Skip to main content
Erschienen in: Cancer Chemotherapy and Pharmacology 1/2006

01.07.2006 | Original Article

Bortezomib interactions with chemotherapy agents in acute leukemia in vitro

verfasst von: Terzah M. Horton, Anurhadha Gannavarapu, Susan M. Blaney, David Z. D’Argenio, Sharon E. Plon, Stacey L. Berg

Erschienen in: Cancer Chemotherapy and Pharmacology | Ausgabe 1/2006

Einloggen, um Zugang zu erhalten

Abstract

Although there is effective chemotherapy for many patients with leukemia, 20% of children and up to 65% of adults relapse. Novel therapies are needed to treat these patients. Leukemia cells are very sensitive to the proteasome inhibitor bortezomib (VELCADE®, PS-341), which enhances the in vitro cytotoxic effects of dexamethasone and doxorubicin in multiple myeloma. To determine if bortezomib enhances the cytotoxicity of agents used in leukemia, we employed an in vitro tetrazolium-based colorimetric assay (MTT) to evaluate the cytotoxic effects of bortezomib alone and in combination with dexamethasone, vincristine, doxorubicin, cytarabine, asparaginase, geldanamycin, trichostatin A, and the bcl-2 inhibitor HA14.1. We demonstrated that primary leukemia lymphoblasts and leukemia cell lines are sensitive to bortezomib, with an average IC50 of 12 nM. Qualitative and quantitative bortezomib-drug interactions were evaluated using the universal response surface approach (URSA). Bortezomib was synergistic with dexamethasone in dexamethasone-sensitive leukemia cells, and additive with vincristine, asparaginase, cytarabine, and doxorubicin. The anti-leukemic activity of bortezomib was also additive with geldanamycin and HA14.1, and additive or synergistic with trichostatin A. These results were compared to analysis using the median-dose effect method, which generated complex drug interactions due to differences in dose-response curve sigmoidicities. These data suggest bortezomib could potentiate the cytotoxic effects of combination chemotherapy in patients with leukemia.
Literatur
1.
Zurück zum Zitat SEER Cancer Statistic Review, 1973–1999 Bethesda, MD: National Cancer Institute, 2000;467–482 SEER Cancer Statistic Review, 1973–1999 Bethesda, MD: National Cancer Institute, 2000;467–482
2.
Zurück zum Zitat Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223PubMedCrossRef Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223PubMedCrossRef
3.
Zurück zum Zitat Spataro V, Norbury C, Harris AL (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77:448–455PubMed Spataro V, Norbury C, Harris AL (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77:448–455PubMed
5.
Zurück zum Zitat Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRef Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRef
6.
Zurück zum Zitat Hideshima T, Chauhan D, Richardson P et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647PubMedCrossRef Hideshima T, Chauhan D, Richardson P et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647PubMedCrossRef
7.
Zurück zum Zitat Shinohara K, Tomioka M, Nakano H et al (1996) Apoptosis induction resulting from proteasome inhibition. Biochem J 317(Pt 2):385–388PubMed Shinohara K, Tomioka M, Nakano H et al (1996) Apoptosis induction resulting from proteasome inhibition. Biochem J 317(Pt 2):385–388PubMed
8.
Zurück zum Zitat Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad.Sci USA 94:855–860PubMedCrossRef Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad.Sci USA 94:855–860PubMedCrossRef
9.
Zurück zum Zitat Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622PubMed Adams J, Palombella VJ, Sausville EA et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622PubMed
10.
Zurück zum Zitat Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121PubMedCrossRef Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121PubMedCrossRef
11.
Zurück zum Zitat Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427PubMedCrossRef Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427PubMedCrossRef
12.
Zurück zum Zitat Masdehors P, Merle-Beral H, Magdelenat H et al (2000) Ubiquitin-proteasome system and increased sensitivity of B-CLL lymphocytes to apoptotic death activation. Leuk Lymphoma 38:499–504PubMed Masdehors P, Merle-Beral H, Magdelenat H et al (2000) Ubiquitin-proteasome system and increased sensitivity of B-CLL lymphocytes to apoptotic death activation. Leuk Lymphoma 38:499–504PubMed
13.
Zurück zum Zitat Hideshima T, Richardson P, Chauhan D et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076PubMed Hideshima T, Richardson P, Chauhan D et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076PubMed
14.
Zurück zum Zitat Soligo D, Servida F, Delia D et al (2001) The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 113:126–135PubMedCrossRef Soligo D, Servida F, Delia D et al (2001) The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 113:126–135PubMedCrossRef
15.
Zurück zum Zitat Mitsiades N, Mitsiades CS, Richardson PG et al (2002) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380PubMedCrossRef Mitsiades N, Mitsiades CS, Richardson PG et al (2002) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380PubMedCrossRef
16.
Zurück zum Zitat Pajonk F, Pajonk K, McBride WH (2000) Apoptosis and radiosensitization of Hodgkin cells by proteasome inhibition. Int J Radiat Oncol Biol Phys 47:1025–1032PubMed Pajonk F, Pajonk K, McBride WH (2000) Apoptosis and radiosensitization of Hodgkin cells by proteasome inhibition. Int J Radiat Oncol Biol Phys 47:1025–1032PubMed
17.
Zurück zum Zitat Dai Y, Rahmani M, Grant S (2003) Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 22:7108–7122PubMedCrossRef Dai Y, Rahmani M, Grant S (2003) Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 22:7108–7122PubMedCrossRef
18.
Zurück zum Zitat Dai Y, Rahmani M, Pei XY et al (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 104:509–518PubMedCrossRef Dai Y, Rahmani M, Pei XY et al (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 104:509–518PubMedCrossRef
19.
Zurück zum Zitat Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545PubMedCrossRef Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545PubMedCrossRef
20.
Zurück zum Zitat Adachi M, Zhang Y, Zhao X et al (2004) Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin Cancer Res 10:3853–3862PubMedCrossRef Adachi M, Zhang Y, Zhao X et al (2004) Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin Cancer Res 10:3853–3862PubMedCrossRef
21.
Zurück zum Zitat Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17:2036–2045PubMedCrossRef Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17:2036–2045PubMedCrossRef
22.
Zurück zum Zitat Wang CY, Mayo MW, Korneluk RG et al (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683PubMedCrossRef Wang CY, Mayo MW, Korneluk RG et al (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683PubMedCrossRef
23.
Zurück zum Zitat Wang CY, Cusack JC Jr, Liu R et al (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nature Medicine 5:412–417PubMedCrossRef Wang CY, Cusack JC Jr, Liu R et al (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nature Medicine 5:412–417PubMedCrossRef
24.
Zurück zum Zitat Izban KF, Ergin M, Huang Q et al (2001) Characterization of NF-kappaB expression in Hodgkin’s disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod.Pathol 14:297–310PubMedCrossRef Izban KF, Ergin M, Huang Q et al (2001) Characterization of NF-kappaB expression in Hodgkin’s disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod.Pathol 14:297–310PubMedCrossRef
25.
Zurück zum Zitat Richardson PG, Hideshima T, Mitsiades C et al (2004) Proteasome inhibition in hematologic malignancies. Ann Med 36:304–314PubMedCrossRef Richardson PG, Hideshima T, Mitsiades C et al (2004) Proteasome inhibition in hematologic malignancies. Ann Med 36:304–314PubMedCrossRef
26.
Zurück zum Zitat Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498PubMedCrossRef Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498PubMedCrossRef
27.
Zurück zum Zitat O’Connor OA, Wright J, Moskowitz C et al (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–684PubMedCrossRef O’Connor OA, Wright J, Moskowitz C et al (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–684PubMedCrossRef
28.
Zurück zum Zitat Goy A, Younes A, McLaughlin P et al (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675PubMedCrossRef Goy A, Younes A, McLaughlin P et al (2005) Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675PubMedCrossRef
29.
Zurück zum Zitat An WG, Hwang SG, Trepel JB et al (2000) Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283PubMedCrossRef An WG, Hwang SG, Trepel JB et al (2000) Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283PubMedCrossRef
30.
Zurück zum Zitat Yu C, Rahmani M, Dent P et al (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295:555–566PubMedCrossRef Yu C, Rahmani M, Dent P et al (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295:555–566PubMedCrossRef
31.
Zurück zum Zitat Tan C, Waldmann TA (2002) Proteasome inhibitor PS-341, a potential therapeutic agent for adult T- cell leukemia. Cancer Res 62:1083–1086PubMed Tan C, Waldmann TA (2002) Proteasome inhibitor PS-341, a potential therapeutic agent for adult T- cell leukemia. Cancer Res 62:1083–1086PubMed
32.
Zurück zum Zitat Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRef Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRef
33.
Zurück zum Zitat Carmichael J, DeGraff WG, Gazdar AF et al (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942PubMed Carmichael J, DeGraff WG, Gazdar AF et al (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942PubMed
34.
Zurück zum Zitat Greco WR, Park HS, Rustum YM (1990) Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res 50:5318–5327PubMed Greco WR, Park HS, Rustum YM (1990) Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res 50:5318–5327PubMed
35.
Zurück zum Zitat DiArgenio DZ, Schumitsky A (1997)ADAPT II Users guide: pharmacokinetic/pharmacodynamic systems analysis software. (4). Los Angeles, CA, Biomedical systems resource DiArgenio DZ, Schumitsky A (1997)ADAPT II Users guide: pharmacokinetic/pharmacodynamic systems analysis software. (4). Los Angeles, CA, Biomedical systems resource
36.
Zurück zum Zitat Chou T, Talalay C (1984) Quantitative analysis of dose effect relationship: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef Chou T, Talalay C (1984) Quantitative analysis of dose effect relationship: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef
37.
Zurück zum Zitat Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRef Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRef
38.
Zurück zum Zitat Appleman LJ, Ryan DP, Clark JW, Eder JP, Fishman M, Cusack JC Jr, Fidias P, Supko JG, Guerciolini R, Esseltine D, Kashala O (2003) Phase I dose escalation study of bortezomib and gemcitabine safety and tolerability in patients with advanced solid tumors. Proc ASCO 22:A839 Appleman LJ, Ryan DP, Clark JW, Eder JP, Fishman M, Cusack JC Jr, Fidias P, Supko JG, Guerciolini R, Esseltine D, Kashala O (2003) Phase I dose escalation study of bortezomib and gemcitabine safety and tolerability in patients with advanced solid tumors. Proc ASCO 22:A839
39.
Zurück zum Zitat Cusack JC (2003) Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev 29(Suppl 1):21–31PubMedCrossRef Cusack JC (2003) Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev 29(Suppl 1):21–31PubMedCrossRef
40.
Zurück zum Zitat Gatto S, Scappini B, Pham L et al (2003) The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in B positive cell lines sensitive and resistant to imatinib mesylate. Haematologica 88:853–863PubMed Gatto S, Scappini B, Pham L et al (2003) The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in B positive cell lines sensitive and resistant to imatinib mesylate. Haematologica 88:853–863PubMed
41.
Zurück zum Zitat Yu C, Rahmani M, Conrad D et al (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102:3765–3774PubMedCrossRef Yu C, Rahmani M, Conrad D et al (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102:3765–3774PubMedCrossRef
42.
Zurück zum Zitat An J, Sun Y, Fisher M et al (2004) Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia 18:1699–1704PubMedCrossRef An J, Sun Y, Fisher M et al (2004) Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia 18:1699–1704PubMedCrossRef
43.
Zurück zum Zitat Zheng B, Georgakis GV, Li Y et al (2004) Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 10:3207–3215PubMedCrossRef Zheng B, Georgakis GV, Li Y et al (2004) Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 10:3207–3215PubMedCrossRef
44.
Zurück zum Zitat Chauhan D, Li G, Auclair D et al (2004) 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating Heat Shock Protein-27. Apoptosis 9:149–155PubMedCrossRef Chauhan D, Li G, Auclair D et al (2004) 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating Heat Shock Protein-27. Apoptosis 9:149–155PubMedCrossRef
45.
Zurück zum Zitat Brown RE, Bostrom B, Zhang PL (2004) Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann.Clin Lab Sci 34:203–205PubMed Brown RE, Bostrom B, Zhang PL (2004) Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann.Clin Lab Sci 34:203–205PubMed
46.
Zurück zum Zitat Webb JL (1963) effect of more than one inhibitor. Enzymes and metabolic inhibitors ed Vol 1; New York: Academic Press, 66-79-487-512 Webb JL (1963) effect of more than one inhibitor. Enzymes and metabolic inhibitors ed Vol 1; New York: Academic Press, 66-79-487-512
47.
Zurück zum Zitat Faessel HM, Slocum HK, Jackson RC et al (1998) Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 58:3036–3050PubMed Faessel HM, Slocum HK, Jackson RC et al (1998) Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 58:3036–3050PubMed
48.
Zurück zum Zitat Chou JH (1991) Quantitation of synergism and antagonism of two or more drugs by computerized analysis. Synergism and antagonism in chemotherapy pp 223–241 Chou JH (1991) Quantitation of synergism and antagonism of two or more drugs by computerized analysis. Synergism and antagonism in chemotherapy pp 223–241
49.
Zurück zum Zitat Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezmib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852PubMedCrossRef Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezmib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852PubMedCrossRef
50.
Zurück zum Zitat Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385PubMed Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385PubMed
51.
Zurück zum Zitat Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141PubMed Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141PubMed
52.
Zurück zum Zitat Zoli W, Ricotti L, Tesei A et al (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37:69–82PubMedCrossRef Zoli W, Ricotti L, Tesei A et al (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37:69–82PubMedCrossRef
53.
Zurück zum Zitat Chang TT, Chou TC (2000) Rational approach to the clinical protocol design for drug combinations: a review. Acta Paediatr Taiwan 41:294–302PubMed Chang TT, Chou TC (2000) Rational approach to the clinical protocol design for drug combinations: a review. Acta Paediatr Taiwan 41:294–302PubMed
54.
Zurück zum Zitat Bonvini P, Dalla RH, Vignes N et al (2004) Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res 64:3256–3264PubMedCrossRef Bonvini P, Dalla RH, Vignes N et al (2004) Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res 64:3256–3264PubMedCrossRef
55.
Zurück zum Zitat Richardson PG, Hideshima T, Mitsiades C et al (2004) Proteasome inhibition in hematologic malignancies. Ann Med 36:304–314PubMedCrossRef Richardson PG, Hideshima T, Mitsiades C et al (2004) Proteasome inhibition in hematologic malignancies. Ann Med 36:304–314PubMedCrossRef
56.
Zurück zum Zitat Blaney SM, Bernstein M, Neville K et al (2004) Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol 22:4752–4757CrossRef Blaney SM, Bernstein M, Neville K et al (2004) Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol 22:4752–4757CrossRef
57.
Zurück zum Zitat Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRef
Metadaten
Titel
Bortezomib interactions with chemotherapy agents in acute leukemia in vitro
verfasst von
Terzah M. Horton
Anurhadha Gannavarapu
Susan M. Blaney
David Z. D’Argenio
Sharon E. Plon
Stacey L. Berg
Publikationsdatum
01.07.2006
Verlag
Springer-Verlag
Erschienen in
Cancer Chemotherapy and Pharmacology / Ausgabe 1/2006
Print ISSN: 0344-5704
Elektronische ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-005-0135-z

Weitere Artikel der Ausgabe 1/2006

Cancer Chemotherapy and Pharmacology 1/2006 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.