Skip to main content
Erschienen in: Abdominal Radiology 2/2022

25.11.2021 | Kidneys, Ureters, Bladder, Retroperitoneum

Machine learning based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients

verfasst von: Masatoyo Nakajo, Megumi Jinguji, Atsushi Tani, Erina Yano, Chin Khang Hoo, Daisuke Hirahara, Shinichi Togami, Hiroaki Kobayashi, Takashi Yoshiura

Erschienen in: Abdominal Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To examine the usefulness of machine learning to predict prognosis in cervical cancer using clinical and radiomic features of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (CT) (18F-FDG-PET/CT).

Methods

This retrospective study included 50 cervical cancer patients who underwent 18F-FDG-PET/CT before treatment. Four clinical (age, histology, stage, and treatment) and 41 18F-FDG-PET-based radiomic features were ranked and a subset of useful features for association with disease progression was selected based on decrease of the Gini impurity. Six machine learning algorithms (random forest, neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC). Progression-free survival (PFS) was assessed using Cox regression analysis.

Results

The five top predictors of disease progression were: stage, surface area, metabolic tumor volume, gray-level run length non-uniformity (GLRLM_RLNU), and gray-level non-uniformity for run (GLRLM_GLNU). The naive Bayes model was the best-performing classifier for predicting disease progression (AUC = 0.872, accuracy = 0.780, F1 score = 0.781, precision = 0.788, and recall = 0.780). In the naive Bayes model, 5-year PFS was significantly higher in predicted non-progression than predicted progression (80.1% vs. 9.1%, p < 0.001) and was only the independent factor for PFS in multivariate analysis (HR, 6.89; 95% CI, 1.92–24.69; p = 0.003).

Conclusion

A machine learning approach based on clinical and pretreatment 18F-FDG PET-based radiomic features may be useful for predicting tumor progression in cervical cancer patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–86.PubMedCrossRef Ferlay J, Soerjomataram I, Dikshit R, et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–86.PubMedCrossRef
2.
Zurück zum Zitat Wiebe E, Denny L, Thomas G (2012) Cancer of the cervix uteri. Int J Gynaecol Obstet 119:S100–109PubMedCrossRef Wiebe E, Denny L, Thomas G (2012) Cancer of the cervix uteri. Int J Gynaecol Obstet 119:S100–109PubMedCrossRef
3.
Zurück zum Zitat Rose PG, Java J, Whitney CW, et al (2015) Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/Gynecologic oncology group randomized trials of chemoradiotherapy. J Clin Oncol 33:2136–2142PubMedPubMedCentralCrossRef Rose PG, Java J, Whitney CW, et al (2015) Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/Gynecologic oncology group randomized trials of chemoradiotherapy. J Clin Oncol 33:2136–2142PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474PubMedCrossRef Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17:1471–1474PubMedCrossRef
5.
Zurück zum Zitat Herrera FG, Breuneval T, Prior JO, Bourhis J, Ozsahin M (2016) [18F] FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol 11:43.PubMedPubMedCentralCrossRef Herrera FG, Breuneval T, Prior JO, Bourhis J, Ozsahin M (2016) [18F] FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol 11:43.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRef
7.
Zurück zum Zitat von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: Current applications and future directions. Radiology 238:405–422CrossRef von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: Current applications and future directions. Radiology 238:405–422CrossRef
8.
Zurück zum Zitat Yang F, Thomas MA, Dehdashti F, et al (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727PubMedPubMedCentralCrossRef Yang F, Thomas MA, Dehdashti F, et al (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Ho KC, Fang YH, Chung HW, et al (2016) A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging 6:166–175PubMedPubMedCentral Ho KC, Fang YH, Chung HW, et al (2016) A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging 6:166–175PubMedPubMedCentral
10.
Zurück zum Zitat Lucia F, Visvikis D, Desseroit MC, et al (2018) Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 45:768–786PubMedCrossRef Lucia F, Visvikis D, Desseroit MC, et al (2018) Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 45:768–786PubMedCrossRef
11.
Zurück zum Zitat Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515PubMedCrossRef Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515PubMedCrossRef
12.
Zurück zum Zitat Waljee AK, Higgins PD (2010) Machine learning in medicine: A primer for physicians. Am J Gastroenterol 105:1224–1226PubMedCrossRef Waljee AK, Higgins PD (2010) Machine learning in medicine: A primer for physicians. Am J Gastroenterol 105:1224–1226PubMedCrossRef
13.
Zurück zum Zitat Gao X, Chu C, Li Y, et al (2015) The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol 84:312–317PubMedCrossRef Gao X, Chu C, Li Y, et al (2015) The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol 84:312–317PubMedCrossRef
14.
Zurück zum Zitat Ypsilantis PP, Siddique M, Sohn HM, et al (2015) Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One 10:e0137036PubMedPubMedCentralCrossRef Ypsilantis PP, Siddique M, Sohn HM, et al (2015) Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One 10:e0137036PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Ahn HK, Lee H, Kim SG, Hyun SH (2019) Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer. Clin Radiol 74:467–473PubMedCrossRef Ahn HK, Lee H, Kim SG, Hyun SH (2019) Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer. Clin Radiol 74:467–473PubMedCrossRef
16.
Zurück zum Zitat Shen WC, Chen SW, Wu KC, et al (2019) Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. Eur Radiol 29:6741–6749.PubMedCrossRef Shen WC, Chen SW, Wu KC, et al (2019) Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. Eur Radiol 29:6741–6749.PubMedCrossRef
17.
Zurück zum Zitat Chong GO, Lee YH, Hong DG, Cho YL, Lee YS (2015) Unabsorbed polylactide adhesion barrier mimicking recurrence of gynecologic malignant diseases with increased 18F-FDG uptake on PET/CT. Arch Gynecol Obstet 292:191–195PubMedCrossRef Chong GO, Lee YH, Hong DG, Cho YL, Lee YS (2015) Unabsorbed polylactide adhesion barrier mimicking recurrence of gynecologic malignant diseases with increased 18F-FDG uptake on PET/CT. Arch Gynecol Obstet 292:191–195PubMedCrossRef
18.
Zurück zum Zitat Nioche C, Orlhac F, Boughdad S, et al (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789PubMedCrossRef Nioche C, Orlhac F, Boughdad S, et al (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789PubMedCrossRef
19.
Zurück zum Zitat Brown PJ, Zhong J, Frood R, et al (2019) Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging 46:2790–2799PubMedPubMedCentralCrossRef Brown PJ, Zhong J, Frood R, et al (2019) Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging 46:2790–2799PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127PubMedCrossRef Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127PubMedCrossRef
21.
Zurück zum Zitat Orlhac F, Boughdad S, Philippe C, et al (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328PubMedCrossRef Orlhac F, Boughdad S, Philippe C, et al (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328PubMedCrossRef
22.
Zurück zum Zitat FIGO Committee on Gynecologic Oncology (2014) FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int J Gynaecol Obstet 125:97–98CrossRef FIGO Committee on Gynecologic Oncology (2014) FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int J Gynaecol Obstet 125:97–98CrossRef
23.
Zurück zum Zitat Hyun SH, Ahn MS, Koh YW, Lee SJ (2019) A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med 44:956–960PubMedCrossRef Hyun SH, Ahn MS, Koh YW, Lee SJ (2019) A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med 44:956–960PubMedCrossRef
24.
Zurück zum Zitat Sian H, Purnami SW (2015) Combine sampling support vector machine for imbalanced data classification. Procedia Computer Science 72:59–66CrossRef Sian H, Purnami SW (2015) Combine sampling support vector machine for imbalanced data classification. Procedia Computer Science 72:59–66CrossRef
25.
Zurück zum Zitat Xie Y, Jiang B, Gong E, et al (2019) Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR Am J Roentgenol 212:44–51PubMedCrossRef Xie Y, Jiang B, Gong E, et al (2019) Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR Am J Roentgenol 212:44–51PubMedCrossRef
26.
Zurück zum Zitat Jung Y (2018) Multiple predicting K-fold cross-validation for model selection. J Nonparametr Stat 30:197–215CrossRef Jung Y (2018) Multiple predicting K-fold cross-validation for model selection. J Nonparametr Stat 30:197–215CrossRef
29.
Zurück zum Zitat Rahman R, Kodesh A, Levine SZ, Sandin S, Reichenberg A, Schlessinger A (2020) Identification of newborns at risk for autism using electronic medical records and machine learning. Eur Psychiatry 63:e22.PubMedPubMedCentralCrossRef Rahman R, Kodesh A, Levine SZ, Sandin S, Reichenberg A, Schlessinger A (2020) Identification of newborns at risk for autism using electronic medical records and machine learning. Eur Psychiatry 63:e22.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hotta M, Minamimoto R, Miwa K (2019). 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 9:15666PubMedPubMedCentralCrossRef Hotta M, Minamimoto R, Miwa K (2019). 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 9:15666PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Demsar J, Curk T, Erjavec A, et al (2013) Orange: data mining toolbox in Python. J Machine Learn Res 14:2349–2353 Demsar J, Curk T, Erjavec A, et al (2013) Orange: data mining toolbox in Python. J Machine Learn Res 14:2349–2353
32.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44:837–845.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44:837–845.CrossRef
33.
Zurück zum Zitat Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48:73-85CrossRef Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48:73-85CrossRef
34.
Zurück zum Zitat Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 4:172–179CrossRef Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 4:172–179CrossRef
36.
Zurück zum Zitat Areeckal AS, Jayasheelan N, Kamath J, Zawadynski S, Kocher M, David S (2018) Early diagnosis of osteoporosis using radiogrammetry and texture analysis from hand and wrist radiographs in Indian population Osteoporos Int 29:665–673PubMedCrossRef Areeckal AS, Jayasheelan N, Kamath J, Zawadynski S, Kocher M, David S (2018) Early diagnosis of osteoporosis using radiogrammetry and texture analysis from hand and wrist radiographs in Indian population Osteoporos Int 29:665–673PubMedCrossRef
37.
Zurück zum Zitat Bollineni, VR, Ytre-Hauge S, Gulati A, et al (2018) The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients. European J Hybrid Imaging 2:24CrossRef Bollineni, VR, Ytre-Hauge S, Gulati A, et al (2018) The prognostic value of preoperative FDG-PET/CT metabolic parameters in cervical cancer patients. European J Hybrid Imaging 2:24CrossRef
38.
Zurück zum Zitat Limkin EJ, Reuzé S, Carré A, et al (2019) The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Sci Rep 9:4329PubMedPubMedCentralCrossRef Limkin EJ, Reuzé S, Carré A, et al (2019) The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Sci Rep 9:4329PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chaddad A, Desrosiers C, Toews M, Abdulkarim B (2017) Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget. 8:104393–104407PubMedPubMedCentralCrossRef Chaddad A, Desrosiers C, Toews M, Abdulkarim B (2017) Predicting survival time of lung cancer patients using radiomic analysis. Oncotarget. 8:104393–104407PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Mehta R, Cai K, Kumar N, et al (2017) A lesion-based response prediction model using pretherapy PET/CT image features for Y90 radioembolization to hepatic malignancies. Technol Cancer Res Treat 16:620–629PubMedCrossRef Mehta R, Cai K, Kumar N, et al (2017) A lesion-based response prediction model using pretherapy PET/CT image features for Y90 radioembolization to hepatic malignancies. Technol Cancer Res Treat 16:620–629PubMedCrossRef
41.
Zurück zum Zitat Uribe CF, Mathotaarachchi S, Gaudet V, et al (2019) Machine learning in nuclear medicine: part 1-introduction. J Nucl Med 60:451–458PubMedCrossRef Uribe CF, Mathotaarachchi S, Gaudet V, et al (2019) Machine learning in nuclear medicine: part 1-introduction. J Nucl Med 60:451–458PubMedCrossRef
42.
Zurück zum Zitat Ngiam, KY Khor, IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20:e262–273PubMedCrossRef Ngiam, KY Khor, IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20:e262–273PubMedCrossRef
43.
Zurück zum Zitat Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143-1158PubMedPubMedCentralCrossRef Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143-1158PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Sanduleanu S, Woodruff HC, de Jong EEC, et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349-360PubMedCrossRef Sanduleanu S, Woodruff HC, de Jong EEC, et al (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349-360PubMedCrossRef
45.
46.
Zurück zum Zitat Morin O, Vallières M, Jochems A, et al (2018) A deep look into the future of quantitative imaging in oncology: A statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys 102:1074–1082PubMedCrossRef Morin O, Vallières M, Jochems A, et al (2018) A deep look into the future of quantitative imaging in oncology: A statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys 102:1074–1082PubMedCrossRef
47.
Zurück zum Zitat Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498-4509.PubMedCrossRef Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498-4509.PubMedCrossRef
Metadaten
Titel
Machine learning based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features to predict prognosis of cervical cancer patients
verfasst von
Masatoyo Nakajo
Megumi Jinguji
Atsushi Tani
Erina Yano
Chin Khang Hoo
Daisuke Hirahara
Shinichi Togami
Hiroaki Kobayashi
Takashi Yoshiura
Publikationsdatum
25.11.2021
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 2/2022
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-021-03350-y

Weitere Artikel der Ausgabe 2/2022

Abdominal Radiology 2/2022 Zur Ausgabe

PET kann infarktgefährdete Koronararterien entdecken

04.06.2024 Koronare Herzerkrankung Nachrichten

Der Nachweis aktiver Plaques mittels 18F-Natriumfluorid-PET hilft nicht nur, infarktgefährdete Patienten, sondern auch infarktgefährdete Koronararterien zu erkennen. Von einer gezielten Behandlung vulnerabler Plaques ist man trotzdem weit entfernt.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.