) Kinematic programming alternatives for redundant manipulators. In: Proceedings of the IEEE international conference on robotics and automation, pp 722–728 Baillieul J (1985) Kinematic programming alternatives for redundant manipulators. In: Proceedings of the IEEE international conference on robotics and automation, pp 722–728
Zurück zum Zitat Baker DR, Wampler CW (1988) On the inverse kinematics of redundant manipulators. Int J Rob Res 7:3–21CrossRef Baker DR, Wampler CW (1988) On the inverse kinematics of redundant manipulators. Int J Rob Res 7:3–21CrossRef
Zurück zum Zitat Bernstein N (1967) The coordination and regulation of movement. Pegammon Press, Oxford Bernstein N (1967) The coordination and regulation of movement. Pegammon Press, Oxford
Zurück zum Zitat Birbaumer N, Ramos Murguialday A et al (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–117CrossRefPubMed Birbaumer N, Ramos Murguialday A et al (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–117CrossRefPubMed
Zurück zum Zitat Blesch A, Tuszynski MH (2002) Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Prog Brain Res 137:415–423CrossRefPubMed Blesch A, Tuszynski MH (2002) Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Prog Brain Res 137:415–423CrossRefPubMed
Zurück zum Zitat Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47CrossRefPubMed Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47CrossRefPubMed
Zurück zum Zitat Bregman BS, Diener PS et al (1997) Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. Adv Neurol 72:257–275PubMed Bregman BS, Diener PS et al (1997) Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. Adv Neurol 72:257–275PubMed
Zurück zum Zitat Bryden AM, Memberg WD et al (2000) Electrically stimulated elbow extension in persons with C5/C6 tetraplegia: a functional and physiological evaluation. Arch Phys Med Rehabil 81(1):80–88PubMed Bryden AM, Memberg WD et al (2000) Electrically stimulated elbow extension in persons with C5/C6 tetraplegia: a functional and physiological evaluation. Arch Phys Med Rehabil 81(1):80–88PubMed
Zurück zum Zitat Capaday C (2004) The integrated nature of motor cortical function. Neuroscientist 10:207–220CrossRefPubMed Capaday C (2004) The integrated nature of motor cortical function. Neuroscientist 10:207–220CrossRefPubMed
Zurück zum Zitat Chen R, Corwell B et al (1998) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450PubMed Chen R, Corwell B et al (1998) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450PubMed
Zurück zum Zitat Chen R, Cohen LG et al (2002) Nervous system reorganization following injury. Neuroscience 111:761–773CrossRefPubMed Chen R, Cohen LG et al (2002) Nervous system reorganization following injury. Neuroscience 111:761–773CrossRefPubMed
Zurück zum Zitat Cohen LG, Ziemann U et al (1999) Mechanisms, functional relevance and modulation of plasticity in the human central nervous system. Electroencephalogr Clin Neurophysiol Suppl 51:174–182PubMed Cohen LG, Ziemann U et al (1999) Mechanisms, functional relevance and modulation of plasticity in the human central nervous system. Electroencephalogr Clin Neurophysiol Suppl 51:174–182PubMed
Zurück zum Zitat Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673CrossRefPubMed Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673CrossRefPubMed
Zurück zum Zitat Cooper RA (1999) Engineering manual and electric powered wheelchairs. Crit Rev Biomed Eng 27:27–73PubMed Cooper RA (1999) Engineering manual and electric powered wheelchairs. Crit Rev Biomed Eng 27:27–73PubMed
Zurück zum Zitat Cote JN, Raymond D et al (2005) Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech 20:581–590CrossRef Cote JN, Raymond D et al (2005) Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech 20:581–590CrossRef
Zurück zum Zitat Crago PE, Memberg WD et al (1998) An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans Rehabil Eng 6(1):1–6CrossRefPubMed Crago PE, Memberg WD et al (1998) An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans Rehabil Eng 6(1):1–6CrossRefPubMed
Zurück zum Zitat Curt A, Van Hedel HJ et al (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685CrossRefPubMed Curt A, Van Hedel HJ et al (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685CrossRefPubMed
Zurück zum Zitat Danziger Z, Fishbach A et al (2009) Learning algorithms for human-machine interfaces. IEEE Trans Biomed Eng 56(5):1502–1511CrossRefPubMed Danziger Z, Fishbach A et al (2009) Learning algorithms for human-machine interfaces. IEEE Trans Biomed Eng 56(5):1502–1511CrossRefPubMed
Zurück zum Zitat Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15(2):149–165CrossRefPubMed Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15(2):149–165CrossRefPubMed
Zurück zum Zitat Dunlop SA (2008) Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 31(8):410–418CrossRefPubMed Dunlop SA (2008) Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 31(8):410–418CrossRefPubMed
Zurück zum Zitat Fawcett JW (2009) Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132(Pt 6):1417–1418CrossRefPubMed Fawcett JW (2009) Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132(Pt 6):1417–1418CrossRefPubMed
Zurück zum Zitat Fehr L, Langbein WE et al (2000) Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev 37(3):353–360PubMed Fehr L, Langbein WE et al (2000) Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev 37(3):353–360PubMed
Zurück zum Zitat Flanders M (1991) Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 11:2680–2693PubMed Flanders M (1991) Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 11:2680–2693PubMed
Zurück zum Zitat Fouad K, Krajacic A et al. (2010) Spinal cord injury and plasticity: opportunities and challenges. Brain Res Bull Fouad K, Krajacic A et al. (2010) Spinal cord injury and plasticity: opportunities and challenges. Brain Res Bull
Zurück zum Zitat Frost SB, Barbay S et al (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89(6):3205–3214CrossRefPubMed Frost SB, Barbay S et al (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89(6):3205–3214CrossRefPubMed
Zurück zum Zitat Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London
Zurück zum Zitat Georgopoulos AP, Schwartz AB et al (1986) Neuronal population coding of movement direction. Science 233:1357–1460CrossRef Georgopoulos AP, Schwartz AB et al (1986) Neuronal population coding of movement direction. Science 233:1357–1460CrossRef
Zurück zum Zitat Grea H, Desmurget M et al (2000) Postural invariance in three-dimensional reaching and grasping movements. Exp Brain Res 134:155–162CrossRefPubMed Grea H, Desmurget M et al (2000) Postural invariance in three-dimensional reaching and grasping movements. Exp Brain Res 134:155–162CrossRefPubMed
Zurück zum Zitat Grill JH, Peckham PH (1998) Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics. IEEE Trans Rehabil Eng 6(2):190–199CrossRefPubMed Grill JH, Peckham PH (1998) Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics. IEEE Trans Rehabil Eng 6(2):190–199CrossRefPubMed
Zurück zum Zitat Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243CrossRefPubMed Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243CrossRefPubMed
Zurück zum Zitat Hunt PC, Boninger ML et al (2004) Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil 85(11):1859–1864CrossRefPubMed Hunt PC, Boninger ML et al (2004) Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil 85(11):1859–1864CrossRefPubMed
Zurück zum Zitat Jolliffe IT (2002) Principal component analysis. Springer, New York Jolliffe IT (2002) Principal component analysis. Springer, New York
Zurück zum Zitat Jurkiewicz MT, Mikulis DJ et al (2007) Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 21(6):527–538CrossRefPubMed Jurkiewicz MT, Mikulis DJ et al (2007) Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 21(6):527–538CrossRefPubMed
Zurück zum Zitat Kaye HS, Kang T et al (2000) Mobility device use in the United States. Disability statistics report. N. 14. Department of Education, National Institute on Disability and Rehabilitation Research, Washington Kaye HS, Kang T et al (2000) Mobility device use in the United States. Disability statistics report. N. 14. Department of Education, National Institute on Disability and Rehabilitation Research, Washington
Zurück zum Zitat Kessler GD, Hodges LF et al (1995) Evaluation of the CyberGlove(TM) as a whole hand input device. ACM Trans Comput Hum Interact 2:263–283CrossRef Kessler GD, Hodges LF et al (1995) Evaluation of the CyberGlove(TM) as a whole hand input device. ACM Trans Comput Hum Interact 2:263–283CrossRef
Zurück zum Zitat Kilgore KL, Peckham PH (1993a) Grasp synthesis for upper-extremity FNS. Part 1. Automated method for synthesising the stimulus map. Med Biol Eng Comput 31(6):607–614CrossRefPubMed Kilgore KL, Peckham PH (1993a) Grasp synthesis for upper-extremity FNS. Part 1. Automated method for synthesising the stimulus map. Med Biol Eng Comput 31(6):607–614CrossRefPubMed
Zurück zum Zitat Kilgore KL, Peckham PH (1993b) Grasp synthesis for upper-extremity FNS. Part 2. Evaluation of the influence of electrode recruitment properties. Med Biol Eng Comput 31(6):615–622CrossRefPubMed Kilgore KL, Peckham PH (1993b) Grasp synthesis for upper-extremity FNS. Part 2. Evaluation of the influence of electrode recruitment properties. Med Biol Eng Comput 31(6):615–622CrossRefPubMed
Zurück zum Zitat Kilgore KL, Peckham PH et al (1989) Synthesis of hand grasp using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):761–770CrossRefPubMed Kilgore KL, Peckham PH et al (1989) Synthesis of hand grasp using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):761–770CrossRefPubMed
Zurück zum Zitat Kilgore KL, Peckham PH et al (1997) An implanted upper-extremity neuroprosthesis. Follow-up of five patients. J Bone Joint Surg Am 79(4):533–541PubMed Kilgore KL, Peckham PH et al (1997) An implanted upper-extremity neuroprosthesis. Follow-up of five patients. J Bone Joint Surg Am 79(4):533–541PubMed
Zurück zum Zitat Kilgore KL, Hoyen HA et al (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33(4):539–550CrossRefPubMed Kilgore KL, Hoyen HA et al (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33(4):539–550CrossRefPubMed
Zurück zum Zitat Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cybern SMC-13:245–250 Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cybern SMC-13:245–250
Zurück zum Zitat Kuiken T (2006) Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am 17(1):1–13PubMed Kuiken T (2006) Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am 17(1):1–13PubMed
Zurück zum Zitat Kuiken TA, Dumanian GA et al (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253PubMed Kuiken TA, Dumanian GA et al (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253PubMed
Zurück zum Zitat Kuiken TA, Miller LA et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369(9559):371–380CrossRefPubMed Kuiken TA, Miller LA et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369(9559):371–380CrossRefPubMed
Zurück zum Zitat Kuiken TA, Li G et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301(6):619–628CrossRefPubMed Kuiken TA, Li G et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301(6):619–628CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JF et al (2001) Structure of motor variability in marginally redundant multifinger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed Latash ML, Scholz JF et al (2001) Structure of motor variability in marginally redundant multifinger force production tasks. Exp Brain Res 141:153–165CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JP et al (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31CrossRefPubMed Latash ML, Scholz JP et al (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31CrossRefPubMed
Zurück zum Zitat Lee W (1984) Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16:135–170PubMed Lee W (1984) Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16:135–170PubMed
Zurück zum Zitat Mijovic B, Popovic MB et al (2008) Synergistic control of forearm based on accelerometer data and artificial neural networks. Braz J Med Biol Res 41(5):389–397CrossRefPubMed Mijovic B, Popovic MB et al (2008) Synergistic control of forearm based on accelerometer data and artificial neural networks. Braz J Med Biol Res 41(5):389–397CrossRefPubMed
Zurück zum Zitat Miller LJ, Peckham PH et al (1989) Elbow extension in the C5 quadriplegic using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):771–780CrossRefPubMed Miller LJ, Peckham PH et al (1989) Elbow extension in the C5 quadriplegic using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):771–780CrossRefPubMed
Zurück zum Zitat Mosier KM, Scheidt RA et al (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372CrossRefPubMed Mosier KM, Scheidt RA et al (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372CrossRefPubMed
Zurück zum Zitat Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Phil Trans R Soc Lond B 355:1755–1769CrossRef Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Phil Trans R Soc Lond B 355:1755–1769CrossRef
Zurück zum Zitat Mussa-Ivaldi FA, Hogan N (1991) Integrable solutions of kinematic redundancy via impedance control. Int J Rob Res 10:481–491CrossRef Mussa-Ivaldi FA, Hogan N (1991) Integrable solutions of kinematic redundancy via impedance control. Int J Rob Res 10:481–491CrossRef
Zurück zum Zitat Nudo RJ (2003a) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 41(Suppl):7–10CrossRefPubMed Nudo RJ (2003a) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 41(Suppl):7–10CrossRefPubMed
Zurück zum Zitat Nudo RJ (2003b) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76PubMed Nudo RJ (2003b) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76PubMed
Zurück zum Zitat Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644CrossRefPubMed Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644CrossRefPubMed
Zurück zum Zitat Nudo RJ, Friel KM (1999) Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris) 155(9):713–717 Nudo RJ, Friel KM (1999) Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris) 155(9):713–717
Zurück zum Zitat Nudo RJ, Wise BM et al (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794CrossRefPubMed Nudo RJ, Wise BM et al (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794CrossRefPubMed
Zurück zum Zitat O’Shaughnessy KD, Dumanian GA et al (2008) Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am 90(2):393–400CrossRefPubMed O’Shaughnessy KD, Dumanian GA et al (2008) Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am 90(2):393–400CrossRefPubMed
Zurück zum Zitat Peckham PH, Kilgore KL et al (2002) An advanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. J Hand Surg Am 27(2):265–276CrossRefPubMed Peckham PH, Kilgore KL et al (2002) An advanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. J Hand Surg Am 27(2):265–276CrossRefPubMed
Zurück zum Zitat Popovic MB (2003) Control of neural prostheses for grasping and reaching. Med Eng Phys 25(1):41–50CrossRefPubMed Popovic MB (2003) Control of neural prostheses for grasping and reaching. Med Eng Phys 25(1):41–50CrossRefPubMed
Zurück zum Zitat Popovic M, Popovic D (2001) Cloning biological synergies improves control of elbow neuroprosthesis. IEEE Eng Med Biol Mag 20(1):74–81CrossRefPubMed Popovic M, Popovic D (2001) Cloning biological synergies improves control of elbow neuroprosthesis. IEEE Eng Med Biol Mag 20(1):74–81CrossRefPubMed
Zurück zum Zitat Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415CrossRefPubMed Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415CrossRefPubMed
Zurück zum Zitat Santello M, Flanders M et al (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115PubMed Santello M, Flanders M et al (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115PubMed
Zurück zum Zitat Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRef Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRef
Zurück zum Zitat Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed
Zurück zum Zitat Slotine JJ, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14(2):137–145CrossRefPubMed Slotine JJ, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14(2):137–145CrossRefPubMed
Zurück zum Zitat St-Onge N, Duval N et al (2004) Interjoint coordination in lower limbs in patients with a rupture of the anterior cruciate ligament of the knee joint. Knee Surg Sports Traumatol Arthrosc 12:203–216CrossRefPubMed St-Onge N, Duval N et al (2004) Interjoint coordination in lower limbs in patients with a rupture of the anterior cruciate ligament of the knee joint. Knee Surg Sports Traumatol Arthrosc 12:203–216CrossRefPubMed
Zurück zum Zitat Teulings HL, Contreras-Vidal JL et al (1997) Parkinsonism reduces coordination of finger, wrist, and arm fine motor control. Exp Neurol 146:159–170CrossRefPubMed Teulings HL, Contreras-Vidal JL et al (1997) Parkinsonism reduces coordination of finger, wrist, and arm fine motor control. Exp Neurol 146:159–170CrossRefPubMed
Zurück zum Zitat Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235CrossRefPubMed Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235CrossRefPubMed
Zurück zum Zitat Ward NS (2004) Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol 17(6):725–730CrossRefPubMed Ward NS (2004) Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol 17(6):725–730CrossRefPubMed
Zurück zum Zitat Winters JM, Wang Y (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22:56–65CrossRefPubMed Winters JM, Wang Y (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22:56–65CrossRefPubMed
Metadaten
Titel
Functional reorganization of upper-body movement after spinal cord injury
verfasst von
Maura Casadio
Assaf Pressman
Alon Fishbach
Zachary Danziger
Santiago Acosta
David Chen
Hsiang-Yi Tseng
Ferdinando A. Mussa-Ivaldi
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3-4/2010
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2427-8

Weitere Artikel der Ausgabe 3-4/2010

Experimental Brain Research 3-4/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.