Skip to main content
Erschienen in: International Journal of Clinical Oncology 9/2019

04.07.2019 | Invited Review Article

Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome

verfasst von: Kazuo Tamura, Motohide Kaneda, Mashu Futagawa, Miho Takeshita, Sanghyuk Kim, Mina Nakama, Norihito Kawashita, Junko Tatsumi-Miyajima

Erschienen in: International Journal of Clinical Oncology | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Literatur
1.
Zurück zum Zitat Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMed Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532PubMed
2.
Zurück zum Zitat Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMed Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMed
3.
Zurück zum Zitat Bodmer W, Bishop T, Karran P (1994) Genetic steps in colorectal cancer. Nature Genet 6:217–219PubMed Bodmer W, Bishop T, Karran P (1994) Genetic steps in colorectal cancer. Nature Genet 6:217–219PubMed
4.
Zurück zum Zitat Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMed Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMed
5.
Zurück zum Zitat Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMed Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMed
6.
Zurück zum Zitat Tamura K, Utsunomiya J, Iwama T et al (2004) Mechanism of carcinogenesis in familial tumors. Int J Clin Oncol 9:232–245PubMed Tamura K, Utsunomiya J, Iwama T et al (2004) Mechanism of carcinogenesis in familial tumors. Int J Clin Oncol 9:232–245PubMed
7.
Zurück zum Zitat Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMed Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMed
8.
Zurück zum Zitat Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304 Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304
10.
Zurück zum Zitat Nevers P, Spats HC (1975) Escherichia coli mutants uvr D and uvr E deficient in gene conversion of lambda-heteroduplexes. Mol Gen Genet 139:233–243PubMed Nevers P, Spats HC (1975) Escherichia coli mutants uvr D and uvr E deficient in gene conversion of lambda-heteroduplexes. Mol Gen Genet 139:233–243PubMed
11.
Zurück zum Zitat Rydberg B (1978) Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat Res 52:11–24PubMed Rydberg B (1978) Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat Res 52:11–24PubMed
12.
Zurück zum Zitat Glickman BW, Radman M (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci USA 77:1063–1067PubMedPubMedCentral Glickman BW, Radman M (1980) Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci USA 77:1063–1067PubMedPubMedCentral
13.
Zurück zum Zitat Lauhe RS, Su SS, Morich P (1987) Requirement for d(GATC) sequences in Escherichia coli mutHLS mismatch correction. Proc Natl Acad Sci USA 84:1482–1486 Lauhe RS, Su SS, Morich P (1987) Requirement for d(GATC) sequences in Escherichia coli mutHLS mismatch correction. Proc Natl Acad Sci USA 84:1482–1486
14.
Zurück zum Zitat Su SS, Morrich P (1986) Escherichia coli mutS-encoded protein binds to Mismatched DNA base pairs. Proc Natl Acad Sci USA 83:5057–5061PubMedPubMedCentral Su SS, Morrich P (1986) Escherichia coli mutS-encoded protein binds to Mismatched DNA base pairs. Proc Natl Acad Sci USA 83:5057–5061PubMedPubMedCentral
15.
Zurück zum Zitat Meselson M (1988) Methyl-directed repair of DNA mismatches. In: Low KB (ed) Recombination of the genetic material. Academic Press, San Diego, pp 91–113 Meselson M (1988) Methyl-directed repair of DNA mismatches. In: Low KB (ed) Recombination of the genetic material. Academic Press, San Diego, pp 91–113
16.
Zurück zum Zitat Modrich P (1989) Methyl-directed DNA mismatch correction. J Biol Chem 264:6597–6600PubMed Modrich P (1989) Methyl-directed DNA mismatch correction. J Biol Chem 264:6597–6600PubMed
17.
Zurück zum Zitat Grilley M, Holmes J, Yashar B et al (1990) Mechanisms of DNA-mismatch correction. Mutat Res 236:253–267PubMed Grilley M, Holmes J, Yashar B et al (1990) Mechanisms of DNA-mismatch correction. Mutat Res 236:253–267PubMed
18.
Zurück zum Zitat Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253PubMed Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253PubMed
19.
Zurück zum Zitat Ligtenberg MJL, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3-prime exons of TACSTD1. Nature Genet 41:112–117PubMed Ligtenberg MJL, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3-prime exons of TACSTD1. Nature Genet 41:112–117PubMed
20.
Zurück zum Zitat Fishel R, Lescoe MK, Rao MRS et al (1993) The human mutator gene homolog MSH2 and its association. Cell 75:1027–1038PubMed Fishel R, Lescoe MK, Rao MRS et al (1993) The human mutator gene homolog MSH2 and its association. Cell 75:1027–1038PubMed
21.
Zurück zum Zitat Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225PubMed Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225PubMed
22.
Zurück zum Zitat Kolodner RD, Hall NR, Lipford J et al (1994) Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations. Genomics 24:516–526PubMed Kolodner RD, Hall NR, Lipford J et al (1994) Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations. Genomics 24:516–526PubMed
23.
Zurück zum Zitat Fishel R, Ewel A, Lee S et al (1993) Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266:1403–1405 Fishel R, Ewel A, Lee S et al (1993) Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266:1403–1405
24.
Zurück zum Zitat Papadopoulos N, Nicolaides NC, Wei Y-F et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629PubMed Papadopoulos N, Nicolaides NC, Wei Y-F et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629PubMed
25.
Zurück zum Zitat Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261PubMed Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261PubMed
26.
Zurück zum Zitat Han H-J, Maruyama M, Baba S et al (1995) Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Molec Genet 4:237–242PubMed Han H-J, Maruyama M, Baba S et al (1995) Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Molec Genet 4:237–242PubMed
27.
Zurück zum Zitat Drummond JT, Li G-M, Longley MJ et al (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–1912PubMed Drummond JT, Li G-M, Longley MJ et al (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–1912PubMed
28.
Zurück zum Zitat Palombo F, Gallinari P, Iaccarino I et al (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268:1912–1914PubMed Palombo F, Gallinari P, Iaccarino I et al (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268:1912–1914PubMed
29.
Zurück zum Zitat Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet 17:271–272PubMed Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet 17:271–272PubMed
30.
Zurück zum Zitat Akiyama Y, Sato H, Yamada T et al (1997) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57:3920–3923PubMed Akiyama Y, Sato H, Yamada T et al (1997) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57:3920–3923PubMed
31.
Zurück zum Zitat Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371:75–80PubMed Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371:75–80PubMed
32.
Zurück zum Zitat De Vos M, Hayward BE, Picton S et al (2004) Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 74:954–964PubMedPubMedCentral De Vos M, Hayward BE, Picton S et al (2004) Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 74:954–964PubMedPubMedCentral
33.
Zurück zum Zitat Ban C, Juno M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97PubMed Ban C, Juno M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97PubMed
34.
Zurück zum Zitat Tran PT, Liskay RM (2000) Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol 20:6390–6398PubMedPubMedCentral Tran PT, Liskay RM (2000) Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol 20:6390–6398PubMedPubMedCentral
35.
Zurück zum Zitat Räschle M, Dufner P, Marra G et al (2002) Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem 277:21810–21820PubMed Räschle M, Dufner P, Marra G et al (2002) Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem 277:21810–21820PubMed
36.
Zurück zum Zitat Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274:6336–6341PubMed Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274:6336–6341PubMed
37.
Zurück zum Zitat Kondo E, Horii A, Fukushige S (2001) The interaction domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2. Nucleic Acids Res 29:1695–1708PubMedPubMedCentral Kondo E, Horii A, Fukushige S (2001) The interaction domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2. Nucleic Acids Res 29:1695–1708PubMedPubMedCentral
38.
Zurück zum Zitat Reenan RA, Kolodner RD (1992) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963–973PubMedPubMedCentral Reenan RA, Kolodner RD (1992) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132:963–973PubMedPubMedCentral
39.
Zurück zum Zitat Li GM, Modrich P (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci USA 92:1950–1954PubMedPubMedCentral Li GM, Modrich P (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci USA 92:1950–1954PubMedPubMedCentral
40.
Zurück zum Zitat Johnson RE, Kovvali GK, Guzder SN et al (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271:27987–27990PubMed Johnson RE, Kovvali GK, Guzder SN et al (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271:27987–27990PubMed
41.
Zurück zum Zitat Umar A, Buermeyer AB, Simon JA et al (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73PubMed Umar A, Buermeyer AB, Simon JA et al (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73PubMed
42.
Zurück zum Zitat Tishkoff DX, Boerger AL, Bertrand P et al (1997) Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci USA 94:7487–7492PubMedPubMedCentral Tishkoff DX, Boerger AL, Bertrand P et al (1997) Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci USA 94:7487–7492PubMedPubMedCentral
43.
Zurück zum Zitat Longley MJ, Pierce AJ, Modrich P (1997) DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem 272:10917–10921PubMed Longley MJ, Pierce AJ, Modrich P (1997) DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem 272:10917–10921PubMed
44.
Zurück zum Zitat Schmutte C, Marinescu RC, Sadoff MM et al (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58:4537–4542PubMed Schmutte C, Marinescu RC, Sadoff MM et al (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58:4537–4542PubMed
45.
Zurück zum Zitat Tishkoff DX, Amin NS, Viars CS et al (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58:5027–5031PubMed Tishkoff DX, Amin NS, Viars CS et al (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58:5027–5031PubMed
46.
Zurück zum Zitat Lin YL, Shivji MK, Chen C et al (1998) The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem 273:1453–1461PubMed Lin YL, Shivji MK, Chen C et al (1998) The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem 273:1453–1461PubMed
47.
Zurück zum Zitat Gu L, Hong Y, McCulloch S et al (1998) ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res 26:1173–1178PubMedPubMedCentral Gu L, Hong Y, McCulloch S et al (1998) ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res 26:1173–1178PubMedPubMedCentral
48.
Zurück zum Zitat Zhang Y, Yuan F, Presnell SR et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122:693–705PubMed Zhang Y, Yuan F, Presnell SR et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122:693–705PubMed
49.
Zurück zum Zitat Genschel J, Littman SJ, Drummond JT et al (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273(31):19895–19901PubMed Genschel J, Littman SJ, Drummond JT et al (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273(31):19895–19901PubMed
50.
Zurück zum Zitat Iyer RR, Pluciennik A, Genschel J et al (2010) MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem 285(15):11730–11739PubMedPubMedCentral Iyer RR, Pluciennik A, Genschel J et al (2010) MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem 285(15):11730–11739PubMedPubMedCentral
51.
Zurück zum Zitat Plotz G, Raedle J, Brieger A et al (2003) N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res 31(12):3217–3226PubMedPubMedCentral Plotz G, Raedle J, Brieger A et al (2003) N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res 31(12):3217–3226PubMedPubMedCentral
52.
Zurück zum Zitat Dahal BK, Kadyrova LY, Delfino KR et al (2017) Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae. PLoS Genet 13(10):e1007074PubMedPubMedCentral Dahal BK, Kadyrova LY, Delfino KR et al (2017) Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae. PLoS Genet 13(10):e1007074PubMedPubMedCentral
53.
Zurück zum Zitat Villahermosa D, Christensen O, Knapp K et al (2017) Schizosaccharomyces pombe MutSα and MutLα maintain stability of tetra-nucleotide repeats and Msh3 of hepta-nucleotide repeats. G3 (Bethesda) 7(5):1463–1473 Villahermosa D, Christensen O, Knapp K et al (2017) Schizosaccharomyces pombe MutSα and MutLα maintain stability of tetra-nucleotide repeats and Msh3 of hepta-nucleotide repeats. G3 (Bethesda) 7(5):1463–1473
54.
Zurück zum Zitat Prolla TA, Baker SM, Harris AC et al (1998) Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 18(3):276–279PubMed Prolla TA, Baker SM, Harris AC et al (1998) Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 18(3):276–279PubMed
55.
Zurück zum Zitat Jäger AC, Rasmussen M, Bisgaard HC et al (2001) HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene 20(27):3590–3595PubMed Jäger AC, Rasmussen M, Bisgaard HC et al (2001) HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene 20(27):3590–3595PubMed
56.
Zurück zum Zitat Cannavo E, Marra G, Sabates-Bellver J et al (2005) Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 65(23):10759–10766PubMed Cannavo E, Marra G, Sabates-Bellver J et al (2005) Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 65(23):10759–10766PubMed
57.
Zurück zum Zitat Kadyrov FA, Dzantiev L, Constantin N et al (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308PubMed Kadyrov FA, Dzantiev L, Constantin N et al (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308PubMed
58.
Zurück zum Zitat Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr, Cantor SB (2007) The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 26(13):3238–3249PubMedPubMedCentral Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr, Cantor SB (2007) The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 26(13):3238–3249PubMedPubMedCentral
59.
Zurück zum Zitat Pluciennik A, Dzantiev L, Iyer RR et al (2010) PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci USA 107(37):16066–16071PubMedPubMedCentral Pluciennik A, Dzantiev L, Iyer RR et al (2010) PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci USA 107(37):16066–16071PubMedPubMedCentral
60.
Zurück zum Zitat Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710PubMed Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710PubMed
61.
Zurück zum Zitat Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98PubMed Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98PubMed
62.
63.
Zurück zum Zitat Marti TM, Kunz C, Fleck O (2002) DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191(1):28–41PubMed Marti TM, Kunz C, Fleck O (2002) DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191(1):28–41PubMed
64.
Zurück zum Zitat Friedberg EC (2003) DNA damage and repair. Nature 421(6921):436–440PubMed Friedberg EC (2003) DNA damage and repair. Nature 421(6921):436–440PubMed
65.
Zurück zum Zitat Martin SA, Lord CJ, Ashworth A (2010) Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16(21):5107–5113PubMed Martin SA, Lord CJ, Ashworth A (2010) Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16(21):5107–5113PubMed
66.
Zurück zum Zitat Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087PubMed Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087PubMed
68.
Zurück zum Zitat Groothuizen FS, Sixma TK (2016) The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 38:14–23 Groothuizen FS, Sixma TK (2016) The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 38:14–23
69.
Zurück zum Zitat Hingorani MM (2016) Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 38:24–31 Hingorani MM (2016) Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst) 38:24–31
70.
Zurück zum Zitat Kadyrova LY, Kadyrov FA (2016) Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair (Amst) 38:42–49 Kadyrova LY, Kadyrov FA (2016) Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair (Amst) 38:42–49
72.
Zurück zum Zitat Liu D, Keijzers G, Rasmussen LJ (2017) DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 773:174–187 Liu D, Keijzers G, Rasmussen LJ (2017) DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res 773:174–187
73.
74.
Zurück zum Zitat Plotz G, Raedle J, Brieger A et al (2002) hMutSalpha forms an ATP-dependent complex with hMutLalpha and hMutLbeta on DNA. Neucleic Acids Res 30(3):711–718 Plotz G, Raedle J, Brieger A et al (2002) hMutSalpha forms an ATP-dependent complex with hMutLalpha and hMutLbeta on DNA. Neucleic Acids Res 30(3):711–718
75.
Zurück zum Zitat Plotz G, Piiper A, Wormek M et al (2006) Analysis of the human MutLalpha.MutSalpha. Biochem Biophys Res Commun. 340(3):852–859PubMed Plotz G, Piiper A, Wormek M et al (2006) Analysis of the human MutLalpha.MutSalpha. Biochem Biophys Res Commun. 340(3):852–859PubMed
76.
Zurück zum Zitat Friedhoff P, Li P, Gotthardt J (2016) Protein-protein interactions in DNA mismatch repair. DNA Repair 38:50–57PubMed Friedhoff P, Li P, Gotthardt J (2016) Protein-protein interactions in DNA mismatch repair. DNA Repair 38:50–57PubMed
77.
Zurück zum Zitat Jeon Y, Kim D, Martin-Lopez JV et al (2016) Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci USA 113(12):3281–3286PubMedPubMedCentral Jeon Y, Kim D, Martin-Lopez JV et al (2016) Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci USA 113(12):3281–3286PubMedPubMedCentral
78.
Zurück zum Zitat Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. Genes Dev 12(14):2096–2101PubMed Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. Genes Dev 12(14):2096–2101PubMed
79.
Zurück zum Zitat Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97(1):85–97PubMed Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97(1):85–97PubMed
80.
Zurück zum Zitat Spampinato C, Modrich P (2000) The MutL ATPase is required for mismatch repair. J Biol Chem 275(13):9863–9869PubMed Spampinato C, Modrich P (2000) The MutL ATPase is required for mismatch repair. J Biol Chem 275(13):9863–9869PubMed
81.
Zurück zum Zitat Lamers MH, Winterwerp HH, Sixma TK (2003) The alternating ATPase domains of MutS control DNA mismatch repair. ENBO J 22(3):746–756 Lamers MH, Winterwerp HH, Sixma TK (2003) The alternating ATPase domains of MutS control DNA mismatch repair. ENBO J 22(3):746–756
82.
Zurück zum Zitat Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89–96PubMed Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89–96PubMed
83.
Zurück zum Zitat Peltomäki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10(7):735–740PubMed Peltomäki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10(7):735–740PubMed
84.
Zurück zum Zitat Bellacosa A (2001) Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8(11):1076–1092PubMed Bellacosa A (2001) Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8(11):1076–1092PubMed
85.
Zurück zum Zitat Scmidt MHM, Pearson CE (2016) Disease associated repeat instability and mismatch repair. DNA Repair 38:117–126 Scmidt MHM, Pearson CE (2016) Disease associated repeat instability and mismatch repair. DNA Repair 38:117–126
88.
Zurück zum Zitat Watson MMC, Berg M, Søreide K (2014) Prevalence and implications of elevated microsatellite alterations at selected tetranucleotides in cancer. Br J Cancer 111(5):823–827PubMedPubMedCentral Watson MMC, Berg M, Søreide K (2014) Prevalence and implications of elevated microsatellite alterations at selected tetranucleotides in cancer. Br J Cancer 111(5):823–827PubMedPubMedCentral
89.
Zurück zum Zitat Carethers JM, Koi M, Tseng-Rogenski SS (2015) EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes 6(2):185–205PubMedPubMedCentral Carethers JM, Koi M, Tseng-Rogenski SS (2015) EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes 6(2):185–205PubMedPubMedCentral
91.
Zurück zum Zitat Dollé E, Theise ND, Schmelzer E et al (2015) EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 308:G233–G250PubMed Dollé E, Theise ND, Schmelzer E et al (2015) EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 308:G233–G250PubMed
92.
Zurück zum Zitat Huang L, Yang Y, Yang F et al (2018) Functions of EpCAM in physiological processes and diseases. Int J Mol Med 42(4):1771–1785PubMedPubMedCentral Huang L, Yang Y, Yang F et al (2018) Functions of EpCAM in physiological processes and diseases. Int J Mol Med 42(4):1771–1785PubMedPubMedCentral
93.
Zurück zum Zitat Kovacs ME, Papp J, Szentirmay Z et al (2009) Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30(2):197–203PubMed Kovacs ME, Papp J, Szentirmay Z et al (2009) Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30(2):197–203PubMed
94.
Zurück zum Zitat Sivagnanam M, Mueller JL, Lee H et al (2008) Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterol 135(2):429–437 Sivagnanam M, Mueller JL, Lee H et al (2008) Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterol 135(2):429–437
95.
Zurück zum Zitat Reifen RM, Cutz E, Griffiths AM et al (1994) Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr 18(3):379–385PubMed Reifen RM, Cutz E, Griffiths AM et al (1994) Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr 18(3):379–385PubMed
96.
Zurück zum Zitat Goulet O, Salomon J, Ruemmele F et al (2007) Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis 2(1):20PubMedPubMedCentral Goulet O, Salomon J, Ruemmele F et al (2007) Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis 2(1):20PubMedPubMedCentral
97.
Zurück zum Zitat Pathak SJ, Mueller JL, Okamoto K et al (2019) EPCAM mutation update: variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 40(2):142–161PubMed Pathak SJ, Mueller JL, Okamoto K et al (2019) EPCAM mutation update: variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat 40(2):142–161PubMed
98.
Zurück zum Zitat Wimmer K, Kratz CP, Vasen HFA et al (2014) Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet 51(6):355–365PubMed Wimmer K, Kratz CP, Vasen HFA et al (2014) Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet 51(6):355–365PubMed
99.
Zurück zum Zitat Ricciardone MD, Ozçelik T, Cevher B et al (1999) Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 59(2):290–293PubMed Ricciardone MD, Ozçelik T, Cevher B et al (1999) Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 59(2):290–293PubMed
100.
Zurück zum Zitat Wang Q, Lasset C, Desseigne F et al (1999) Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 59(2):294–297PubMed Wang Q, Lasset C, Desseigne F et al (1999) Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 59(2):294–297PubMed
101.
Zurück zum Zitat Turcot J, Despres JP, St Pierre F et al (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2:465–468PubMed Turcot J, Despres JP, St Pierre F et al (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2:465–468PubMed
102.
Zurück zum Zitat Hamilton SR, Liu B, Parsons RE et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847PubMed Hamilton SR, Liu B, Parsons RE et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847PubMed
103.
Zurück zum Zitat Lavoine N, Colas C, Muleris M et al (2015) Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 52(11):770–778PubMed Lavoine N, Colas C, Muleris M et al (2015) Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet 52(11):770–778PubMed
104.
Zurück zum Zitat Turcot J, Despres JP, St Pierre F (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2(5):465–468PubMed Turcot J, Despres JP, St Pierre F (1959) Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum 2(5):465–468PubMed
105.
Zurück zum Zitat Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2009) Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 11(1):35–41 Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2009) Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 11(1):35–41
106.
Zurück zum Zitat Giardiello FM, Allen JI, Axilbund JE et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multisociety Task Force on colorectal cancer. Am J Gastroenterol 109(8):1159–1179PubMed Giardiello FM, Allen JI, Axilbund JE et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multisociety Task Force on colorectal cancer. Am J Gastroenterol 109(8):1159–1179PubMed
107.
Zurück zum Zitat Syngal S, Brand RE, Church JM et al (2015) ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110(2):223–262PubMedPubMedCentral Syngal S, Brand RE, Church JM et al (2015) ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110(2):223–262PubMedPubMedCentral
108.
Zurück zum Zitat Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMed Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMed
109.
Zurück zum Zitat Ionov Y, Peinado MA, Malkhosyan S et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561PubMed Ionov Y, Peinado MA, Malkhosyan S et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561PubMed
110.
Zurück zum Zitat Peltomäki P, Aaltonen LA, Sistonen P et al (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Nature 260:810–812 Peltomäki P, Aaltonen LA, Sistonen P et al (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Nature 260:810–812
111.
Zurück zum Zitat Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Nature 260(5109):816–819 Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Nature 260(5109):816–819
112.
Zurück zum Zitat Rodriguez-Bigas MA, Boland CR, Hamilton SR et al (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89(23):1758–1762PubMed Rodriguez-Bigas MA, Boland CR, Hamilton SR et al (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89(23):1758–1762PubMed
113.
Zurück zum Zitat Leach FS, Polyak K, Burrell M et al (1996) Expression of the human mismatch repair gene hMSH2 in normal and neoplastic tissues. Cancer Res 56(2):235–240PubMed Leach FS, Polyak K, Burrell M et al (1996) Expression of the human mismatch repair gene hMSH2 in normal and neoplastic tissues. Cancer Res 56(2):235–240PubMed
114.
Zurück zum Zitat Thibodeau SN, French AJ, Roche PC et al (1996) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56(21):4836–4840PubMed Thibodeau SN, French AJ, Roche PC et al (1996) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56(21):4836–4840PubMed
115.
Zurück zum Zitat Hendriks Y, Franken P, Dierssen JW et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477PubMedPubMedCentral Hendriks Y, Franken P, Dierssen JW et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477PubMedPubMedCentral
116.
Zurück zum Zitat de Jong AE, van Puijenbroek M, Hendriks Y et al (2004) Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer res 10(39):972–980PubMed de Jong AE, van Puijenbroek M, Hendriks Y et al (2004) Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer res 10(39):972–980PubMed
117.
Zurück zum Zitat Lipkin SM, Wang V, Jacoby R et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35PubMed Lipkin SM, Wang V, Jacoby R et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35PubMed
118.
Zurück zum Zitat Rigau V, Sebbagh N, Olschwang S et al (2003) Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 [correction of hMLH6] immunostaining. Arch Pathol Lab Med 127(6):694–700PubMed Rigau V, Sebbagh N, Olschwang S et al (2003) Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 [correction of hMLH6] immunostaining. Arch Pathol Lab Med 127(6):694–700PubMed
119.
Zurück zum Zitat Hampel H, Frankel WL, Martin E et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352(18):1851–1860PubMed Hampel H, Frankel WL, Martin E et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352(18):1851–1860PubMed
120.
Zurück zum Zitat Hendriks YMC, de Jong AE, Morreau H et al (2006) Dianostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin 56(4):213–225PubMed Hendriks YMC, de Jong AE, Morreau H et al (2006) Dianostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin 56(4):213–225PubMed
121.
Zurück zum Zitat Snowsill T, Coelho H, Huxley N et al (2017) Molecular testing for Lynch syndrome in people with colorectal cancer: systematic reviews and economic evaluation. Health Technol Assess 21(51):1–238PubMedPubMedCentral Snowsill T, Coelho H, Huxley N et al (2017) Molecular testing for Lynch syndrome in people with colorectal cancer: systematic reviews and economic evaluation. Health Technol Assess 21(51):1–238PubMedPubMedCentral
122.
Zurück zum Zitat Jin M, Hampel H, Zhou X et al (2013) BRAF V600E mutation analysis simplifies the testing algorithm for Lynch Syndrome. Am J Clin Pathol 140(2):177–183PubMed Jin M, Hampel H, Zhou X et al (2013) BRAF V600E mutation analysis simplifies the testing algorithm for Lynch Syndrome. Am J Clin Pathol 140(2):177–183PubMed
123.
Zurück zum Zitat Lagerstedt-Robinson K, Rohlin A, Aravidis C et al (2016) Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population. Oncol Rep 36(5):2823–2835PubMed Lagerstedt-Robinson K, Rohlin A, Aravidis C et al (2016) Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population. Oncol Rep 36(5):2823–2835PubMed
125.
Zurück zum Zitat Gallego CJ, Shirts BH, Bennette CS et al (2015) Next-generations sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: a cost-effectiveness analysis. J Clin Oncol 33(18):2084–2091PubMedPubMedCentral Gallego CJ, Shirts BH, Bennette CS et al (2015) Next-generations sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: a cost-effectiveness analysis. J Clin Oncol 33(18):2084–2091PubMedPubMedCentral
126.
Zurück zum Zitat Espenschied CR, LaDuca H, Li S et al (2017) Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol 35(22):2568–2575PubMedPubMedCentral Espenschied CR, LaDuca H, Li S et al (2017) Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol 35(22):2568–2575PubMedPubMedCentral
127.
Zurück zum Zitat Yurgelun MB, Kulke MH, Fuchs CS et al (2017) Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 35(10):1086–1095PubMedPubMedCentral Yurgelun MB, Kulke MH, Fuchs CS et al (2017) Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 35(10):1086–1095PubMedPubMedCentral
128.
Zurück zum Zitat Thompson BA, Spurdle AB, Plazzer JP et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46(12):107–115PubMed Thompson BA, Spurdle AB, Plazzer JP et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46(12):107–115PubMed
129.
Zurück zum Zitat Roberts ME, Jackson SA, Susswein LR et al (2018) MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med 20(10):1167–1174PubMedPubMedCentral Roberts ME, Jackson SA, Susswein LR et al (2018) MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med 20(10):1167–1174PubMedPubMedCentral
130.
Zurück zum Zitat Plazzer JP, Sijmons RH, Woods MO et al (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180PubMed Plazzer JP, Sijmons RH, Woods MO et al (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180PubMed
131.
Zurück zum Zitat Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736PubMed Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736PubMed
132.
Zurück zum Zitat Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentral Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentral
133.
Zurück zum Zitat Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMed Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMed
134.
Zurück zum Zitat Nishimura H, Nose M, Hiai H et al (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151PubMed Nishimura H, Nose M, Hiai H et al (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151PubMed
135.
Zurück zum Zitat Topalian SL, Hodi S, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedPubMedCentral Topalian SL, Hodi S, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedPubMedCentral
136.
Zurück zum Zitat Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentral Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentral
137.
Zurück zum Zitat Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedPubMedCentral Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199PubMedPubMedCentral
138.
Zurück zum Zitat Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1blockade in non-small cell lung cancer. Science 348(6230):124–128PubMedPubMedCentral Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1blockade in non-small cell lung cancer. Science 348(6230):124–128PubMedPubMedCentral
139.
Zurück zum Zitat Yarchoan M, Hopkins A, Jaffee EM et al (2018) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501 Yarchoan M, Hopkins A, Jaffee EM et al (2018) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501
141.
Zurück zum Zitat Dudley JC, Lin MT, Le DT et al (2016) Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 22(4):813–820PubMed Dudley JC, Lin MT, Le DT et al (2016) Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 22(4):813–820PubMed
142.
Zurück zum Zitat Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413PubMedPubMedCentral Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413PubMedPubMedCentral
Metadaten
Titel
Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome
verfasst von
Kazuo Tamura
Motohide Kaneda
Mashu Futagawa
Miho Takeshita
Sanghyuk Kim
Mina Nakama
Norihito Kawashita
Junko Tatsumi-Miyajima
Publikationsdatum
04.07.2019
Verlag
Springer Singapore
Erschienen in
International Journal of Clinical Oncology / Ausgabe 9/2019
Print ISSN: 1341-9625
Elektronische ISSN: 1437-7772
DOI
https://doi.org/10.1007/s10147-019-01494-y

Weitere Artikel der Ausgabe 9/2019

International Journal of Clinical Oncology 9/2019 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.