Skip to main content
Erschienen in: Surgical Endoscopy 7/2015

Open Access 01.07.2015 | New Technology

Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery

verfasst von: Luigi Boni, Giulia David, Alberto Mangano, Gianlorenzo Dionigi, Stefano Rausei, Sebastiano Spampatti, Elisa Cassinotti, Abe Fingerhut

Erschienen in: Surgical Endoscopy | Ausgabe 7/2015

Abstract

Background

Recently major developments in video imaging have been achieved: among these, the use of high definition and 3D imaging systems, and more recently indocyanine green (ICG) fluorescence imaging are emerging as major contributions to intraoperative decision making during surgical procedures. The aim of this study was to present our experience with different laparoscopic procedures using ICG fluorescence imaging.

Patients and methods

108 ICG-enhanced fluorescence-guided laparoscopic procedures were performed: 52 laparoscopic cholecystectomies, 38 colorectal resections, 8 living-donor nephrectomies, 1 laparoscopic kidney autotransplantation, 3 inguino-iliac/obturator lymph node dissections for melanoma, and 6 miscellanea procedures. Visualization of structures was provided by a high definition stereoscopic camera connected to a 30° 10 mm scope equipped with a specific lens and light source emitting both visible and near infra-red (NIR) light (KARL STORZ GmbH & Co. KG, Tuttlingen, Germany). After injection of ICG, the system projected high-resolution NIR real-time images of blood flow in vessels and organs as well as highlighted biliary excretion .

Results

No intraoperataive or injection-related adverse effects were reported, and the biliary/vascular anatomy was always clearly identified. The imaging system provided invaluable information to conduct a safe cholecystectomy and ensure adequate vascular supply for colectomy, nephrectomy, or find lymph nodes. There were no bile duct injuries or anastomotic leaks.

Conclusions

In our experience, the ICG fluorescence imaging system seems to be simple, safe, and useful. The technique may well become a standard in the near future in view of its different diagnostic and oncological capabilities. Larger studies and more specific evaluations are needed to confirm its role and to address its disadvantages.
Major developments in minimal surgery video imaging have been achieved during the last few years: the use of high definition (HD) as well as 3-dimensional (3-D) systems has proved to be able to improve surgeon performance and, as consequence, patient safety [14].
Recently, indocyanine green (ICG)-enhanced fluorescence was introduced in laparoscopic surgery to improve the view and provide detailed anatomical information during surgery [5, 6].
ICG has been used in medicine since the late 50s [79] to measure cardiac output [10, 11], to study the anatomy of the retinal vessels [7], and to measure liver functional reserve before hepatic resection in cirrhotic livers [12].
The dye, ICG, can be injected into the human blood stream with practically no adverse effects [13]. ICG becomes fluorescent once excited with specific wavelength light in the near infra-red (NIR) spectrum (approximately 820 nm) [14] or a laser beam [15, 16]. The fluorescence can be detected using specific scopes and cameras and then transmitted to a standard monitor allowing identification of anatomical structures where the dye is present (i.e., biliary ducts, vessels, lymph nodes, etc.).
In this article, we present our experience in different laparoscopic procedures using ICG-enhanced fluorescence.

Patients and methods

From January 2013 until May 2014, 108 ICG-enhanced fluorescence-guided laparoscopic procedures were performed at the Minimally Invasive Surgery Research Center of the Department of Surgical and Morphological Sciences of the University of Insubria (Varese, Italy).
These included 52 laparoscopic cholecystectomies, both for symptomatic lithiasis or acute cholecystitis, 38 colorectal resections both for benign and malignant diseases, 8 living-donor nephrectomies, three inguino-iliac/obturator lymph nodes dissection for lower limb melanoma, one laparoscopic kidney autotransplantation for renal artery transplantation, and six miscellaneous procedures (see below).
All the procedures were performed using indocyanine green (ICG-Pulsion®, Pulsion Medical Systems, Munich, Germany), diluted either with saline solution or albumin according to the procedure. Once the solution was prepared in the operating room, it was injected into a peripheral vein or around the tumoral area at a specific concentration according to the patient’s weight and clinical situation (see below).

Indocyanine green

Indocyanine green is a sterile, anionic, water-soluble but relatively hydrophobic, tricarbocyanine molecule with a molecular mass of 776 Daltons.
ICG dye was developed for near infra-red (NIR) photography by the Kodak research laboratories in 1955 and was approved for clinical use in 1959 by the FDA [13].
Following intravenous injection, ICG is rapidly bound to plasma proteins, especially lipoproteins, with minimal leakage into the interstitium. There are no known metabolites. ICG is rapidly extracted by the liver without modifications and nearly exclusively excreted by the liver appearing unconjugated in the bile about 8 min after injection, depending on liver vascularization and function [13, 17].
When injected outside blood vessels, ICG binds to proteins and is found in the lymph, reaching the nearest draining lymph node usually within 15 min. After 1–2 h, it binds to the regional lymph nodes, deposited into macrophages [1820].
The usual dose for standard clinical use (0.1–0.5 mg/ml/kg) [13] is well below the toxicity level.
ICG becomes fluorescent once excited either using a laser beam [15, 16] or by near infra-red (NIR) light at about 820 nm and longer wave lengths [14], the absorption peak is around 807 nm, and the emission peak is around 822 nm [13]. The fluorescence released by ICG can be detected using specifically designated scopes and camera.

Laparoscopic equipment

In all cases, a laparoscopic system (KARL STORZ GmbH & Co. KG, Tuttlingen, Germany) was used. The imaging is generated by the high-end full high definition camera system (IMAGE 1 SPIES™, KARL STORZ) connected to a laparoscope with 30° field of direction and 10 mm diameter equipped with a specific filter for optimal detection of the NIR fluorescence and white light without manual switching. The powerful xenon light source (D-LIGHT P SCB, KARL STORZ) provides both visible and NIR excitation light. Switching from standard light to NIR is controlled by the surgeon by means of a pedal.
Visualization both in standard and NIR light is improved by a system of professional image enhancement (IMAGE 1 SPIES™ system, KARL STORZ GmbH & Co. KG, Tuttlingen, Germany) which offers adjustable visualization modalities that can be selected according to surgeon’s preferences.

Timing and ICG dosage

Details of the timing and ICG doses used, varying slightly according to each procedure, are described below.

Results

Fluorescence-guided cholecystectomy

As ICG, once injected, concentrates in bile, it is possible to outline the biliary tree anatomy, especially in Calot’s triangle, by visualization under NIR light, during laparoscopic cholecystectomy, in both elective and acute settings.
The ICG dye was injected Intra-venously at least 15 min before surgery to allow ICG to concentrate in the bile [21, 22]. In our experience, the mean time between injection of ICG and surgery was 14 ± 9 min using a dose of 0.4 mg/ml/kg.
Laparoscopic cholecystectomy was performed in 52 patients (31 female and 21 male, mean age 53 ± 15 years), 35 for acute cholecystitis, and 17 for symptomatic cholelithiasis, all cases with four trocars using a standard technique [23].
We were able to identify the biliary anatomy in all cases (100 % sensitivity), especially the cystic duct-common bile duct junction, irrespectively of whether the tissues were normal or inflamed (Figs. 1, 2).
If the vascular anatomy of the cystic artery required clarification, a small bolus of 2–3 ml of 0.4 mg/ml/kg was injected. Fluorescence appeared at the level of the Calot’s triangle defining the cystic artery (Fig. 3) after 60 s (mean delivery time 63 ± 12 s) and lasting for a mean time of 32 ± 9 s.
The mean operative time was 54 ± 13 min.
There were no adverse reactions to the ICG injection, and we reported no intra-operative or post-operative complications.

Fluorescence-guided colorectal resection

ICG-enhanced fluorescence was used during laparoscopic colorectal resection in order to verify the adequate perfusion of the large bowel prior to anastomosis.
Once injected into a peripheral or central vein, ICG became fluorescent under NIR light, providing a “real-time” confirmation of the bowel perfusion. Thus, this helps to define the point of resection after mesenteric division as well as demonstrates the presence of an ischemic or “non-optimal” perfusion before performing the anastomosis.
We performed 38 ICG-guided colorectal resections including 15 left sigmoid resections (12 for cancer and 3 for diverticular disease), 12 anterior resections with total mesorectal excision, 8 right, and three transverse colectomies for cancer, in 34 patients (21 male, 13 female, mean age 63 ± 12 years).
In all cancer cases, a medial to lateral approach with high vessel ligation was used [24]. In 11/13 female patients, the specimen was extracted though a colpotomy, while in the remaining two cases, a supra-pubic mini-laparotomy was used.
In order to study the perfusion of the bowel, ICG injection was performed using 2 bolus of 5 ml each at a concentration of 0.4 mg/ml/kg: the first after the division of the mesentery to help choose the best perfused site for resection and the second just before performing the anastomosis to ensure adequate vascularization (Fig. 4).
In case bowel, division was performed extra-corporally; as in most of the left-sided resections, in order to identify the fluorescence, the operative room should be completely darkened in order to identify the fluorescence since external light impairs fluorescence detection by the camera.
In all 38 cases, we were able to obtain a real-time image that demonstrated the perfusion of the bowel. In one case of anterior resection with trans-vaginal specimen extraction, when ICG was injected only after placing the anvil of the circular stapler, an ischemic area of the distal bowel was revealed, requiring re-resection and re-positioning of the anvil (Fig. 5) that was successfully performed laparoscopically.
We reported no intra-operative or injection-related complications, and we observed no anastomotic leaks.
In order to study the lymphatic drainage of the colon, peritumoral injection of 20 % albumin-diluted ICG was performed during right colectomy (Fig. 6) in four patients and identification of the lymphatic pathway as well as one residual node at the origin of the ileo-colic vessels was visualized (Fig. 7)

Fluorescence-guided lymphadenectomy

We performed ICG-guided inguino-iliac/obturator lymph node dissection for metastases originating from left lower limb melanoma previously removed by plastic surgeons in three patients.
In these cases, indocyanine green was diluted with 20 % albumin and injected at a concentration of 0.5 mg/ml/kg around the scar of the primary lesion 15–20 min before surgery.
The patients were placed in lithotomy position, and four trocars were inserted, as in standard left colectomy [25]. The sigmoid colon was mobilized, and the left iliac vessels were exposed. The first part of the procedure was carried out using only standard light with complete removal of the fatty-lymphatic tissue around the iliac vessels and obturator nerve.
At this point, after switching to NIR light, the residual nodes could be easily identified by fluorescence (Fig. 8) and removed. Obviously, the inguinal lymph nodes dissection was performed via an “open” technique.
The mean operative time was 135 ± 22 min. There were no intra- or post-operative complications. The mean number or removed lymph nodes were 39 ± 12.

ICG-enhanced fluorescence to study vascular anatomy and parenchymal perfusion

ICG can be used both to clarify the vascular anatomy as well as to identify ischemic parenchyma in various clinical situations.
We used ICG-enhanced fluorescence to clarify the vascular anatomy during laparoscopic living-donor nephrectomy (8 cases) and laparoscopic kidney autotransplantation for renal artery aneurysm (1 case) (Fig. 9), liver resection (2 cases) (Fig. 10), splenectomy (2 cases) (Fig. 11), and laparoscopic ligation of the inferior mesenteric artery of type II endo-leak after endovascular repair of aortic aneurysm (2 cases) (Fig. 12).
For these procedures, ICG was injected in small boluses of 3–5 ml each (0.4 mg/ml/kg), and the real-time fluorescence was recorded.
In case of kidney transplantation, fluorescence distribution inside the parenchyma was also used to confirm an adequate perfusion of the organs after vascular anastomosis (Fig. 13).

Discussion

Since ICG is excreted virtually unchanged by the bile, the most obvious application is the visualization of the biliary tree. Indeed, iatrogenic bile ducts injury is still one of the most dangerous complications of cholecystectomy, with an incidence between 0.4 and 0.7 %, and recently reported to be as high as 1.3 % [26], generally due to misinterpretation of biliary tract anatomy [2729]. Careful and meticulous dissection of the Calot’s triangle, achieving the so-called “critical view of safety” and maybe performing intra-operative cholangiogram, possibly combined [29] have been demonstrated to be able to keep bile ducts lesion as low as possible [27, 28].
Nevertheless, all the above maneuvers, including intra-operative cholangiogram, require a certain degree of dissection in potentially dangerous areas when the anatomy is not straightforward. The would-be accidental bile duct injuries cannot be prevented but only demonstrated by intraoperative cholangiogram.
As shown by our experience (Figs. 1, 2, 3), using ICG-enhanced fluorescence, we were able to perform a sort of “virtual” cholangiography at the very start of the procedure, allowing the surgeon to identify either the normal anatomy or possible anatomic variations in normal settings or in potentially dangerous situations (i.e., the presence of inflammatory tissue), areas to be respected until the dissection allows a better identification of the different structures (Figs. 2, 3). Ishizawa et al. [28] reported cystic duct and common hepatic duct visualization of 100 and 96 % previous dissection and 100 % of both after dissection. These results are also reported by other authors using both NIR and laser beam systems during standard laparoscopic or robotic multiport and single port cholecystectomy [3033]. Of note, in our study, as in others [28], the sensitivity of ICG in the recognition of the cystic and common bile ducts (or their junction) was 100 %
As concerns the exact dose and concentration of ICG to be given to patients, most authors use 0.2–0.5 kg body weight [13, 34]. Morita et al. [35] used 2.5 mg but did not state the dilution or the volume. In our experience, 5 ml of 0.3–0.4 mg/ml/kg provided adequate concentration in the bile hence an adequate visualization of the biliary tree.
The time between ICG injection and presence of the dye in the bile has also been the topic of several publications [21, 22]. More than 95 % of ICG is captured by hepatocytes and excreted into bile within 15 min of injection [22]. Fluorescence of the liver and bile ducts can last up to 6 h after intravenous injection of ICG [21, 28]. The interval is related to liver function: organs with poor function and cirrhosis [36] will take much longer to extract ICG from the blood to the bile, but on average, we can conclude that 10–15 min is usually sufficient.
As demonstrated in one of our cases, an extra bolus of ICG can be used to clarify the vascular anatomy at the level of the Calot’s triangle; although mentioned as being possible by Alander et al. [13], to the best of our knowledge, this particular clinical application has not been reported in the literature yet. These authors recommend waiting 15 min before injecting the second bolus [13].
A further interesting clinical application of fluorescence is the possibility to study in real-time perfusion of organs and bowel prior to or after anastomosis.
Among the risk factors for anastomotic leakage, one of the most important and well-recognized most dreadful complications is poor local tissue oxygenation secondary to inadequate anastomotic vascular perfusion [37, 38].
Presently, either subjective clinical findings such as tissue coloration, pulsation of marginal vessels, temperature, bleeding from marginal arteries, peristalsis, or objective or Doppler measurements [39] can be used to confirm the adequate perfusion of bowel.
As demonstrated with our experience, a simple injection of few milliliters of ICG allows to have a real-time evidence of adequate perfusion of the bowel prior to proximal transection, after division of the mesentery and before the completion of the anastomosis (Fig. 4).
By comparison, more than 10 min is required in order to obtain an ischemic demarcation of the bowel visible to standard light after vessel division, while ischemia of the colon is immediately evident using fluorescence. In one of our cases, ICG-mediated fluorescence allowed to identify an unexpected ischemic distal segment requiring re-resection and preventing a highly compromised intestinal segment, probably at high risk for post-operative leakage (Fig. 5).
Few studies on the use ICG fluorescence imaging to assess the vascularization of colorectal anastomosis have been published to date.
In a retrospective study, Kudszus et al. [40] used laser fluorescence angiography with ICG to visualize colorectal anastomoses and were able to demonstrate a 60 % reduction rate in anastomosis revision, similar to the experience reported by Jafari et al. [41]. While these are small-size studies and case series, the results are very promising. The recently completed multicenter study in the US [42] has also shown very encouraging results.
The assessment of organ perfusion and ischemia using fluorescence has also potential applications for other organs such as the kidney after transplantation, liver during resection [43], spleen for partial splenectomy, and gastric conduit during esophagectomy [42], to mention a few.
As for other compounds, ICG can also be used as a dye for mapping the lymphatic drainage from different organs [13].
ICG-mediated fluorescence has been proposed for sentinel lymph node biopsy in breast surgery and for melanoma using a specifically designated camera for “open” surgery [44, 45]. In these cases, some authors recommend diluting ICG with 20 % albumin in order to guarantee a correct diffusion into the lymphatic vessels. However, a recent randomized controlled study in breast cancer was unable to detect any statistically significant difference in efficacy [46].
In laparoscopic surgery, possible clinical applications include identification of intra-abdominal sentinel lymph node for melanoma or to help during lymphadenectomy in case of metastatic melanoma [18], prostate [47], or endometrial cancer [48].
In colorectal surgery the peri-tumoral injection of ICG can be used to study lymphatic mapping that might be interesting in case of right sided tumors, known to have highly variable lymphatic drainage [49] or for sentinel lymph nodes biopsy in early stage rectal cancers [50].
In our experience, fluorescence can be also applied to facilitate the vascular dissection in specific or unclear situations when anatomic variables can be expected such as in case of nephrectomies, liver resections, vascular surgery, and splenectomy (Figs. 9, 10, 11) and metastatic melanoma (Fig. 8). In such cases, the use of ICG allows to obtain a “real-time” pathway of the vessel distribution that can be of help during the dissection.
In the future, superposition of transparent light images with those obtained by fluorescence (augmented reality) might improve bile duct dissection even more.

Conclusions

ICG-enhanced laparoscopic surgery can be applied during different procedures offering to the surgeon additional information on anatomy, perfusion, or lymphatic drainage.
Our experience demonstrated the potential benefits and safety of this new technology.

Disclosure

Luigi Boni, Giulia David, Alberto Mangano, Gianlorenzo Dionigi, Stefano Rausei, Sebastiano Spampatti, Elisa Cassinotti, and Abe Fingerhut have nothing to disclose.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Hagiike M, Phillips EH, Berci G (2007) Performance differences in laparoscopic surgical skills between true high-definition and three-chip CCD video systems. Surg Endosc 21:1849–1854PubMedCrossRef Hagiike M, Phillips EH, Berci G (2007) Performance differences in laparoscopic surgical skills between true high-definition and three-chip CCD video systems. Surg Endosc 21:1849–1854PubMedCrossRef
2.
Zurück zum Zitat Kunert W, Storz P, Müller S, Axt S, Kirschniak A (2013) 3D in laparoscopy: state of the art. Chirurg 84:202–207PubMedCrossRef Kunert W, Storz P, Müller S, Axt S, Kirschniak A (2013) 3D in laparoscopy: state of the art. Chirurg 84:202–207PubMedCrossRef
3.
Zurück zum Zitat Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T (2012) Three-dimensional laparoscopic imaging improves surgical performance on standardized ex vivo laparoscopic tasks. J Endourol 26:1085–1088PubMedCrossRef Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T (2012) Three-dimensional laparoscopic imaging improves surgical performance on standardized ex vivo laparoscopic tasks. J Endourol 26:1085–1088PubMedCrossRef
4.
Zurück zum Zitat Wilhelm D, Reiser S, Kohn N, Witte M, Leiner U, Mühlbach L, Ruschin D, Reiner W, Feussner H (2014) Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D. Surg Endosc. doi:10.1007/s00464-014-3487-9 Wilhelm D, Reiser S, Kohn N, Witte M, Leiner U, Mühlbach L, Ruschin D, Reiner W, Feussner H (2014) Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D. Surg Endosc. doi:10.​1007/​s00464-014-3487-9
5.
Zurück zum Zitat Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Löwik CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2011) The clinical use of Indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 1(104):323–332CrossRef Schaafsma BE, Mieog JS, Hutteman M, van der Vorst JR, Kuppen PJ, Löwik CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2011) The clinical use of Indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 1(104):323–332CrossRef
6.
Zurück zum Zitat Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Swijnenburg RJ (2014) Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc 28:1076–1082PubMedCentralPubMedCrossRef Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Swijnenburg RJ (2014) Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc 28:1076–1082PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Baillif S, Wolff B, Paoli V, Gastaud P, Mauget-Faÿsse M (2011) Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis. Retina 31:1156–1163PubMedCrossRef Baillif S, Wolff B, Paoli V, Gastaud P, Mauget-Faÿsse M (2011) Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis. Retina 31:1156–1163PubMedCrossRef
8.
Zurück zum Zitat Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T (1998) Indocyanine green; physiochemical factors affecting its fluorescence in vivo. Microvasc Res 55:146–152PubMedCrossRef Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T (1998) Indocyanine green; physiochemical factors affecting its fluorescence in vivo. Microvasc Res 55:146–152PubMedCrossRef
9.
Zurück zum Zitat Noura S, Ohue M, Seki Y, Tanaka K, Motoori M, Kishi K, Miyashiro I, Ohigashi H, Yano M, Ishikawa O, Miyamoto Y (2010) Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol 17:144–151PubMedCrossRef Noura S, Ohue M, Seki Y, Tanaka K, Motoori M, Kishi K, Miyashiro I, Ohigashi H, Yano M, Ishikawa O, Miyamoto Y (2010) Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol 17:144–151PubMedCrossRef
10.
Zurück zum Zitat Desai ND, Miwa S, Kodama D, Koyama T, Cohen G, Pelletier MP, Cohen EA, Christakis GT, Goldman BS, Fremes SE (2006) A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect errors in coronary artery grafts. J Thorac Cardiovasc Surg 132:585–594PubMedCrossRef Desai ND, Miwa S, Kodama D, Koyama T, Cohen G, Pelletier MP, Cohen EA, Christakis GT, Goldman BS, Fremes SE (2006) A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect errors in coronary artery grafts. J Thorac Cardiovasc Surg 132:585–594PubMedCrossRef
11.
Zurück zum Zitat Reuthebuch O, Häussler A, Genoni M, Tavakoli R, Odavic D, Kadner A, Turina M (2004) Novadaq SPY: intraoperative quality assessment in off-pump coronary artery by-pass grafting. Chest 125:418–424PubMedCrossRef Reuthebuch O, Häussler A, Genoni M, Tavakoli R, Odavic D, Kadner A, Turina M (2004) Novadaq SPY: intraoperative quality assessment in off-pump coronary artery by-pass grafting. Chest 125:418–424PubMedCrossRef
12.
Zurück zum Zitat Lim C, Vibert E, Azoulay D, Salloum C, Ishizawa T, Yoshioka R, Mise Y, Sakamoto Y, Aoki T, Sugawara Y, Hasegawa K, Kokudo N (2014) Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg 151:117–124PubMedCrossRef Lim C, Vibert E, Azoulay D, Salloum C, Ishizawa T, Yoshioka R, Mise Y, Sakamoto Y, Aoki T, Sugawara Y, Hasegawa K, Kokudo N (2014) Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg 151:117–124PubMedCrossRef
13.
Zurück zum Zitat Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585PubMedCentralPubMedCrossRef Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138PubMedCrossRef Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138PubMedCrossRef
15.
Zurück zum Zitat Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, Masrur M, Milone L, Giulianotti PC (2014) Indocyanine green (icg) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. doi:10.1177/1553350614524839 PubMed Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, Masrur M, Milone L, Giulianotti PC (2014) Indocyanine green (icg) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. doi:10.​1177/​1553350614524839​ PubMed
16.
Zurück zum Zitat Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM (2012) Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 27:2156–2162PubMedCrossRef Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM (2012) Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 27:2156–2162PubMedCrossRef
17.
Zurück zum Zitat Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M, Kokudo N (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 1(115):2491–2504CrossRef Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M, Kokudo N (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 1(115):2491–2504CrossRef
18.
Zurück zum Zitat Tajima Y, Murakami M, Yamazaki K, Masuda Y, Kato M, Sato A, Goto S, Otsuka K, Kato T, Kusano M (2010) Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann Surg Oncol 17:1787–1793PubMedCrossRef Tajima Y, Murakami M, Yamazaki K, Masuda Y, Kato M, Sato A, Goto S, Otsuka K, Kato T, Kusano M (2010) Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann Surg Oncol 17:1787–1793PubMedCrossRef
19.
Zurück zum Zitat Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B (2014) Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg 133:914–922PubMedCrossRef Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B (2014) Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg 133:914–922PubMedCrossRef
20.
Zurück zum Zitat Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681PubMedCentralPubMedCrossRef Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97:1369–1377PubMedCrossRef Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97:1369–1377PubMedCrossRef
22.
Zurück zum Zitat Kawaguchi Y, Ishizawa T, Miyata Y, Yamashita S, Masuda K, Satou S, Tamura S, Kaneko J, Sakamoto Y, Aoki T, Hasegawa K, Sugawara Y, Kokudo N (2013) Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J Hepatol 58:247–253PubMedCrossRef Kawaguchi Y, Ishizawa T, Miyata Y, Yamashita S, Masuda K, Satou S, Tamura S, Kaneko J, Sakamoto Y, Aoki T, Hasegawa K, Sugawara Y, Kokudo N (2013) Portal uptake function in veno-occlusive regions evaluated by real-time fluorescent imaging using indocyanine green. J Hepatol 58:247–253PubMedCrossRef
23.
Zurück zum Zitat Gurusamy KS, Vaughan J, Rossi M, Davidson BR (2014) Fewer-than-four ports versus four ports for laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2:CD007109PubMed Gurusamy KS, Vaughan J, Rossi M, Davidson BR (2014) Fewer-than-four ports versus four ports for laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2:CD007109PubMed
24.
Zurück zum Zitat Ding J, Liao GQ, Xia Y, Zhang ZM, Pan Y, Liu S, Zhang Y, Yan ZS (2013) Medial versus lateral approach in laparoscopic colorectal resection: a systematic review and meta-analysis. World J Surg 37:863–872PubMedCrossRef Ding J, Liao GQ, Xia Y, Zhang ZM, Pan Y, Liu S, Zhang Y, Yan ZS (2013) Medial versus lateral approach in laparoscopic colorectal resection: a systematic review and meta-analysis. World J Surg 37:863–872PubMedCrossRef
25.
Zurück zum Zitat Rovera F, Dionigi G, Boni L, Masciocchi P, Carcano G, Benevento A, Diurni M, Dionigi R (2007) Colorectal cancer: the role of laparoscopy. Surg Oncol 16(Suppl 1):S65–S67PubMedCrossRef Rovera F, Dionigi G, Boni L, Masciocchi P, Carcano G, Benevento A, Diurni M, Dionigi R (2007) Colorectal cancer: the role of laparoscopy. Surg Oncol 16(Suppl 1):S65–S67PubMedCrossRef
26.
Zurück zum Zitat Törnqvist B, Strömberg C, Persson G, Nilsson M (2012) Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study. BMJ 11(345):e6457CrossRef Törnqvist B, Strömberg C, Persson G, Nilsson M (2012) Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study. BMJ 11(345):e6457CrossRef
27.
Zurück zum Zitat Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T (2003) Intraoperative cholangiography and risk of common bile duct injury during cholecystechtomy. JAMA 289:1639–1644PubMedCrossRef Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T (2003) Intraoperative cholangiography and risk of common bile duct injury during cholecystechtomy. JAMA 289:1639–1644PubMedCrossRef
28.
Zurück zum Zitat Ishiwaza T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, Beck Y, Kokudo N (2009) Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg 208:1–4CrossRef Ishiwaza T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, Beck Y, Kokudo N (2009) Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg 208:1–4CrossRef
29.
Zurück zum Zitat Strasberg SM (2005) Biliary injury in laparoscopic surgery: part 2. Changing the culture of cholecystectomy. JACS 201(4):604–611 Strasberg SM (2005) Biliary injury in laparoscopic surgery: part 2. Changing the culture of cholecystectomy. JACS 201(4):604–611
30.
Zurück zum Zitat Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, Morel P (2013) Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc 27:3897–3901PubMedCrossRef Buchs NC, Pugin F, Azagury DE, Jung M, Volonte F, Hagen ME, Morel P (2013) Real-time near-infrared fluorescent cholangiography could shorten operative time during robotic single-site cholecystectomy. Surg Endosc 27:3897–3901PubMedCrossRef
31.
Zurück zum Zitat Tacchino R, Greco F, Matera D (2009) Single incision laparoscopic cholecystectomy: surgery without a visible scar. Surg Endosc 23:896–899PubMedCrossRef Tacchino R, Greco F, Matera D (2009) Single incision laparoscopic cholecystectomy: surgery without a visible scar. Surg Endosc 23:896–899PubMedCrossRef
32.
Zurück zum Zitat Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM (2013) Real-time near-infrared (NIR) fluorescent cholangiography in a single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 27:2156–2162PubMedCrossRef Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, Grosso F, Quarati R, Ravazzoni F, Lenti LM (2013) Real-time near-infrared (NIR) fluorescent cholangiography in a single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 27:2156–2162PubMedCrossRef
33.
Zurück zum Zitat Dip FD, Asbun D, Rosales-Velderrain A, Lo Menzo E, Simpfendorfer CH, Szomstein S, Rosenthal RJ (2014) Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy. Surg Endosc 28:1838–1843PubMedCrossRef Dip FD, Asbun D, Rosales-Velderrain A, Lo Menzo E, Simpfendorfer CH, Szomstein S, Rosenthal RJ (2014) Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy. Surg Endosc 28:1838–1843PubMedCrossRef
34.
Zurück zum Zitat Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J (2014) Enhanced-reality video fluorescence a real-time assessment of intestinal viability. Ann Surg 259:700–707PubMedCrossRef Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J (2014) Enhanced-reality video fluorescence a real-time assessment of intestinal viability. Ann Surg 259:700–707PubMedCrossRef
35.
Zurück zum Zitat Morita K, Ishizawa T, Tani K, Harada N, Shimizu A, Yamamoto S, Takemura N, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N (2014) Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy. Asian J Endosc Surg 7:193–195PubMedCrossRef Morita K, Ishizawa T, Tani K, Harada N, Shimizu A, Yamamoto S, Takemura N, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N (2014) Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy. Asian J Endosc Surg 7:193–195PubMedCrossRef
36.
Zurück zum Zitat Sheng QS, Lang R, He Q, Yang YJ, Zhao DF, Chen DZ (2009) Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat Dis Int 8:46–49PubMed Sheng QS, Lang R, He Q, Yang YJ, Zhao DF, Chen DZ (2009) Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat Dis Int 8:46–49PubMed
37.
Zurück zum Zitat Daams F, Wu Z, Lahaye MJ, Jeekel J, Lange JF (2014) Prediction and diagnosis of colorectal anastomotic leakage: a systematic review of literature. World J Gastrointest Surg 27(6):14–26CrossRef Daams F, Wu Z, Lahaye MJ, Jeekel J, Lange JF (2014) Prediction and diagnosis of colorectal anastomotic leakage: a systematic review of literature. World J Gastrointest Surg 27(6):14–26CrossRef
38.
Zurück zum Zitat Shogan BD, Carlisle EM, Alverdy JC, Umanskiy K (2013) Do we really know why colorectal anastomoses leak? J Gastrointest Surg 17:1698–1707PubMedCrossRef Shogan BD, Carlisle EM, Alverdy JC, Umanskiy K (2013) Do we really know why colorectal anastomoses leak? J Gastrointest Surg 17:1698–1707PubMedCrossRef
39.
40.
Zurück zum Zitat Kudszus S, Roesel C, Schachtrupp A, Höer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 395:1025–1030PubMedCrossRef Kudszus S, Roesel C, Schachtrupp A, Höer JJ (2010) Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 395:1025–1030PubMedCrossRef
41.
Zurück zum Zitat Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, Pigazzi A (2013) The use of indocyanine green fluorescence to assess ananstomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 27:3003–3008PubMedCrossRef Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, Pigazzi A (2013) The use of indocyanine green fluorescence to assess ananstomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 27:3003–3008PubMedCrossRef
42.
Zurück zum Zitat Stamos MJ, on behalf of the PILLAR II Study Investigators (2013) Pinpoint endoscopic fluorescence perfusion assessment of colorectal anastomoses: will this impact outcomes? Surg Endosc 27:S304–S503CrossRef Stamos MJ, on behalf of the PILLAR II Study Investigators (2013) Pinpoint endoscopic fluorescence perfusion assessment of colorectal anastomoses: will this impact outcomes? Surg Endosc 27:S304–S503CrossRef
43.
Zurück zum Zitat Kudo H, Ishizawa T, Tani K, Harada N, Ichida A, Shimuzu A, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N (2014) Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy. Surg Endosc. doi:10.1007/s00464-014-3468-z Kudo H, Ishizawa T, Tani K, Harada N, Ichida A, Shimuzu A, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N (2014) Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy. Surg Endosc. doi:10.​1007/​s00464-014-3468-z
44.
Zurück zum Zitat Mieog JSD, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers GJ, Choi HS, Gibbs-Strauss SL, Putter H, Gioux S, Kuppen PJ, Ashitate Y, Löwik CW, Smit VT, Oketokoun R, Ngo LH, van de Velde CJ, Frangioni JV, Vahrmeijer AL (2011) Towards optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel node mapping in breast cancer. Ann Surg Oncol 18:2483–2491PubMedCentralPubMedCrossRef Mieog JSD, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers GJ, Choi HS, Gibbs-Strauss SL, Putter H, Gioux S, Kuppen PJ, Ashitate Y, Löwik CW, Smit VT, Oketokoun R, Ngo LH, van de Velde CJ, Frangioni JV, Vahrmeijer AL (2011) Towards optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel node mapping in breast cancer. Ann Surg Oncol 18:2483–2491PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Murawa D, Hirche C, Dresel S, Hünerbein M (2009) Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg 96:1289–1294PubMedCrossRef Murawa D, Hirche C, Dresel S, Hünerbein M (2009) Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg 96:1289–1294PubMedCrossRef
46.
Zurück zum Zitat Hutteman M, Mieog JS, van der Vorst JR, Liefers GJ, Putter H, Löwich CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2011) Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res Treat 127:163–170PubMedCentralPubMedCrossRef Hutteman M, Mieog JS, van der Vorst JR, Liefers GJ, Putter H, Löwich CW, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2011) Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients. Breast Cancer Res Treat 127:163–170PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Manny TB, Patel M, Hemal AK (2014) Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol 65:1162–1168PubMedCrossRef Manny TB, Patel M, Hemal AK (2014) Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol 65:1162–1168PubMedCrossRef
48.
Zurück zum Zitat Rossi EC, Jackson A, Ivanova A, Boggess JF (2013) Detection of sentinel nodes for endometrial cancer with robotic assisted fluorescence imaging: cervical versus hysteroscopic injection. Int J Gynecol Cancer 23:1704–1711PubMedCrossRef Rossi EC, Jackson A, Ivanova A, Boggess JF (2013) Detection of sentinel nodes for endometrial cancer with robotic assisted fluorescence imaging: cervical versus hysteroscopic injection. Int J Gynecol Cancer 23:1704–1711PubMedCrossRef
49.
Zurück zum Zitat Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M (2008) Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg. 25:103–108PubMedCrossRef Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M (2008) Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg. 25:103–108PubMedCrossRef
50.
Zurück zum Zitat Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ (2012) Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc 26:197–204PubMedCrossRef Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ (2012) Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc 26:197–204PubMedCrossRef
Metadaten
Titel
Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery
verfasst von
Luigi Boni
Giulia David
Alberto Mangano
Gianlorenzo Dionigi
Stefano Rausei
Sebastiano Spampatti
Elisa Cassinotti
Abe Fingerhut
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Surgical Endoscopy / Ausgabe 7/2015
Print ISSN: 0930-2794
Elektronische ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-014-3895-x

Weitere Artikel der Ausgabe 7/2015

Surgical Endoscopy 7/2015 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.