Skip to main content
Erschienen in: Neurological Sciences 7/2018

01.07.2018 | Review Article

Glioblastoma niches: from the concept to the phenotypical reality

verfasst von: Davide Schiffer, Marta Mellai, Enrica Bovio, Ilaria Bisogno, Cristina Casalone, Laura Annovazzi

Erschienen in: Neurological Sciences | Ausgabe 7/2018

Einloggen, um Zugang zu erhalten

Abstract

Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of “mother vessels” with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.
Literatur
1.
2.
Zurück zum Zitat Galli R (2013) The neurosphere assay applied to neural stem cells and cancer stem cells. Methods Mol Biol 986:267–277CrossRefPubMed Galli R (2013) The neurosphere assay applied to neural stem cells and cancer stem cells. Methods Mol Biol 986:267–277CrossRefPubMed
3.
Zurück zum Zitat Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822CrossRefPubMed Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822CrossRefPubMed
4.
Zurück zum Zitat Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26(25):6781–6790CrossRefPubMed Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26(25):6781–6790CrossRefPubMed
5.
6.
Zurück zum Zitat Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2:152–163 Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2:152–163
7.
Zurück zum Zitat Schiffer D, Mellai M, Annovazzi L, Caldera V, Piazzi A, Denysenko T, Melcarne A (2014) Stem cell niches in glioblastoma: a neuropathological view. Biomed Res Int 2014:725921CrossRefPubMedPubMedCentral Schiffer D, Mellai M, Annovazzi L, Caldera V, Piazzi A, Denysenko T, Melcarne A (2014) Stem cell niches in glioblastoma: a neuropathological view. Biomed Res Int 2014:725921CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Schiffer D, Annovazzi L, Mazzucco M, Mellai M (2015) The microenvironment in gliomas: phenotypic expressions. Cancers (Basel) 7:2352–2359CrossRef Schiffer D, Annovazzi L, Mazzucco M, Mellai M (2015) The microenvironment in gliomas: phenotypic expressions. Cancers (Basel) 7:2352–2359CrossRef
9.
Zurück zum Zitat Schiffer D, Annovazzi L, Mellai M (2016) Tumor stem cells and the microenvironment in glioblastoma. J Carcinog Mutagen 7:1000260 Schiffer D, Annovazzi L, Mellai M (2016) Tumor stem cells and the microenvironment in glioblastoma. J Carcinog Mutagen 7:1000260
10.
Zurück zum Zitat Schiffer D, Annovazzi L, Mellai M (2017) A comprehensive view of tumor stem cells and their regulation by the microenvironment in glioblastoma. Neurol Sci 38:527–529CrossRefPubMed Schiffer D, Annovazzi L, Mellai M (2017) A comprehensive view of tumor stem cells and their regulation by the microenvironment in glioblastoma. Neurol Sci 38:527–529CrossRefPubMed
11.
Zurück zum Zitat Schiffer D, Mellai M, Annovazzi L, Casalone C, Cassoni P (2015) Tumor microenvironment—perivascular and perinecrotic niches. In: Lichtor T (ed) Tumors of the central nervous system. InTech, Rijeka, pp. 49–82 Schiffer D, Mellai M, Annovazzi L, Casalone C, Cassoni P (2015) Tumor microenvironment—perivascular and perinecrotic niches. In: Lichtor T (ed) Tumors of the central nervous system. InTech, Rijeka, pp. 49–82
12.
Zurück zum Zitat Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM, De Maria R (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212CrossRefPubMed Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM, De Maria R (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212CrossRefPubMed
13.
Zurück zum Zitat Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalprà L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28:1807–1811CrossRefPubMed Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalprà L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28:1807–1811CrossRefPubMed
14.
Zurück zum Zitat Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D'avella D, Basso G (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862CrossRefPubMed Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D'avella D, Basso G (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862CrossRefPubMed
15.
Zurück zum Zitat Persano L, Rampazzo E, Della Puppa A, Pistollato F, Basso G (2011) The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. ScientificWorldJournal 11:1829–1841CrossRefPubMedPubMedCentral Persano L, Rampazzo E, Della Puppa A, Pistollato F, Basso G (2011) The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. ScientificWorldJournal 11:1829–1841CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Valentini MC, Mellai M, Annovazzi L, Melcarne A, Denysenko T, Cassoni P, Casalone C, Maurella C, Grifoni S, Fania P, Cistaro A, Schiffer D (2017) Comparison among conventional and advanced MRI, (18)F-FDG PET/CT, phenotype and genotype in glioblastoma. Oncotarget 8:91636–91653CrossRefPubMedPubMedCentral Valentini MC, Mellai M, Annovazzi L, Melcarne A, Denysenko T, Cassoni P, Casalone C, Maurella C, Grifoni S, Fania P, Cistaro A, Schiffer D (2017) Comparison among conventional and advanced MRI, (18)F-FDG PET/CT, phenotype and genotype in glioblastoma. Oncotarget 8:91636–91653CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494CrossRefPubMed Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494CrossRefPubMed
18.
Zurück zum Zitat Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340CrossRefPubMed Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340CrossRefPubMed
19.
Zurück zum Zitat Kazanis I (2009) The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain 132:2909–2921CrossRefPubMedPubMedCentral Kazanis I (2009) The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain 132:2909–2921CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480CrossRefPubMedPubMedCentral Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514CrossRefPubMed Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514CrossRefPubMed
23.
Zurück zum Zitat Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508CrossRefPubMed Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508CrossRefPubMed
24.
Zurück zum Zitat Christensen K, Schrøder HD, Kristensen BW (2008) CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neuro-Oncol 90:157–170CrossRef Christensen K, Schrøder HD, Kristensen BW (2008) CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neuro-Oncol 90:157–170CrossRef
25.
Zurück zum Zitat Seidel S, Garvalov BK, Wirta V, von Stechow L, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nistér M, Reifenberger G, Lundeberg J, Frisén J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995CrossRefPubMed Seidel S, Garvalov BK, Wirta V, von Stechow L, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nistér M, Reifenberger G, Lundeberg J, Frisén J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133:983–995CrossRefPubMed
26.
Zurück zum Zitat Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, Collins RA, Grady MS, Koch CJ (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184CrossRefPubMed Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, Collins RA, Grady MS, Koch CJ (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184CrossRefPubMed
27.
28.
Zurück zum Zitat Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113CrossRefPubMedPubMedCentral Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16PubMedPubMedCentral Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16PubMedPubMedCentral
33.
Zurück zum Zitat Ho IAW, Shim WSN (2017) Contribution of the microenvironmental niche to glioblastoma heterogeneity. Biomed Res Int 2017:9634172, 1, 13 Ho IAW, Shim WSN (2017) Contribution of the microenvironmental niche to glioblastoma heterogeneity. Biomed Res Int 2017:9634172, 1, 13
34.
Zurück zum Zitat Yang L, Lin C, Wang L, Guo H, Wang X (2012) Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 318:2417–2426CrossRefPubMed Yang L, Lin C, Wang L, Guo H, Wang X (2012) Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 318:2417–2426CrossRefPubMed
35.
Zurück zum Zitat Christensen K, Schrøder HD, Kristensen BW (2011) CD133+ niches and single cells in glioblastoma have different phenotypes. J Neuro-Oncol 104:129–143CrossRef Christensen K, Schrøder HD, Kristensen BW (2011) CD133+ niches and single cells in glioblastoma have different phenotypes. J Neuro-Oncol 104:129–143CrossRef
36.
Zurück zum Zitat Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539CrossRefPubMed Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539CrossRefPubMed
39.
Zurück zum Zitat Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927CrossRefPubMed Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927CrossRefPubMed
41.
Zurück zum Zitat Schiffer D, Chiò A, Giordana MT, Mauro A, Migheli A, Vigliani MC (1989) The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol 77:369–378CrossRefPubMed Schiffer D, Chiò A, Giordana MT, Mauro A, Migheli A, Vigliani MC (1989) The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol 77:369–378CrossRefPubMed
42.
Zurück zum Zitat Schiffer D (2006) Brain tumor pathology: current diagnostic hotspots and pitfalls. Springer, New York, 272 pages Schiffer D (2006) Brain tumor pathology: current diagnostic hotspots and pitfalls. Springer, New York, 272 pages
43.
Zurück zum Zitat Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neuro-Oncol 78:281–293CrossRef Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neuro-Oncol 78:281–293CrossRef
44.
Zurück zum Zitat Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82CrossRefPubMed Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82CrossRefPubMed
47.
Zurück zum Zitat Annovazzi L, Mellai M, Bisogno I, Spatola A, Bovio E, Cassoni P, Casalone C, Schiffer D (2018) Perivascular niches as points of the utmost expression of tumor microenvironment. Hematol Med Oncol. In press Annovazzi L, Mellai M, Bisogno I, Spatola A, Bovio E, Cassoni P, Casalone C, Schiffer D (2018) Perivascular niches as points of the utmost expression of tumor microenvironment. Hematol Med Oncol. In press
49.
Zurück zum Zitat Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998CrossRefPubMed Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998CrossRefPubMed
50.
Zurück zum Zitat Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508CrossRefPubMed Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508CrossRefPubMed
52.
Zurück zum Zitat Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833CrossRefPubMed Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833CrossRefPubMed
53.
Zurück zum Zitat Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245CrossRefPubMed Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245CrossRefPubMed
54.
Zurück zum Zitat Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220CrossRefPubMedPubMedCentral Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828 Erratum in: Nature. 2011;477:238. Nature. 2011;469:432 Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828 Erratum in: Nature. 2011;477:238. Nature. 2011;469:432
56.
Zurück zum Zitat Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310CrossRefPubMed Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310CrossRefPubMed
57.
Zurück zum Zitat Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Investig 86:1221–1232CrossRefPubMed Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Investig 86:1221–1232CrossRefPubMed
58.
Zurück zum Zitat Müller A, Brandenburg S, Turkowski K, Müller S, Vajkoczy P (2015) Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137:278–288CrossRefPubMed Müller A, Brandenburg S, Turkowski K, Müller S, Vajkoczy P (2015) Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137:278–288CrossRefPubMed
59.
Zurück zum Zitat Annovazzi L, Mellai M, Bovio E, Mazzetti S, Pollo B, Schiffer D (2018) Microglia immunophenotyping in gliomas. Oncol Lett 15:998–1006PubMed Annovazzi L, Mellai M, Bovio E, Mazzetti S, Pollo B, Schiffer D (2018) Microglia immunophenotyping in gliomas. Oncol Lett 15:998–1006PubMed
60.
Zurück zum Zitat Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196CrossRefPubMedPubMedCentral Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Bonomini F, Rezzani R (2010) Aquaporin and blood brain barrier. Curr Neuropharmacol 8:92–96. Erratum in: Curr Neuropharmacol. 2012;10:179 Bonomini F, Rezzani R (2010) Aquaporin and blood brain barrier. Curr Neuropharmacol 8:92–96. Erratum in: Curr Neuropharmacol. 2012;10:179
62.
Zurück zum Zitat Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67:435–448CrossRefPubMed Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67:435–448CrossRefPubMed
63.
Zurück zum Zitat Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24CrossRefPubMed Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24CrossRefPubMed
64.
Zurück zum Zitat Prosniak M, Harshyne LA, Andrews DW Kenyon LC, Bedelbaeva K, Apanasovich TV, Heber-Katz E, Curtis MT, Cotzia P, Hooper DC (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res 19:3776−3786CrossRef Prosniak M, Harshyne LA, Andrews DW Kenyon LC, Bedelbaeva K, Apanasovich TV, Heber-Katz E, Curtis MT, Cotzia P, Hooper DC (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res 19:3776−3786CrossRef
65.
Zurück zum Zitat Ding P, Wang W, Wang J, Yang Z, Xue L (2014) Expression of tumor-associated macrophage in progression of human glioma. Cell Biochem Biophys 70:1625–1631CrossRefPubMed Ding P, Wang W, Wang J, Yang Z, Xue L (2014) Expression of tumor-associated macrophage in progression of human glioma. Cell Biochem Biophys 70:1625–1631CrossRefPubMed
66.
Zurück zum Zitat Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, Gutmann DH (2011) Neurofibromatosis-1 heterozygosity increases microglia in a spatially- and temporally-restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70:51–62CrossRefPubMedPubMedCentral Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, Gutmann DH (2011) Neurofibromatosis-1 heterozygosity increases microglia in a spatially- and temporally-restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70:51–62CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Kaminska B (2014) Microglia in gliomas: friend or foe? In: Sedo A, Mentlein R (eds) Glioma cell biology. Springer-Verlag, Berlin, pp 241–270 Kaminska B (2014) Microglia in gliomas: friend or foe? In: Sedo A, Mentlein R (eds) Glioma cell biology. Springer-Verlag, Berlin, pp 241–270
68.
Zurück zum Zitat Hira VV, Ploegmakers KJ, Grevers F, Verbovšek U, Silvestre-Roig C, Aronica E, Tigchelaar W, Turnšek TL, Molenaar RJ, Van Noorden CJ (2015) CD133+ and Nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J Histochem Cytochem 63:481–493CrossRefPubMed Hira VV, Ploegmakers KJ, Grevers F, Verbovšek U, Silvestre-Roig C, Aronica E, Tigchelaar W, Turnšek TL, Molenaar RJ, Van Noorden CJ (2015) CD133+ and Nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, Osteopontin and Cathepsin K. J Histochem Cytochem 63:481–493CrossRefPubMed
69.
Zurück zum Zitat Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27CrossRefPubMedPubMedCentral Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Gieryng A, Kaminska B (2016) Myeloid-derived suppressor cells in gliomas. Contemp Oncol (Pozn) 20:345–351 Gieryng A, Kaminska B (2016) Myeloid-derived suppressor cells in gliomas. Contemp Oncol (Pozn) 20:345–351
71.
Zurück zum Zitat Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455CrossRefPubMed Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455CrossRefPubMed
72.
Zurück zum Zitat Bajetto A, Barbieri F, Dorcaratto A, Barbero S, Daga A, Porcile C, Ravetti JL, Zona G, Spaziante R, Corte G, Schettini G, Florio T (2006) Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 49:423–432CrossRefPubMed Bajetto A, Barbieri F, Dorcaratto A, Barbero S, Daga A, Porcile C, Ravetti JL, Zona G, Spaziante R, Corte G, Schettini G, Florio T (2006) Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem Int 49:423–432CrossRefPubMed
73.
Zurück zum Zitat Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P, Mantovani A (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44CrossRefPubMed Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P, Mantovani A (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44CrossRefPubMed
74.
Zurück zum Zitat Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW (2012) A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33:312–319CrossRefPubMed Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW (2012) A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33:312–319CrossRefPubMed
75.
Zurück zum Zitat Uemae Y, Ishikawa E, Osuka S, Matsuda M, Sakamoto N, Takano S, Nakai K, Yamamoto T, Matsumura A (2014) CXCL12 secreted from glioma stem cells regulates their proliferation. J Neuro-Oncol 117:43–51CrossRef Uemae Y, Ishikawa E, Osuka S, Matsuda M, Sakamoto N, Takano S, Nakai K, Yamamoto T, Matsumura A (2014) CXCL12 secreted from glioma stem cells regulates their proliferation. J Neuro-Oncol 117:43–51CrossRef
76.
Zurück zum Zitat Mercurio L, Ajmone-Cat MA, Cecchetti S, Ricci A, Bozzuto G, Molinari A, Manni I, Pollo B, Scala S, Carpinelli G, Minghetti L (2016) Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J Exp Clin Cancer Res 35:55CrossRefPubMedPubMedCentral Mercurio L, Ajmone-Cat MA, Cecchetti S, Ricci A, Bozzuto G, Molinari A, Manni I, Pollo B, Scala S, Carpinelli G, Minghetti L (2016) Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J Exp Clin Cancer Res 35:55CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, Bungert AD, Acker G, Schorr A, Hippe A, Miller K, Heppner FL, Homey B, Vajkoczy P (2016) Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 131:365–378CrossRefPubMed Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, Bungert AD, Acker G, Schorr A, Hippe A, Miller K, Heppner FL, Homey B, Vajkoczy P (2016) Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 131:365–378CrossRefPubMed
78.
Zurück zum Zitat Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN, Anderson RC (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912, 1, 11 Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN, Anderson RC (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912, 1, 11
79.
Zurück zum Zitat Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6:e23902CrossRefPubMedPubMedCentral Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6:e23902CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128:319–331CrossRefPubMed Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128:319–331CrossRefPubMed
82.
Zurück zum Zitat Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128:347–362CrossRefPubMed Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128:347–362CrossRefPubMed
83.
Zurück zum Zitat Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, Holtman IR, Wang X, Eggen BJ, Boddeke HW, Hambardzumyan D, Wolf SA, Kettenmann H (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 10:e0116644CrossRefPubMedPubMedCentral Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, Holtman IR, Wang X, Eggen BJ, Boddeke HW, Hambardzumyan D, Wolf SA, Kettenmann H (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 10:e0116644CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Szulzewsky F, Arora S, de Witte L, Ulas T, Markovic D, Schultze JL, Holland EC, Synowitz M, Wolf SA, Kettenmann H (2016) Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia 64:1416–1436CrossRefPubMed Szulzewsky F, Arora S, de Witte L, Ulas T, Markovic D, Schultze JL, Holland EC, Synowitz M, Wolf SA, Kettenmann H (2016) Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia 64:1416–1436CrossRefPubMed
85.
Zurück zum Zitat Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS, Sun D (2016) Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1. Carcinogenesis 37:839–851CrossRefPubMedPubMedCentral Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS, Sun D (2016) Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1. Carcinogenesis 37:839–851CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Schiffer D, Mellai M, Bovio E, Annovazzi L (2017) The neuropathological basis to the functional role of microglia/macrophages in gliomas. Neurol Sci 38(Jun 7):1571–1577CrossRefPubMed Schiffer D, Mellai M, Bovio E, Annovazzi L (2017) The neuropathological basis to the functional role of microglia/macrophages in gliomas. Neurol Sci 38(Jun 7):1571–1577CrossRefPubMed
87.
Zurück zum Zitat Daginakatte GC, Gutmann DH (2007) Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16:1098–1112CrossRefPubMed Daginakatte GC, Gutmann DH (2007) Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16:1098–1112CrossRefPubMed
88.
Zurück zum Zitat Morimura T, Neuchrist C, Kitz K, Budka H, Scheiner O, Kraft D, Lassmann H (1990) Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol 80:287–294CrossRefPubMed Morimura T, Neuchrist C, Kitz K, Budka H, Scheiner O, Kraft D, Lassmann H (1990) Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol 80:287–294CrossRefPubMed
89.
Zurück zum Zitat Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106–113CrossRefPubMed Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54:106–113CrossRefPubMed
90.
Zurück zum Zitat Sutter A, Hekmat A, Luckenbach GA (1991) Antibody-mediated tumor cytotoxicity of microglia. Pathobiology 59:254–258CrossRefPubMed Sutter A, Hekmat A, Luckenbach GA (1991) Antibody-mediated tumor cytotoxicity of microglia. Pathobiology 59:254–258CrossRefPubMed
91.
Zurück zum Zitat Zhang H, Zhang W, Sun X, Dang R, Zhou R, Bai H, Ben J, Zhu X, Zhang Y, Yang Q, Xu Y, Chen Q (2016) Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget 7:50099–50116PubMedPubMedCentral Zhang H, Zhang W, Sun X, Dang R, Zhou R, Bai H, Ben J, Zhu X, Zhang Y, Yang Q, Xu Y, Chen Q (2016) Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget 7:50099–50116PubMedPubMedCentral
92.
Zurück zum Zitat Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, Gutmann DH, Hambardzumyan D (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278CrossRefPubMedPubMedCentral Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, Gutmann DH, Hambardzumyan D (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Lamagna C, Bergers G (2006) The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol 80:677–681CrossRefPubMed Lamagna C, Bergers G (2006) The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol 80:677–681CrossRefPubMed
94.
Zurück zum Zitat Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A (2011) Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neuro-Oncol 105:57–65CrossRef Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A (2011) Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neuro-Oncol 105:57–65CrossRef
95.
Zurück zum Zitat Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879CrossRefPubMedPubMedCentral Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Bababeygy SR, Cheshier SH, Hou LC, Higgins DM, Weissman IL, Tse VC (2008) Hematopoietic stem cell-derived pericytic cells in brain tumor angio-architecture. Stem Cells Dev 17:11–18CrossRefPubMed Bababeygy SR, Cheshier SH, Hou LC, Higgins DM, Weissman IL, Tse VC (2008) Hematopoietic stem cell-derived pericytic cells in brain tumor angio-architecture. Stem Cells Dev 17:11–18CrossRefPubMed
97.
Zurück zum Zitat Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17:183–190CrossRefPubMed Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17:183–190CrossRefPubMed
98.
Zurück zum Zitat Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152CrossRefPubMedPubMedCentral Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat You WK, Bonaldo P, Stallcup WB (2012) Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. Am J Pathol 180:1145–1158CrossRefPubMedPubMedCentral You WK, Bonaldo P, Stallcup WB (2012) Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. Am J Pathol 180:1145–1158CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ (2013) Pericytes on the tumor vasculature: Jekyll or Hyde? Cancer Microenviron 6:1–17CrossRefPubMed Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ (2013) Pericytes on the tumor vasculature: Jekyll or Hyde? Cancer Microenviron 6:1–17CrossRefPubMed
Metadaten
Titel
Glioblastoma niches: from the concept to the phenotypical reality
verfasst von
Davide Schiffer
Marta Mellai
Enrica Bovio
Ilaria Bisogno
Cristina Casalone
Laura Annovazzi
Publikationsdatum
01.07.2018
Verlag
Springer Milan
Erschienen in
Neurological Sciences / Ausgabe 7/2018
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-018-3408-0

Weitere Artikel der Ausgabe 7/2018

Neurological Sciences 7/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.