Skip to main content
Erschienen in: Angiogenesis 4/2023

28.08.2023 | Letter

The modes of angiogenesis: an updated perspective

verfasst von: Andrew C. Dudley, Arjan W. Griffioen

Erschienen in: Angiogenesis | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Following the process of vasculogenesis during development, angiogenesis generates new vascular structures through a variety of different mechanisms or modes. These different modes of angiogenesis involve, for example, increasing microvasculature density by sprouting of endothelial cells, splitting of vessels to increase vascular surface area by intussusceptive angiogenesis, fusion of capillaries to increase blood flow by coalescent angiogenesis, and the recruitment of non-endothelial cells by vasculogenic mimicry. The recent reporting on coalescent angiogenesis as a new mode of vessel formation warrants a brief overview of angiogenesis mechanisms to provide a more complete picture. The journal Angiogenesis is devoted to the delineation of the different modes and mechanisms that collectively dictate blood vessel formation, inhibition, and function in health and disease.
Literatur
1.
Zurück zum Zitat Nitzsche B, Rong WW, Goede A, Hoffmann B, Scarpa F, Kuebler WM, Secomb TW, Pries AR (2021) Coalescent angiogenesis-evidence for a novel concept of vascular network maturation. Angiogenesis 25(1):35CrossRefPubMedPubMedCentral Nitzsche B, Rong WW, Goede A, Hoffmann B, Scarpa F, Kuebler WM, Secomb TW, Pries AR (2021) Coalescent angiogenesis-evidence for a novel concept of vascular network maturation. Angiogenesis 25(1):35CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Pezzella F, Kerbel RS (2022) On coalescent angiogenesis and the remarkable flexibility of blood vessels. Angiogenesis 25(1):1–3CrossRefPubMed Pezzella F, Kerbel RS (2022) On coalescent angiogenesis and the remarkable flexibility of blood vessels. Angiogenesis 25(1):1–3CrossRefPubMed
5.
Zurück zum Zitat Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J (2022) Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 25(1):15–33CrossRefPubMed Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J (2022) Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 25(1):15–33CrossRefPubMed
6.
Zurück zum Zitat Hillen F, Griffioen AW (2007) Tumor vascularization; sprouting angiogenesis and beyond. Cancer Met Rev 26(3–4):13 Hillen F, Griffioen AW (2007) Tumor vascularization; sprouting angiogenesis and beyond. Cancer Met Rev 26(3–4):13
7.
Zurück zum Zitat Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86(3):286–292CrossRefPubMed Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86(3):286–292CrossRefPubMed
8.
Zurück zum Zitat Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224(4):391–402CrossRefPubMed Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224(4):391–402CrossRefPubMed
9.
Zurück zum Zitat Zhang Y, Wang S, Dudley AC (2020) Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 23(1):17–25CrossRefPubMed Zhang Y, Wang S, Dudley AC (2020) Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 23(1):17–25CrossRefPubMed
10.
Zurück zum Zitat Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, Granone P, Goldstraw P, Tetlow M, Ratcliffe C, Nicholson AG et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24(7):1212–1219CrossRefPubMed Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, Granone P, Goldstraw P, Tetlow M, Ratcliffe C, Nicholson AG et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24(7):1212–1219CrossRefPubMed
11.
Zurück zum Zitat Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752CrossRefPubMedPubMedCentral Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Li A, Zhu L, Lei N, Wan J, Duan X, Liu S, Cheng Y, Wang M, Gu Z, Zhang H et al (2022) S100A4-dependent glycolysis promotes lymphatic vessel sprouting in tumor. Angiogenesis 26(1):19CrossRefPubMed Li A, Zhu L, Lei N, Wan J, Duan X, Liu S, Cheng Y, Wang M, Gu Z, Zhang H et al (2022) S100A4-dependent glycolysis promotes lymphatic vessel sprouting in tumor. Angiogenesis 26(1):19CrossRefPubMed
13.
Zurück zum Zitat Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, Liang LJ, Wu S, Liang L, Wang W (2021) A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Angiogenesis 24(3):549–565CrossRefPubMedPubMedCentral Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, Liang LJ, Wu S, Liang L, Wang W (2021) A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Angiogenesis 24(3):549–565CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, Jonigk D, Chocron R, Pier GB, Gendron N et al (2021) COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 24(4):755–788CrossRefPubMedPubMedCentral Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, Jonigk D, Chocron R, Pier GB, Gendron N et al (2021) COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 24(4):755–788CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ackermann M, Mentzer SJ, Jonigk D (2020) Pulmonary Vascular Pathology in Covid-19. Reply. N Engl J Med 383(9):888–889PubMed Ackermann M, Mentzer SJ, Jonigk D (2020) Pulmonary Vascular Pathology in Covid-19. Reply. N Engl J Med 383(9):888–889PubMed
18.
Zurück zum Zitat Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B et al (2020) Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 23(4):611–620CrossRefPubMedPubMedCentral Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B et al (2020) Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 23(4):611–620CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Philippe A, Chocron R, Gendron N, Bory O, Beauvais A, Peron N, Khider L, Guerin CL, Goudot G, Levasseur F et al (2021) Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis 24(3):505–517CrossRefPubMedPubMedCentral Philippe A, Chocron R, Gendron N, Bory O, Beauvais A, Peron N, Khider L, Guerin CL, Goudot G, Levasseur F et al (2021) Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis 24(3):505–517CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Philippe A, Gendron N, Bory O, Beauvais A, Mirault T, Planquette B, Sanchez O, Diehl JL, Chocron R, Smadja DM (2021) Von Willebrand factor collagen-binding capacity predicts in-hospital mortality in COVID-19 patients: insight from VWF/ADAMTS13 ratio imbalance. Angiogenesis 24(3):407–411CrossRefPubMedPubMedCentral Philippe A, Gendron N, Bory O, Beauvais A, Mirault T, Planquette B, Sanchez O, Diehl JL, Chocron R, Smadja DM (2021) Von Willebrand factor collagen-binding capacity predicts in-hospital mortality in COVID-19 patients: insight from VWF/ADAMTS13 ratio imbalance. Angiogenesis 24(3):407–411CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Bhogal P, Paul G, Collins G, Jaffer O (2021) Letter in response to: circulating von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis 24(3):413–415CrossRefPubMedPubMedCentral Bhogal P, Paul G, Collins G, Jaffer O (2021) Letter in response to: circulating von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis 24(3):413–415CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Rovas A, Buscher K, Osiaevi I, Drost CC, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U et al (2022) Microvascular and proteomic signatures overlap in COVID-19 and bacterial sepsis: the MICROCODE study. Angiogenesis 25(4):503–515CrossRefPubMedPubMedCentral Rovas A, Buscher K, Osiaevi I, Drost CC, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U et al (2022) Microvascular and proteomic signatures overlap in COVID-19 and bacterial sepsis: the MICROCODE study. Angiogenesis 25(4):503–515CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Klouda T, Hao Y, Kim H, Kim J, Olejnik J, Hume AJ, Ayyappan S, Hong X, Melero-Martin J, Fang Y et al (2022) Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis 25(2):225–240CrossRefPubMed Klouda T, Hao Y, Kim H, Kim J, Olejnik J, Hume AJ, Ayyappan S, Hong X, Melero-Martin J, Fang Y et al (2022) Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis 25(2):225–240CrossRefPubMed
24.
Zurück zum Zitat Osiaevi I, Schulze A, Evers G, Harmening K, Vink H, Kumpers P, Mohr M, Rovas A (2022) Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26(1):8 Osiaevi I, Schulze A, Evers G, Harmening K, Vink H, Kumpers P, Mohr M, Rovas A (2022) Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26(1):8
25.
Zurück zum Zitat Riera-Mestre A, Iriarte A, Moreno M, Del Castillo R, Lopez-Wolf D (2021) Angiogenesis, hereditary hemorrhagic telangiectasia and COVID-19. Angiogenesis 24(1):13–15CrossRefPubMed Riera-Mestre A, Iriarte A, Moreno M, Del Castillo R, Lopez-Wolf D (2021) Angiogenesis, hereditary hemorrhagic telangiectasia and COVID-19. Angiogenesis 24(1):13–15CrossRefPubMed
26.
Zurück zum Zitat Werlein C, Ackermann M, Stark H, Shah HR, Tzankov A, Haslbauer JD, von Stillfried S, Bulow RD, El-Armouche A, Kuenzel S et al (2023) Inflammation and vascular remodeling in COVID-19 hearts. Angiogenesis 26(2):233–248CrossRefPubMed Werlein C, Ackermann M, Stark H, Shah HR, Tzankov A, Haslbauer JD, von Stillfried S, Bulow RD, El-Armouche A, Kuenzel S et al (2023) Inflammation and vascular remodeling in COVID-19 hearts. Angiogenesis 26(2):233–248CrossRefPubMed
27.
Zurück zum Zitat Henry BM, de Oliveira MHS, Cheruiyot I, Benoit JL, Cooper DS, Lippi G, Le Cras TD, Benoit SW (2021) Circulating level of Angiopoietin-2 is associated with acute kidney injury in coronavirus disease 2019 (COVID-19). Angiogenesis 24(3):403–406CrossRefPubMedPubMedCentral Henry BM, de Oliveira MHS, Cheruiyot I, Benoit JL, Cooper DS, Lippi G, Le Cras TD, Benoit SW (2021) Circulating level of Angiopoietin-2 is associated with acute kidney injury in coronavirus disease 2019 (COVID-19). Angiogenesis 24(3):403–406CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U, Tholking G et al (2021) Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis 24(1):145–157CrossRefPubMed Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U, Tholking G et al (2021) Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis 24(1):145–157CrossRefPubMed
30.
Zurück zum Zitat Koch PS, Lee KH, Goerdt S, Augustin HG (2021) Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 24(2):289–310CrossRefPubMedPubMedCentral Koch PS, Lee KH, Goerdt S, Augustin HG (2021) Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 24(2):289–310CrossRefPubMedPubMedCentral
32.
33.
34.
Zurück zum Zitat Mauri C, van Impel A, Mackay EW, Schulte-Merker S (2021) The adaptor protein Grb2b is an essential modulator for lympho-venous sprout formation in the zebrafish trunk. Angiogenesis 24(2):345–362CrossRefPubMedPubMedCentral Mauri C, van Impel A, Mackay EW, Schulte-Merker S (2021) The adaptor protein Grb2b is an essential modulator for lympho-venous sprout formation in the zebrafish trunk. Angiogenesis 24(2):345–362CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Ruter DL, Liu Z, Ngo KM, Marvin XS, Buglak A, Kidder DB, Bautch EJ (2021) SMAD6 transduces endothelial cell flow responses required for blood vessel homeostasis. Angiogenesis 24(2):387–398CrossRefPubMedPubMedCentral Ruter DL, Liu Z, Ngo KM, Marvin XS, Buglak A, Kidder DB, Bautch EJ (2021) SMAD6 transduces endothelial cell flow responses required for blood vessel homeostasis. Angiogenesis 24(2):387–398CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Hong X, Oh N, Wang K, Neumeyer J, Lee CN, Lin RZ, Piekarski B, Emani S, Greene AK, Friehs I et al (2021) Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1. Angiogenesis 24(2):327–344CrossRefPubMedPubMedCentral Hong X, Oh N, Wang K, Neumeyer J, Lee CN, Lin RZ, Piekarski B, Emani S, Greene AK, Friehs I et al (2021) Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1. Angiogenesis 24(2):327–344CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Tang X, Wang JJ, Wang J, Abboud HE, Chen Y, Zhang SX (2021) Endothelium-specific deletion of Nox4 delays retinal vascular development and mitigates pathological angiogenesis. Angiogenesis 24(2):363–377CrossRefPubMed Tang X, Wang JJ, Wang J, Abboud HE, Chen Y, Zhang SX (2021) Endothelium-specific deletion of Nox4 delays retinal vascular development and mitigates pathological angiogenesis. Angiogenesis 24(2):363–377CrossRefPubMed
40.
Zurück zum Zitat Sun D, Wang J, Toan S, Muid D, Li R, Chang X, Zhou H (2022) Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 25(3):307–329CrossRefPubMed Sun D, Wang J, Toan S, Muid D, Li R, Chang X, Zhou H (2022) Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 25(3):307–329CrossRefPubMed
Metadaten
Titel
The modes of angiogenesis: an updated perspective
verfasst von
Andrew C. Dudley
Arjan W. Griffioen
Publikationsdatum
28.08.2023
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 4/2023
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-023-09895-4

Weitere Artikel der Ausgabe 4/2023

Angiogenesis 4/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.