Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 6/2015

01.06.2015 | Review

Azithromycin use in patients with cystic fibrosis

verfasst von: N. Principi, F. Blasi, S. Esposito

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

Rational antimicrobial administration is still considered to be the most effective therapeutic approach in cystic fibrosis (CF), and long-term treatment with azithromycin (Az) is included in the current guidelines for CF patients aged ≥6 years. Az has microbiological, immunomodulatory and anti-inflammatory properties that can reduce some of the biological problems that are among the causes of the progressive lung damage associated with CF. Moreover, although it is not active against Pseudomonas aeruginosa (the most important bacterial pathogen responsible for infectious exacerbations), it can be efficiently used in the case of P. aeruginosa infections because sub-inhibitory concentrations can reduce their pathogenic role by interfering with some bacterial activities and increasing their susceptibility to antibiotics. Az also has anti-viral activity that limits the risk of the bacterial pulmonary exacerbations that frequently occur after apparently mild viral infections. The available data seem to indicate that it is effective during its first year of administration, but the impact of longer treatment is debated. Other still undefined aspects of the use of Az include the possible emergence of antibiotic resistance in the other bacterial pathogens that usually colonise CF patients, the real incidence of adverse events and the drug’s potential interference with other routine therapies.
Literatur
3.
Zurück zum Zitat Kumar S, Tana A, Shankar A (2014) Cystic fibrosis—what are the prospects for a cure? Eur J Intern Med 25:803–807CrossRefPubMed Kumar S, Tana A, Shankar A (2014) Cystic fibrosis—what are the prospects for a cure? Eur J Intern Med 25:803–807CrossRefPubMed
4.
Zurück zum Zitat Mogayzel PJ Jr, Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB et al (2013) Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 187:680–689CrossRefPubMed Mogayzel PJ Jr, Naureckas ET, Robinson KA, Mueller G, Hadjiliadis D, Hoag JB et al (2013) Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 187:680–689CrossRefPubMed
5.
Zurück zum Zitat Cohen-Cymberknoh M, Kerem E, Ferkol T, Elizur A (2013) Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax 68:1157–1162CrossRefPubMed Cohen-Cymberknoh M, Kerem E, Ferkol T, Elizur A (2013) Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax 68:1157–1162CrossRefPubMed
6.
Zurück zum Zitat Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L (2009) Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest 136:1554–1560CrossRefPubMed Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L (2009) Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest 136:1554–1560CrossRefPubMed
7.
Zurück zum Zitat Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I et al (2011) Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640CrossRefPubMed
8.
Zurück zum Zitat Zlosnik JEA, Costa PS, Brant R, Mori PY, Hird TJ, Fraenkel MC et al (2011) Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. Am J Respir Crit Care Med 183:67–72CrossRefPubMed Zlosnik JEA, Costa PS, Brant R, Mori PY, Hird TJ, Fraenkel MC et al (2011) Mucoid and nonmucoid Burkholderia cepacia complex bacteria in cystic fibrosis infections. Am J Respir Crit Care Med 183:67–72CrossRefPubMed
9.
Zurück zum Zitat Foweraker J (2009) Recent advances in the microbiology of respiratory tract infection in cystic fibrosis. Br Med Bull 89:93–110CrossRefPubMed Foweraker J (2009) Recent advances in the microbiology of respiratory tract infection in cystic fibrosis. Br Med Bull 89:93–110CrossRefPubMed
10.
Zurück zum Zitat Asner S, Waters V, Solomon M, Yau Y, Richardson SE, Grasemann H et al (2012) Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 11:433–439CrossRefPubMed Asner S, Waters V, Solomon M, Yau Y, Richardson SE, Grasemann H et al (2012) Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 11:433–439CrossRefPubMed
11.
Zurück zum Zitat Esposito S, Daccò V, Daleno C, Gambazza S, Montinaro V, Bisogno A et al (2014) Human rhinovirus infection in children with cystic fibrosis. Jpn J Infect Dis 67:399–401CrossRefPubMed Esposito S, Daccò V, Daleno C, Gambazza S, Montinaro V, Bisogno A et al (2014) Human rhinovirus infection in children with cystic fibrosis. Jpn J Infect Dis 67:399–401CrossRefPubMed
12.
Zurück zum Zitat Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66:2448–2454CrossRefPubMed Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66:2448–2454CrossRefPubMed
13.
Zurück zum Zitat Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S et al (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7:e36313CrossRefPubMedCentralPubMed Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S et al (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7:e36313CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Sagel SD, Wagner BD, Anthony MM, Emmett P, Zemanick ET (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 186:857–865CrossRefPubMedCentralPubMed Sagel SD, Wagner BD, Anthony MM, Emmett P, Zemanick ET (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 186:857–865CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430CrossRefPubMed Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M et al (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430CrossRefPubMed
16.
Zurück zum Zitat Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP (2010) Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 9:193–198CrossRefPubMed Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP (2010) Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 9:193–198CrossRefPubMed
17.
Zurück zum Zitat Palm K, Sawicki G, Rosen R (2012) The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. Pediatr Pulmonol 47:582–587CrossRefPubMed Palm K, Sawicki G, Rosen R (2012) The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. Pediatr Pulmonol 47:582–587CrossRefPubMed
18.
Zurück zum Zitat Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, Mocatta TJ et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323CrossRefPubMed Kettle AJ, Chan T, Osberg I, Senthilmohan R, Chapman AL, Mocatta TJ et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323CrossRefPubMed
19.
Zurück zum Zitat Starosta V, Griese M (2006) Protein oxidation by chronic pulmonary diseases in children. Pediatr Pulmonol 41:67–73CrossRefPubMed Starosta V, Griese M (2006) Protein oxidation by chronic pulmonary diseases in children. Pediatr Pulmonol 41:67–73CrossRefPubMed
20.
Zurück zum Zitat Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985) 75:2419–2424 Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985) 75:2419–2424
21.
Zurück zum Zitat Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF, Robinson P et al (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81CrossRefPubMed Pillarisetti N, Williamson E, Linnane B, Skoric B, Robertson CF, Robinson P et al (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81CrossRefPubMed
22.
Zurück zum Zitat Watt AP, Courtney J, Moore J, Ennis M, Elborn JS (2005) Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 60:659–664CrossRefPubMedCentralPubMed Watt AP, Courtney J, Moore J, Ennis M, Elborn JS (2005) Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 60:659–664CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082PubMed Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082PubMed
24.
Zurück zum Zitat Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152CrossRefPubMed Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152CrossRefPubMed
25.
Zurück zum Zitat Brennan S, Sly PD, Gangell CL, Sturges N, Winfield K, Wikstrom M et al (2009) Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis. Eur Respir J 34:655–661CrossRefPubMed Brennan S, Sly PD, Gangell CL, Sturges N, Winfield K, Wikstrom M et al (2009) Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis. Eur Respir J 34:655–661CrossRefPubMed
26.
Zurück zum Zitat Sturges NC, Wikström ME, Winfield KR, Gard SE, Brennan S, Sly PD et al (2010) Monocytes from children with clinically stable cystic fibrosis show enhanced expression of Toll-like receptor 4. Pediatr Pulmonol 45:883–889CrossRefPubMed Sturges NC, Wikström ME, Winfield KR, Gard SE, Brennan S, Sly PD et al (2010) Monocytes from children with clinically stable cystic fibrosis show enhanced expression of Toll-like receptor 4. Pediatr Pulmonol 45:883–889CrossRefPubMed
27.
Zurück zum Zitat Hubeau C, Le Naour R, Abély M, Hinnrasky J, Guenounou M, Gaillard D et al (2004) Dysregulation of IL-2 and IL-8 production in circulating T lymphocytes from young cystic fibrosis patients. Clin Exp Immunol 135:528–534CrossRefPubMedCentralPubMed Hubeau C, Le Naour R, Abély M, Hinnrasky J, Guenounou M, Gaillard D et al (2004) Dysregulation of IL-2 and IL-8 production in circulating T lymphocytes from young cystic fibrosis patients. Clin Exp Immunol 135:528–534CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R (2014) Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 143:225–245CrossRefPubMed Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R (2014) Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 143:225–245CrossRefPubMed
30.
Zurück zum Zitat Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H et al (2005) Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49:1377–1380CrossRefPubMedCentralPubMed Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H et al (2005) Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother 49:1377–1380CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Høiby N (2014) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. pii: S0169-409X(14)00282-8 Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Høiby N (2014) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. pii: S0169-409X(14)00282-8
32.
Zurück zum Zitat Lutz L, Pereira DC, Paiva RM, Zavascki AP, Barth AL (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196CrossRefPubMedCentralPubMed Lutz L, Pereira DC, Paiva RM, Zavascki AP, Barth AL (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Tateda K, Ishii Y, Hirakata Y, Matsumoto T, Ohno A, Yamaguchi K (1994) Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother 34:931–942CrossRefPubMed Tateda K, Ishii Y, Hirakata Y, Matsumoto T, Ohno A, Yamaguchi K (1994) Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother 34:931–942CrossRefPubMed
35.
Zurück zum Zitat Sugimura M, Maseda H, Hanaki H, Nakae T (2008) Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144CrossRefPubMedCentralPubMed Sugimura M, Maseda H, Hanaki H, Nakae T (2008) Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:4141–4144CrossRefPubMedCentralPubMed
36.
Zurück zum Zitat Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E et al (2015) Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J 45:428–439CrossRefPubMed Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E et al (2015) Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J 45:428–439CrossRefPubMed
37.
Zurück zum Zitat Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O (2010) Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 42:62–68CrossRefPubMed Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O (2010) Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 42:62–68CrossRefPubMed
38.
Zurück zum Zitat Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y et al (2004) Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells. Antimicrob Agents Chemother 48:3457–3461CrossRefPubMedCentralPubMed Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y et al (2004) Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells. Antimicrob Agents Chemother 48:3457–3461CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Gielen V, Johnston SL, Edwards MR (2010) Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 36:646–654CrossRefPubMed Gielen V, Johnston SL, Edwards MR (2010) Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 36:646–654CrossRefPubMed
40.
Zurück zum Zitat Daenas C, Hatziefthimiou AA, Gourgoulianis KI, Molyvdas PA (2006) Azithromycin has a direct relaxant effect on precontracted airway smooth muscle. Eur J Pharmacol 553:280–287CrossRefPubMed Daenas C, Hatziefthimiou AA, Gourgoulianis KI, Molyvdas PA (2006) Azithromycin has a direct relaxant effect on precontracted airway smooth muscle. Eur J Pharmacol 553:280–287CrossRefPubMed
41.
Zurück zum Zitat Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S et al (2007) Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 7:76–82CrossRefPubMed Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S et al (2007) Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 7:76–82CrossRefPubMed
42.
Zurück zum Zitat Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI et al (2013) Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 67:331–339CrossRefPubMed Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI et al (2013) Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 67:331–339CrossRefPubMed
43.
Zurück zum Zitat Bosnar M, Kelnerić Z, Munić V, Eraković V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377CrossRefPubMedCentralPubMed Bosnar M, Kelnerić Z, Munić V, Eraković V, Parnham MJ (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377CrossRefPubMedCentralPubMed
44.
Zurück zum Zitat Culić O, Eraković V, Cepelak I, Barisić K, Brajsa K, Ferencić Z et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–289CrossRefPubMed Culić O, Eraković V, Cepelak I, Barisić K, Brajsa K, Ferencić Z et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–289CrossRefPubMed
45.
Zurück zum Zitat Marjanović N, Bosnar M, Michielin F, Willé DR, Anić-Milić T, Culić O et al (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res 63:389–397CrossRefPubMed Marjanović N, Bosnar M, Michielin F, Willé DR, Anić-Milić T, Culić O et al (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res 63:389–397CrossRefPubMed
46.
Zurück zum Zitat Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M et al (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178:139–148CrossRefPubMed Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M et al (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178:139–148CrossRefPubMed
47.
Zurück zum Zitat Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D et al (2009) Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci 23:667–678CrossRef Yamauchi K, Shibata Y, Kimura T, Abe S, Inoue S, Osaka D et al (2009) Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages. Int J Biol Sci 23:667–678CrossRef
48.
Zurück zum Zitat Polancec DS, Munic Kos V, Banjanac M, Vrancic M, Cuzic S, Belamaric D et al (2012) Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. J Leukoc Biol 91:229–243CrossRefPubMed Polancec DS, Munic Kos V, Banjanac M, Vrancic M, Cuzic S, Belamaric D et al (2012) Azithromycin drives in vitro GM-CSF/IL-4-induced differentiation of human blood monocytes toward dendritic-like cells with regulatory properties. J Leukoc Biol 91:229–243CrossRefPubMed
49.
Zurück zum Zitat Montenez JP, Van Bambeke F, Piret J, Schanck A, Brasseur R, Tulkens PM et al (1996) Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur J Pharmacol 314:215–227CrossRefPubMed Montenez JP, Van Bambeke F, Piret J, Schanck A, Brasseur R, Tulkens PM et al (1996) Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur J Pharmacol 314:215–227CrossRefPubMed
50.
Zurück zum Zitat Munić V, Banjanac M, Koštrun S, Nujić K, Bosnar M, Marjanović N et al (2011) Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis. Pharmacol Res 64:298–307CrossRefPubMed Munić V, Banjanac M, Koštrun S, Nujić K, Bosnar M, Marjanović N et al (2011) Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis. Pharmacol Res 64:298–307CrossRefPubMed
51.
Zurück zum Zitat Nujić K, Banjanac M, Munić V, Polančec D, Eraković Haber V (2012) Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell Immunol 279:78–86CrossRefPubMed Nujić K, Banjanac M, Munić V, Polančec D, Eraković Haber V (2012) Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell Immunol 279:78–86CrossRefPubMed
52.
Zurück zum Zitat Parnham MJ (2005) Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 18:125–131CrossRefPubMed Parnham MJ (2005) Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 18:125–131CrossRefPubMed
53.
Zurück zum Zitat Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J (2010) A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J Immunol 184:1516–1525CrossRefPubMed Navarro-Xavier RA, Newson J, Silveira VL, Farrow SN, Gilroy DW, Bystrom J (2010) A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. J Immunol 184:1516–1525CrossRefPubMed
54.
Zurück zum Zitat Southern KW, Barker PM, Solis-Moya A, Patel L (2012) Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 11:CD002203 Southern KW, Barker PM, Solis-Moya A, Patel L (2012) Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 11:CD002203
55.
Zurück zum Zitat Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–984CrossRefPubMed Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–984CrossRefPubMed
56.
Zurück zum Zitat Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61:895–902CrossRefPubMedCentralPubMed Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61:895–902CrossRefPubMedCentralPubMed
57.
Zurück zum Zitat Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756CrossRefPubMed Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756CrossRefPubMed
58.
Zurück zum Zitat Saiman L, Anstead M, Mayer-Hamblett N, Lands LC, Kloster M, Hocevar-Trnka J et al (2010) Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303:1707–1715CrossRefPubMed Saiman L, Anstead M, Mayer-Hamblett N, Lands LC, Kloster M, Hocevar-Trnka J et al (2010) Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 303:1707–1715CrossRefPubMed
59.
Zurück zum Zitat Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216CrossRefPubMedCentralPubMed Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216CrossRefPubMedCentralPubMed
60.
Zurück zum Zitat McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C et al (2007) Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J 30:487–495CrossRefPubMed McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C et al (2007) Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J 30:487–495CrossRefPubMed
61.
Zurück zum Zitat Ratjen F, Saiman L, Mayer-Hamblett N, Lands LC, Kloster M, Thompson V et al (2012) Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. Chest 142:1259–1266CrossRefPubMedCentralPubMed Ratjen F, Saiman L, Mayer-Hamblett N, Lands LC, Kloster M, Thompson V et al (2012) Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa. Chest 142:1259–1266CrossRefPubMedCentralPubMed
62.
Zurück zum Zitat Saiman L, Mayer-Hamblett N, Anstead M, Lands LC, Kloster M, Goss CH et al (2012) Open-label, follow-on study of azithromycin in pediatric patients with CF uninfected with Pseudomonas aeruginosa. Pediatr Pulmonol 47:641–648CrossRefPubMed Saiman L, Mayer-Hamblett N, Anstead M, Lands LC, Kloster M, Goss CH et al (2012) Open-label, follow-on study of azithromycin in pediatric patients with CF uninfected with Pseudomonas aeruginosa. Pediatr Pulmonol 47:641–648CrossRefPubMed
63.
Zurück zum Zitat Wilms EB, Touw DJ, Heijerman HG, van der Ent CK (2012) Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol 47:658–665CrossRefPubMed Wilms EB, Touw DJ, Heijerman HG, van der Ent CK (2012) Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol 47:658–665CrossRefPubMed
64.
Zurück zum Zitat Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26:8–12CrossRefPubMed Tramper-Stranders GA, Wolfs TF, Fleer A, Kimpen JL, van der Ent CK (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26:8–12CrossRefPubMed
65.
Zurück zum Zitat Willekens J, Eyns H, Malfroot A (2015) How long should we maintain long-term azithromycin treatment in cystic fibrosis patients? Pediatr Pulmonol 50:103–104CrossRefPubMed Willekens J, Eyns H, Malfroot A (2015) How long should we maintain long-term azithromycin treatment in cystic fibrosis patients? Pediatr Pulmonol 50:103–104CrossRefPubMed
66.
Zurück zum Zitat Albert RK, Schuller JL; COPD Clinical Research Network (2014) Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med 189:1173–1180CrossRefPubMed Albert RK, Schuller JL; COPD Clinical Research Network (2014) Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med 189:1173–1180CrossRefPubMed
67.
69.
Zurück zum Zitat Nick JA, Moskowitz SM, Chmiel JF, Forssén AV, Kim SH, Saavedra MT et al (2014) Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 11:342–350CrossRefPubMedCentralPubMed Nick JA, Moskowitz SM, Chmiel JF, Forssén AV, Kim SH, Saavedra MT et al (2014) Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 11:342–350CrossRefPubMedCentralPubMed
70.
Zurück zum Zitat Rosenfeld M, Ratjen F, Brumback L, Daniel S, Rowbotham R, McNamara S et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307:2269–2277CrossRefPubMedCentralPubMed Rosenfeld M, Ratjen F, Brumback L, Daniel S, Rowbotham R, McNamara S et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307:2269–2277CrossRefPubMedCentralPubMed
Metadaten
Titel
Azithromycin use in patients with cystic fibrosis
verfasst von
N. Principi
F. Blasi
S. Esposito
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 6/2015
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-015-2347-4

Weitere Artikel der Ausgabe 6/2015

European Journal of Clinical Microbiology & Infectious Diseases 6/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.