Skip to main content
Erschienen in: European Journal of Applied Physiology 2/2008

01.01.2008 | Original Article

The critical velocity in swimming

verfasst von: Pietro E. di Prampero, Jeanne Dekerle, Carlo Capelli, Paola Zamparo

Erschienen in: European Journal of Applied Physiology | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject’s maximal O2 uptake \((\dot{V}\hbox{O}_{\rm 2max}).\) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) \(\dot{V}\hbox{O}_{2\rm{max}}\) is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d anaer) can be calculated also in swimming, where C increases with the velocity, provided that \(\dot{V}\hbox{O}_{2\rm{max}},\) its on-response, and the C versus v relationship are known. d anaer and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 ± 0.9 years, 75.9 ± 6.4 kg), whose \({\dot{V}}\hbox{O}_{2\rm{max}}\) and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d anaer. The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.
Literatur
Zurück zum Zitat Alvarez-Ramirez J (2002) An improved Peronnet–Thibault mathematical model of human running performance. Eur J Appl Physiol 86:517–525PubMedCrossRef Alvarez-Ramirez J (2002) An improved Peronnet–Thibault mathematical model of human running performance. Eur J Appl Physiol 86:517–525PubMedCrossRef
Zurück zum Zitat Billat LV, Koralsztein JP, Morton RH (1999) Time in human endurance models. From empirical models to physiological models. Sports Med 27:359–379PubMedCrossRef Billat LV, Koralsztein JP, Morton RH (1999) Time in human endurance models. From empirical models to physiological models. Sports Med 27:359–379PubMedCrossRef
Zurück zum Zitat Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 73:1644–1649PubMed Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 73:1644–1649PubMed
Zurück zum Zitat Busso T, Chatagnon M (2006) Modelling of aerobic and anaerobic energy production in middle-distance running. Eur J Appl Physiol 97:745–754PubMedCrossRef Busso T, Chatagnon M (2006) Modelling of aerobic and anaerobic energy production in middle-distance running. Eur J Appl Physiol 97:745–754PubMedCrossRef
Zurück zum Zitat Capelli C, Termin B, Pendergast DR (1998) Energetics of swimming at maximal speed in humans. Eur J Appl Physiol 78:385–393CrossRef Capelli C, Termin B, Pendergast DR (1998) Energetics of swimming at maximal speed in humans. Eur J Appl Physiol 78:385–393CrossRef
Zurück zum Zitat Chatagnon M, Busso T (2006) Modelling of aerobic and anaerobic energy production during exhaustive exercise on a cycle ergometer. Eur J Appl Physiol 97:755–760PubMedCrossRef Chatagnon M, Busso T (2006) Modelling of aerobic and anaerobic energy production during exhaustive exercise on a cycle ergometer. Eur J Appl Physiol 97:755–760PubMedCrossRef
Zurück zum Zitat Dekerle J, Sidney M, Hespel JM, Pelayo P (2002) Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances. Int J Sports Med 23:93–98PubMedCrossRef Dekerle J, Sidney M, Hespel JM, Pelayo P (2002) Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances. Int J Sports Med 23:93–98PubMedCrossRef
Zurück zum Zitat di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222PubMedCrossRef di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222PubMedCrossRef
Zurück zum Zitat di Prampero PE (1999) The concept of critical velocity, a brief analysis. Eur J Appl Physiol 80:162–164CrossRef di Prampero PE (1999) The concept of critical velocity, a brief analysis. Eur J Appl Physiol 80:162–164CrossRef
Zurück zum Zitat Hill DW (1993) The critical power concept. A review. Sports Med 16:237–254PubMed Hill DW (1993) The critical power concept. A review. Sports Med 16:237–254PubMed
Zurück zum Zitat Holmer I (1972) Oxygen uptake during swimming in man. J Appl Physiol 33:502–509PubMed Holmer I (1972) Oxygen uptake during swimming in man. J Appl Physiol 33:502–509PubMed
Zurück zum Zitat Kjendlie PL, Ingjer F, Madsen O, Stallman RK, Gunderson JS (2004) Differences in the energy cost between children and adults during front crawl swimming. Eur J Appl Physiol 91:473–480PubMedCrossRef Kjendlie PL, Ingjer F, Madsen O, Stallman RK, Gunderson JS (2004) Differences in the energy cost between children and adults during front crawl swimming. Eur J Appl Physiol 91:473–480PubMedCrossRef
Zurück zum Zitat Lloyd BB (1966) The energetics of running: an analysis of word records. Adv Sci 22:515–530PubMed Lloyd BB (1966) The energetics of running: an analysis of word records. Adv Sci 22:515–530PubMed
Zurück zum Zitat Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660PubMed Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660PubMed
Zurück zum Zitat Montpetit RR, Lavoie JM, Cazorla GA (1983) Aerobic energy cost of swimming the front crawl at high velocity in international class and adolescent swimmers. In: Hollander AP, Huijing PA, de Groot G (eds) Biomechanics and medicine in swimming. Human Kinetics, Champaign, pp 228–234 Montpetit RR, Lavoie JM, Cazorla GA (1983) Aerobic energy cost of swimming the front crawl at high velocity in international class and adolescent swimmers. In: Hollander AP, Huijing PA, de Groot G (eds) Biomechanics and medicine in swimming. Human Kinetics, Champaign, pp 228–234
Zurück zum Zitat Montpetit R, Cazorla G, Lavoje JM (1988) Energy expenditure during front crawl swimming: a comparison between males and females. In: Ungherechts BE, Wilke K, Reischle K (eds) Swimming science, vol V. Human Kinetics, Champaign, pp 229–236 Montpetit R, Cazorla G, Lavoje JM (1988) Energy expenditure during front crawl swimming: a comparison between males and females. In: Ungherechts BE, Wilke K, Reischle K (eds) Swimming science, vol V. Human Kinetics, Champaign, pp 229–236
Zurück zum Zitat Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–354PubMedCrossRef Morton RH (2006) The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96:339–354PubMedCrossRef
Zurück zum Zitat Pendergast DR, di Prampero PE, Craig AB, Wilson D, Rennie W (1977) Quantitative analysis of front crawl in men and women. J Appl Physiol 43:475–479PubMed Pendergast DR, di Prampero PE, Craig AB, Wilson D, Rennie W (1977) Quantitative analysis of front crawl in men and women. J Appl Physiol 43:475–479PubMed
Zurück zum Zitat Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465PubMed Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465PubMed
Zurück zum Zitat Scherrer J, Monod H (1960) Le travail musculaire local et la fatigue chez l’homme. J Physiol (Paris) 52:419–501 Scherrer J, Monod H (1960) Le travail musculaire local et la fatigue chez l’homme. J Physiol (Paris) 52:419–501
Zurück zum Zitat Termin B, Pendergast DR (2001) Training using the stroke frequency–velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res 14:9–17 Termin B, Pendergast DR (2001) Training using the stroke frequency–velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res 14:9–17
Zurück zum Zitat Toussaint HM (1990) Differences in propelling efficiency between competitive and triathlon swimmers. Med Sci Sports Exerc 22:409–415PubMed Toussaint HM (1990) Differences in propelling efficiency between competitive and triathlon swimmers. Med Sci Sports Exerc 22:409–415PubMed
Zurück zum Zitat Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, and Monod H (1997) Work-exhaustion time relationships and the critical power concept: a critical review. J Sports Med Phys Fit 37:89–102 Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, and Monod H (1997) Work-exhaustion time relationships and the critical power concept: a critical review. J Sports Med Phys Fit 37:89–102
Zurück zum Zitat Wakayoshi K, Yoshida T, Udo M, Kasai T, Moritani T, Mutoh Y, Miyashita M (1992) A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. Int J Sports Med 13:367–371PubMedCrossRef Wakayoshi K, Yoshida T, Udo M, Kasai T, Moritani T, Mutoh Y, Miyashita M (1992) A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. Int J Sports Med 13:367–371PubMedCrossRef
Zurück zum Zitat Wilkie DR (1980) Equations describing power input by humens as a function of duration of exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier, Amsterdam, pp 75–80 Wilkie DR (1980) Equations describing power input by humens as a function of duration of exercise. In: Cerretelli P, Whipp BJ (eds) Exercise bioenergetics and gas exchange. Elsevier, Amsterdam, pp 75–80
Zurück zum Zitat Zamparo P, Capelli C, Cautero M, Di Nino A (2000) Energy cost of front crawl swimming at supramaximal speeds and underwater torque in young swimmers. Eur J Appl Physiol 83:487–491PubMedCrossRef Zamparo P, Capelli C, Cautero M, Di Nino A (2000) Energy cost of front crawl swimming at supramaximal speeds and underwater torque in young swimmers. Eur J Appl Physiol 83:487–491PubMedCrossRef
Zurück zum Zitat Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE (2005) An energy balance of front crawl. Eur J Appl Physiol 94:134–144PubMedCrossRef Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE (2005) An energy balance of front crawl. Eur J Appl Physiol 94:134–144PubMedCrossRef
Metadaten
Titel
The critical velocity in swimming
verfasst von
Pietro E. di Prampero
Jeanne Dekerle
Carlo Capelli
Paola Zamparo
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Applied Physiology / Ausgabe 2/2008
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-007-0569-6

Weitere Artikel der Ausgabe 2/2008

European Journal of Applied Physiology 2/2008 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Das Geschlechterparadoxon in der gesundheitlich beeinträchtigten Lebenszeit – Ende eines Mythos?

Beginnend mit den 1920er-Jahren hat sich eine Vorstellung über die Geschlechterdifferenzen in Gesundheit und Mortalität etabliert, die von Lorber und Moore in dem einprägsamen Satz: „Women get sicker, but men die quicker“, zusammengefasst wurde [ 1 …, S. 13]. Tatsächlich erscheinen vor dem Hintergrund der höheren Lebenserwartung der Frauen die Studienergebnisse zu den Geschlechterdifferenzen in der Morbidität überraschend, wonach Frauen im Durchschnitt einen schlechteren Gesundheitszustand aufweisen als Männer [

Gesunde Lebenserwartung: Ein kritischer Blick auf Nutzen und Potenziale des demographischen Gesundheitsindikators

Open Access Leitthema

Die demographische Alterung hat vielfältige gesellschaftliche Konsequenzen, deren Ausmaß wesentlich vom Gesundheitszustand der Bevölkerung abhängt. Um diesen analysieren und bewerten zu können, wurden spezielle Kennziffern entwickelt, die in …

Wie hat sich die Lebenserwartung ohne funktionelle Einschränkungen in Deutschland entwickelt? Eine Analyse mit Daten des Deutschen Alterssurveys (DEAS)

Deutschland erfährt, wie andere Hocheinkommensstaaten, aufgrund kontinuierlich rückläufiger Mortalität und niedriger Geburtenraten tiefgreifende demografische Veränderungen. Der demografische Wandel führt in Deutschland zu einem zunehmend höheren …

Hitzeschutz im Fokus der hessischen Betreuungs- und Pflegeaufsicht

Open Access Klimawandel Übersichtsartikel

Im Sommer 2023 kündigte das Bundesministerium für Gesundheit (BMG) einen nationalen Hitzeschutzplan an und forderte die Länder auf, zu prüfen, „ob die Warnstufen des [Deutschen Wetterdienstes] DWD mit der Durchführung von Akutmaßnahmen …