Skip to main content
Erschienen in: Calcified Tissue International 2/2008

01.08.2008

A Comparison of the Physical and Chemical Differences Between Cancellous and Cortical Bovine Bone Mineral at Two Ages

verfasst von: Liisa T. Kuhn, Marc D. Grynpas, Christian C. Rey, Yaotang Wu, Jerome L. Ackerman, Melvin J. Glimcher

Erschienen in: Calcified Tissue International | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals.
Literatur
1.
Zurück zum Zitat Glimcher MJ (1998) The nature of the mineral phase in bone: biological and clinical applications. In: Alvioli L, Krane S (eds) Metabolic bone disease. Academic Press, New York, pp 23–50CrossRef Glimcher MJ (1998) The nature of the mineral phase in bone: biological and clinical applications. In: Alvioli L, Krane S (eds) Metabolic bone disease. Academic Press, New York, pp 23–50CrossRef
2.
Zurück zum Zitat LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, Basel, p 110 LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, Basel, p 110
3.
Zurück zum Zitat Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255PubMedCrossRef Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255PubMedCrossRef
4.
Zurück zum Zitat Bonar LC, Grynpas MD, Glimcher MJ (1984) Failure to detect crystalline brushite in embryonic chick and bovine bone by X-ray diffraction. J Ultrastruct Res 86:93–99PubMedCrossRef Bonar LC, Grynpas MD, Glimcher MJ (1984) Failure to detect crystalline brushite in embryonic chick and bovine bone by X-ray diffraction. J Ultrastruct Res 86:93–99PubMedCrossRef
5.
Zurück zum Zitat Biltz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 36:259–263CrossRef Biltz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 36:259–263CrossRef
6.
Zurück zum Zitat Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRef
7.
Zurück zum Zitat Loong C-K, Rey C, Kuhn LT, Combes C, Wu Y, Chen S-H, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron scattering study. Bone 26:599–602PubMedCrossRef Loong C-K, Rey C, Kuhn LT, Combes C, Wu Y, Chen S-H, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron scattering study. Bone 26:599–602PubMedCrossRef
8.
Zurück zum Zitat Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127PubMedCrossRef Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127PubMedCrossRef
9.
Zurück zum Zitat Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20:625–634PubMedCrossRef Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20:625–634PubMedCrossRef
10.
Zurück zum Zitat Wu Y, Glimcher MJ, Rey C, Ackerman JL (1994) A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. J Mol Biol 244:423–435PubMedCrossRef Wu Y, Glimcher MJ, Rey C, Ackerman JL (1994) A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. J Mol Biol 244:423–435PubMedCrossRef
11.
Zurück zum Zitat Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 23:6115–6120PubMedCrossRef Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry 23:6115–6120PubMedCrossRef
12.
Zurück zum Zitat Legros R, Bonel G, Montel G, Balmain-OLigo N, Juster M (1977) Systematic study of the variations in mineral composition of different bones from various animals according to their localization [in French]. C R Acad Sci Hebd Seances Acad Sci D 285:1519–1522PubMed Legros R, Bonel G, Montel G, Balmain-OLigo N, Juster M (1977) Systematic study of the variations in mineral composition of different bones from various animals according to their localization [in French]. C R Acad Sci Hebd Seances Acad Sci D 285:1519–1522PubMed
13.
Zurück zum Zitat Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Chem 68:45–51 Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Chem 68:45–51
14.
Zurück zum Zitat Mokrzynski S (1994) Analysis of mineral composition of femoral bones in the human fetus [in Polish]. An Acad Med Stetin 40:23–35 Mokrzynski S (1994) Analysis of mineral composition of femoral bones in the human fetus [in Polish]. An Acad Med Stetin 40:23–35
15.
Zurück zum Zitat Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopy analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196PubMedCrossRef Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopy analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196PubMedCrossRef
16.
Zurück zum Zitat Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144PubMedCrossRef Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144PubMedCrossRef
17.
Zurück zum Zitat Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258PubMedCrossRef Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258PubMedCrossRef
18.
Zurück zum Zitat Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038PubMedCrossRef Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038PubMedCrossRef
19.
Zurück zum Zitat Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126PubMedCrossRef Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126PubMedCrossRef
20.
Zurück zum Zitat Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu4 PO4 3− vibration. Biochim Biophys Acta 1527:11–19PubMed Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu4 PO4 3− vibration. Biochim Biophys Acta 1527:11–19PubMed
21.
Zurück zum Zitat Bonar LC, Roufosse AH, Sabine K, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tiss Res 35:202–209CrossRef Bonar LC, Roufosse AH, Sabine K, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tiss Res 35:202–209CrossRef
22.
Zurück zum Zitat Grynpas MD (1976) The crystallinity of bone mineral. J Mater Sci 11:1691–1696CrossRef Grynpas MD (1976) The crystallinity of bone mineral. J Mater Sci 11:1691–1696CrossRef
23.
Zurück zum Zitat Bonar LC, Roufosse AN, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef Bonar LC, Roufosse AN, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRef
24.
Zurück zum Zitat Matsushima N, Hikichi K (1989) Age changes in the crystallinity of bone mineral and in the disorder of its crystal. Biochim Biophys Acta 992:155–159PubMed Matsushima N, Hikichi K (1989) Age changes in the crystallinity of bone mineral and in the disorder of its crystal. Biochim Biophys Acta 992:155–159PubMed
25.
Zurück zum Zitat Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. 1: Investigations in the υ4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRef Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. 1: Investigations in the υ4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRef
26.
Zurück zum Zitat Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. 2: Investigations in the υ3 PO4 domain. Calcif Tissue Int 49:383–388PubMedCrossRef Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. 2: Investigations in the υ3 PO4 domain. Calcif Tissue Int 49:383–388PubMedCrossRef
27.
Zurück zum Zitat Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mater 5:345–356 Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mater 5:345–356
28.
Zurück zum Zitat Rey C, Glimcher MJ (1992) Short range organization of the Ca-P mineral phase in bone and enamel: changes with age and maturation. In: Slavkin H, Price P (eds) Chemistry and biology of mineralized tissues. Elsevier, San Diego, pp 5–18 Rey C, Glimcher MJ (1992) Short range organization of the Ca-P mineral phase in bone and enamel: changes with age and maturation. In: Slavkin H, Price P (eds) Chemistry and biology of mineralized tissues. Elsevier, San Diego, pp 5–18
29.
Zurück zum Zitat Cazalbou S, Combes C, Eichert D, Rey C, Glimcher MJ (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22:310–317PubMedCrossRef Cazalbou S, Combes C, Eichert D, Rey C, Glimcher MJ (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22:310–317PubMedCrossRef
30.
Zurück zum Zitat Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486PubMedCrossRef Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486PubMedCrossRef
31.
Zurück zum Zitat Handschin RG, Stern WB (1992) Crystallographic lattice refinement of human bone. Calcif Tissue Int 51:111–120PubMedCrossRef Handschin RG, Stern WB (1992) Crystallographic lattice refinement of human bone. Calcif Tissue Int 51:111–120PubMedCrossRef
32.
Zurück zum Zitat Simmons ED Jr, Pritzker KPH, Grynpas MD (1991) Age-related changes in the human femoral cortex. J Orthop Res 9:155–167PubMedCrossRef Simmons ED Jr, Pritzker KPH, Grynpas MD (1991) Age-related changes in the human femoral cortex. J Orthop Res 9:155–167PubMedCrossRef
33.
Zurück zum Zitat Lundon K, Dumitriu M, Grynpas MD (1997) Supraphysiologic levels of testosterone affect cancellous and cortical bone in the young female cynomolgus monkey. Calcif Tissue Int 60:54–62PubMedCrossRef Lundon K, Dumitriu M, Grynpas MD (1997) Supraphysiologic levels of testosterone affect cancellous and cortical bone in the young female cynomolgus monkey. Calcif Tissue Int 60:54–62PubMedCrossRef
34.
Zurück zum Zitat Kim H-M, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMedCrossRef Kim H-M, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMedCrossRef
35.
Zurück zum Zitat Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38:107–114PubMedCrossRef Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38:107–114PubMedCrossRef
36.
Zurück zum Zitat Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO 3 2- . J Bone Miner Res 16:893–900PubMedCrossRef Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO 3 2- . J Bone Miner Res 16:893–900PubMedCrossRef
37.
Zurück zum Zitat Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R (2004) Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc 58:1–9PubMedCrossRef Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R (2004) Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc 58:1–9PubMedCrossRef
38.
Zurück zum Zitat Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef
39.
Zurück zum Zitat Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487PubMed Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487PubMed
40.
Zurück zum Zitat Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boskey AL, Fratzl P (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293PubMedCrossRef Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boskey AL, Fratzl P (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293PubMedCrossRef
41.
Zurück zum Zitat Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18:1005–1011PubMedCrossRef Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18:1005–1011PubMedCrossRef
42.
Zurück zum Zitat Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72:610–626PubMedCrossRef Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72:610–626PubMedCrossRef
43.
Zurück zum Zitat Kaflak A, Chmielewski D, Górecki A, Kolodziejski W (1998) Kinetics of 1H–31P cross polarization in human trabecular bone. Solid State Nucl Magn Reson 10:191–195PubMedCrossRef Kaflak A, Chmielewski D, Górecki A, Kolodziejski W (1998) Kinetics of 1H–31P cross polarization in human trabecular bone. Solid State Nucl Magn Reson 10:191–195PubMedCrossRef
44.
Zurück zum Zitat Wu Y, Ackerman JL, Kim H-M, Rey C, Barroug A, Glimcher MJ (2002) Nuclear magnetic resonance spin–spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatites. J Bone Miner Res 17:472–480PubMedCrossRef Wu Y, Ackerman JL, Kim H-M, Rey C, Barroug A, Glimcher MJ (2002) Nuclear magnetic resonance spin–spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatites. J Bone Miner Res 17:472–480PubMedCrossRef
45.
Zurück zum Zitat Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geological materials by coulometric titration. Chem Geol 53:125–128CrossRef Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geological materials by coulometric titration. Chem Geol 53:125–128CrossRef
46.
Zurück zum Zitat Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystallite and amorphous materials, 2nd edn. Wiley, New York Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystallite and amorphous materials, 2nd edn. Wiley, New York
47.
Zurück zum Zitat Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRef
48.
Zurück zum Zitat Kuhn LT, Wu Y, Rey C, Gerstenfeld LC, Grynpas MD, Ackerman JL, Kim HM, Glimcher MJ (2000) Structure, composition and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures. J Bone Miner Res 15:1301–1309PubMedCrossRef Kuhn LT, Wu Y, Rey C, Gerstenfeld LC, Grynpas MD, Ackerman JL, Kim HM, Glimcher MJ (2000) Structure, composition and maturation of newly deposited calcium-phosphate crystals in chicken osteoblast cell cultures. J Bone Miner Res 15:1301–1309PubMedCrossRef
49.
Zurück zum Zitat Repo MA, Bockman RS, Betts F, Boskey AL, Alcock NW, Warrel RP Jr (1988) Effect of gallium on bone mineral properties. Calcif Tissue Int 43:300–306PubMedCrossRef Repo MA, Bockman RS, Betts F, Boskey AL, Alcock NW, Warrel RP Jr (1988) Effect of gallium on bone mineral properties. Calcif Tissue Int 43:300–306PubMedCrossRef
Metadaten
Titel
A Comparison of the Physical and Chemical Differences Between Cancellous and Cortical Bovine Bone Mineral at Two Ages
verfasst von
Liisa T. Kuhn
Marc D. Grynpas
Christian C. Rey
Yaotang Wu
Jerome L. Ackerman
Melvin J. Glimcher
Publikationsdatum
01.08.2008
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 2/2008
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-008-9164-z

Weitere Artikel der Ausgabe 2/2008

Calcified Tissue International 2/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.